Research article

A novel delayed exponent coupled chaotic map with countering dynamical degradation

  • Received: 08 October 2023 Revised: 14 November 2023 Accepted: 21 November 2023 Published: 27 November 2023
  • MSC : 34H10, 37G15

  • While chaotic systems have found extensive applications across diverse scientific domains due to their inherent advantages, they often degrade into cyclic patterns when simulated on hardware with limited computational precision. This results in a pronounced decline in properties related to chaotic dynamics. To address this issue, we introduce the delayed exponent coupled chaotic map (DECCM). This model is designed to enhance the chaotic dynamics of the original map, especially at lower computational precisions. Additionally, DECCM can transform any proficient 1-dimensional seed map into an N-dimensional chaotic map. Extensive simulation and performance tests attest to the robust chaotic characteristics of our approach. Furthermore, DECCM holds distinct advantages over premier algorithms, particularly in period analysis experiments. We also introduce various seed maps into DECCM to present 2D and 3D examples, ensuring their generalization through relevant performance evaluations.

    Citation: Bowen Zhang, Lingfeng Liu. A novel delayed exponent coupled chaotic map with countering dynamical degradation[J]. AIMS Mathematics, 2024, 9(1): 99-121. doi: 10.3934/math.2024007

    Related Papers:

  • While chaotic systems have found extensive applications across diverse scientific domains due to their inherent advantages, they often degrade into cyclic patterns when simulated on hardware with limited computational precision. This results in a pronounced decline in properties related to chaotic dynamics. To address this issue, we introduce the delayed exponent coupled chaotic map (DECCM). This model is designed to enhance the chaotic dynamics of the original map, especially at lower computational precisions. Additionally, DECCM can transform any proficient 1-dimensional seed map into an N-dimensional chaotic map. Extensive simulation and performance tests attest to the robust chaotic characteristics of our approach. Furthermore, DECCM holds distinct advantages over premier algorithms, particularly in period analysis experiments. We also introduce various seed maps into DECCM to present 2D and 3D examples, ensuring their generalization through relevant performance evaluations.



    加载中


    [1] S. Gao, R. Wu, X. Wang, J. Liu, Q. Li, C. Wang, et al., Asynchronous updating Boolean network encryption algorithm, IEEE T. Circ. Syst. Vid., 33 (2023), 4388–4400. https://doi.org/10.1109/TCSVT.2023.3237136
    [2] S. Gao, R. Wu, X. Wang, J. Liu, Q. Li, C. Wang, et al., A 3D model encryption scheme based on a cascaded chaotic system, Signal Process., 202 (2023), 108745. https://doi.org/10.1016/j.sigpro.2022.108745
    [3] A. Zand, M. Tavazoei, N. Kuznetsov, Chaos and its degradation-promoting-based control in an antithetic integral feedback circuit, IEEE Control Systems Letters, 6 (2021), 1622–1627. https://doi.org/10.1109/LCSYS.2021.3129320 doi: 10.1109/LCSYS.2021.3129320
    [4] A. Altland, J. Sonner, Late time physics of holographic quantum chaos, SciPost Phys., 11 (2021), 034. https://doi.org/10.21468/SciPostPhys.11.2.034 doi: 10.21468/SciPostPhys.11.2.034
    [5] H. Abarbanel, R. Brown, J. Sidorowich, L. Tsimring, The analysis of observed chaotic data in physical systems, Rev. Mod. Phys., 65 (1993), 1331. https://doi.org/10.1103/RevModPhys.65.1331 doi: 10.1103/RevModPhys.65.1331
    [6] K. Abro, Numerical study and chaotic oscillations for aerodynamic model of wind turbine via fractal and fractional differential operators, Numer. Meth. Part. D. E., 38 (2022), 1180–1194. https://doi.org/10.1002/num.22727 doi: 10.1002/num.22727
    [7] C. Fan, Q. Ding, A universal method for constructing non-degenerate hyperchaotic systems with any desired number of positive Lyapunov exponents, Chaos Soliton. Fract., 161 (2022), 112323. https://doi.org/10.1016/j.chaos.2022.112323 doi: 10.1016/j.chaos.2022.112323
    [8] C. Fan, Q. Ding, Constructing n-dimensional discrete non-degenerate hyperchaotic maps using QR decomposition, Chaos Soliton. Fract., 174 (2023), 113915. https://doi.org/10.1016/j.chaos.2023.113915 doi: 10.1016/j.chaos.2023.113915
    [9] K. Aihara, Chaos engineering and its application to parallel distributed processing with chaotic neural networks, P. IEEE, 90 (2002), 919–930. https://doi.org/10.1109/JPROC.2002.1015014 doi: 10.1109/JPROC.2002.1015014
    [10] K. Rajagopal, A. Akgul, S. Jafari, B. Aricioglu, A chaotic memcapacitor oscillator with two unstable equilibriums and its fractional form with engineering applications, Nonlinear Dyn., 91 (2018), 957–974. https://doi.org/10.1007/s11071-017-3921-3 doi: 10.1007/s11071-017-3921-3
    [11] S. Talatahari, M. Azizi, Optimization of constrained mathematical and engineering design problems using chaos game optimization, Comput. Ind. Eng., 145 (2020), 106560. https://doi.org/10.1016/j.cie.2020.106560 doi: 10.1016/j.cie.2020.106560
    [12] A. Medio, G. Gallo, Chaotic dynamics: theory and applications to economics, Cambridge: Cambridge University Press, 1995.
    [13] M. Boldrin, Persistent oscillations and chaos in dynamic economic models: notes for a survey, In: The economy as an evolving complex system, Boca Raton: CRC Press, 2018, 49–75.
    [14] H. Jahanshahi, S. Sajjadi, S. Bekiros, A. Aly, On the development of variable-order fractional hyperchaotic economic system with a nonlinear model predictive controller, Chaos Soliton. Fract., 144 (2021), 110698. https://doi.org/10.1016/j.chaos.2021.110698 doi: 10.1016/j.chaos.2021.110698
    [15] S. Gao, R. Wu, X. Wang, J. Liu, Q. Li, X. Tang, EFR-CSTP: encryption for face recognition based on the chaos and semi-tensor product theory, Inform. Sciences, 621 (2023), 766–781. https://doi.org/10.1016/j.ins.2022.11.121 doi: 10.1016/j.ins.2022.11.121
    [16] R. Wu, S. Gao, X. Wang, S. Liu, Q. Li, U. Erkan, et al., AEA-NCS: an audio encryption algorithm based on a nested chaotic system, Chao Soliton. Fract., 165 (2022), 112770. https://doi.org/10.1016/j.chaos.2022.112770
    [17] R. Matthews, On the derivation of a "chaotic" encryption algorithm, Cryptologia, 13 (1989), 29–42. https://doi.org/10.1080/0161-118991863745 doi: 10.1080/0161-118991863745
    [18] J. Liu, Y. Wang, Z. Liu, H. Zhu, A chaotic image encryption algorithm based on coupled piecewise sine map and sensitive diffusion structure, Nonlinear Dyn., 104 (2021), 4615–4633. https://doi.org/10.1007/s11071-021-06576-z doi: 10.1007/s11071-021-06576-z
    [19] J. Zheng, H. Hu, A symmetric image encryption scheme based on hybrid analog-digital chaotic system and parameter selection mechanism, Multimed. Tools Appl., 80 (2021), 20883–20905. https://doi.org/10.1007/s11042-021-10751-0 doi: 10.1007/s11042-021-10751-0
    [20] J. Xin, H. Hu, J. Zheng, 3D variable-structure chaotic system and its application in color image encryption with new Rubik's Cube-like permutation, Nonlinear Dyn., 111 (2023), 7859–7882. https://doi.org/10.1007/s11071-023-08230-2 doi: 10.1007/s11071-023-08230-2
    [21] J. Zheng, H. Hu, A highly secure stream cipher based on analog-digital hybrid chaotic system, Inform. Sciences, 587 (2022), 226–246. https://doi.org/10.1016/j.ins.2021.12.030 doi: 10.1016/j.ins.2021.12.030
    [22] C. Fan, Q. Ding, Analysis and resistance of dynamic degradation of digital chaos via functional graphs, Nonlinear Dyn., 103 (2021), 1081–1097. https://doi.org/10.1007/s11071-020-06160-x doi: 10.1007/s11071-020-06160-x
    [23] S. Wang, W. Liu, H. Lu, J. Kuang, G. Hu, Periodicity of chaotic trajectories in realizations of finite computer precisions and its implication in chaos communications, Int. J. Mod. Phys. B, 18 (2004), 2617–2622. https://doi.org/10.1142/S0217979204025798 doi: 10.1142/S0217979204025798
    [24] W. Cao, H. Cai, Z. Hua, n-dimensional chaotic map with application in secure communication, Chaos Soliton. Fract., 163 (2022), 112519. https://doi.org/10.1016/j.chaos.2022.112519 doi: 10.1016/j.chaos.2022.112519
    [25] C. Chen, K. Sun, Y. Peng, A. Alamodi, A novel control method to counteract the dynamical degradation of a digital chaotic sequence, Eur. Phys. J. Plus, 134 (2019), 31. https://doi.org/10.1140/epjp/i2019-12374-y doi: 10.1140/epjp/i2019-12374-y
    [26] L. Liu, H. Xiang, X. Li, A novel perturbation method to reduce the dynamical degradation of digital chaotic maps, Nonlinear Dyn., 103 (2021), 1099–1115. https://doi.org/10.1007/s11071-020-06113-4 doi: 10.1007/s11071-020-06113-4
    [27] Y. Liu, Y. Luo, S. Song, L. Cao, J. Liu, J. Harkin, Counteracting dynamical degradation of digital chaotic Chebyshev map via perturbation, Int. J. Bifurcat. Chaos, 27 (2017), 1750033. https://doi.org/10.1142/S021812741750033X doi: 10.1142/S021812741750033X
    [28] S. Zhou, X. Wang, Y. Zhang, Novel image encryption scheme based on chaotic signals with finite-precision error, Inform. Sciences, 621 (2023), 782–798. https://doi.org/10.1016/j.ins.2022.11.104 doi: 10.1016/j.ins.2022.11.104
    [29] I. Kafetzis, L. Moysis, A. Tutueva, D. Butusov, H. Nistazakis, C. Volos, A 1D coupled hyperbolic tangent chaotic map with delay and its application to password generation, Multimed. Tools Appl., 82 (2023), 9303–9322. https://doi.org/10.1007/s11042-022-13657-7 doi: 10.1007/s11042-022-13657-7
    [30] L. Liu, S. Miao, Delay-introducing method to improve the dynamical degradation of a digital chaotic map, Inform. Sciences, 396 (2017), 1–13. https://doi.org/10.1016/j.ins.2017.02.031 doi: 10.1016/j.ins.2017.02.031
    [31] L. Liu, B. Liu, H. Hu, S. Miao, Reducing the dynamical degradation by bi-coupling digital chaotic maps, Int. J. Bifurcat. Chaos, 28 (2018), 1850059. https://doi.org/10.1142/S0218127418500591 doi: 10.1142/S0218127418500591
    [32] J. Zheng, H. Hu, Bit cyclic shift method to reinforce digital chaotic maps and its application in pseudorandom number generator, Appl. Math. Comput., 420 (2022), 126788. https://doi.org/10.1016/j.amc.2021.126788 doi: 10.1016/j.amc.2021.126788
    [33] B. Zhang, L. Liu, Chaos-based image encryption: review, application, and challenges, Mathematics, 11 (2023), 2585. https://doi.org/10.3390/math11112585
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(930) PDF downloads(82) Cited by(0)

Article outline

Figures and Tables

Figures(22)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog