Chaos theory has been widely utilized in password design, resulting in an encryption algorithm that exhibits strong security and high efficiency. However, rapid advancements in cryptanalysis technology have rendered single system generated sequences susceptible to tracking and simulation, compromising encryption algorithm security. To address this issue, we propose an image encryption algorithm based on hybrid heterogeneous time-delay chaotic systems. Our algorithm utilizes a collection of sequences generated by multiple heterogeneous time-delay chaotic systems, rather than sequences from a single chaotic system. Specifically, three sequences are randomly assigned to image pixel scrambling and diffusion operations. Furthermore, the time-delay chaotic system comprises multiple hyperchaotic systems with positive Lyapunov exponents, exhibiting a more complex dynamic behavior than non-delay chaotic systems. Our encryption algorithm is developed by a plurality of time-delay chaotic systems, thereby increasing the key space, enhancing security, and making the encrypted image more difficult to crack. Simulation experiment results verify that our algorithm exhibits superior encryption efficiency and security compared to other encryption algorithms.
Citation: Yuzhen Zhou, Erxi Zhu. A new image encryption based on hybrid heterogeneous time-delay chaotic systems[J]. AIMS Mathematics, 2024, 9(3): 5582-5608. doi: 10.3934/math.2024270
Chaos theory has been widely utilized in password design, resulting in an encryption algorithm that exhibits strong security and high efficiency. However, rapid advancements in cryptanalysis technology have rendered single system generated sequences susceptible to tracking and simulation, compromising encryption algorithm security. To address this issue, we propose an image encryption algorithm based on hybrid heterogeneous time-delay chaotic systems. Our algorithm utilizes a collection of sequences generated by multiple heterogeneous time-delay chaotic systems, rather than sequences from a single chaotic system. Specifically, three sequences are randomly assigned to image pixel scrambling and diffusion operations. Furthermore, the time-delay chaotic system comprises multiple hyperchaotic systems with positive Lyapunov exponents, exhibiting a more complex dynamic behavior than non-delay chaotic systems. Our encryption algorithm is developed by a plurality of time-delay chaotic systems, thereby increasing the key space, enhancing security, and making the encrypted image more difficult to crack. Simulation experiment results verify that our algorithm exhibits superior encryption efficiency and security compared to other encryption algorithms.
[1] | M. Bouchaala, C. Ghazel, L. A. Saidane, Enhancing security and efficiency in cloud computing authentication and key agreement scheme based on smart card, J. Supercomput., 78 (2022), 497–522. https://doi.org/10.1007/s11227-021-03857-7 doi: 10.1007/s11227-021-03857-7 |
[2] | S. Gao, R. Wu, X. Wang, J. Liu, Q. Li, C. Wang, et al., Asynchronous updating Boolean network encryption algorithm, IEEE T. Circ. Syst. Vid., 33 (2023), 4388–4400. https://doi.org/10.1109/TCSVT.2023.3237136 doi: 10.1109/TCSVT.2023.3237136 |
[3] | L. Yuan, S. Zheng, Z. Alam, Dynamics analysis and cryptographic application of fractional logistic map, Nonlinear Dynam., 202 (2019), 615–636. https://doi.org/10.1007/s11071-019-04810-3 doi: 10.1007/s11071-019-04810-3 |
[4] | S. Gao, R. Wu, X. Wang, J. Liu, Q. Li, C. Wang, et al., A 3D model encryption scheme based on a cascaded chaotic system, Signal Process., 202 (2023), 108745. https://doi.org/10.1016/j.sigpro.2022.108745 doi: 10.1016/j.sigpro.2022.108745 |
[5] | D. Park, S. Hong, N. S. Chang, S. M. Cho, Efficient implementation of modular multiplication over 192-bit NIST prime for 8-bit AVR-based sensor node, J. Supercomput., 77 (2021), 4852–4870. https://doi.org/10.1007/s11227-020-03441-5 doi: 10.1007/s11227-020-03441-5 |
[6] | S. Gao, R. Wu, X. Wang, J. Liu, Q. Li, C. Wang, et al., EFR-CSTP: Encryption for face recognition based on the chaos and semi-tensor product theory, Inform. Sciences, 621 (2023), 766–781. https://doi.org/10.1016/j.ins.2022.11.121 doi: 10.1016/j.ins.2022.11.121 |
[7] | X. Huang, Image encryption algorithm using chaotic Chebyshev generator, Nonlinear Dynam., 67 (2012), 2411–2417. https://doi.org/10.1007/s11071-011-0155-7 doi: 10.1007/s11071-011-0155-7 |
[8] | X. Wang, L. Liu, Y. Zhang, A novel chaotic block image encryption algorithm based on dynamic random growth technique, Opt. Laser. Eng., 66 (2015), 10–18. https://doi.org/10.1016/j.optlaseng.2014.08.005 doi: 10.1016/j.optlaseng.2014.08.005 |
[9] | A. Akhshani, A. Akhavan, S. C. Lim, Z. Hassan, An image encryption scheme based on quantum logistic map, Commun. Nonlinear Sci., 17 (2012), 4653–4661. https://doi.org/10.1016/J.CNSNS.2012.05.033 doi: 10.1016/J.CNSNS.2012.05.033 |
[10] | Y. Guo, J. Yang, B. Liu, Application of chaotic encryption algorithm based on variable parameters in RFID security, EURASIP J. Wirel. Comm., 155 (2021), 1–22. https://doi.org/10.1186/s13638-021-02023-0 doi: 10.1186/s13638-021-02023-0 |
[11] | F. Pichler, J. Scharinger, Finite dimensional generalized baker dynamical systems for cryptographic applications, International Conference on Computer Aided Systems Theory, 1995,465–476. |
[12] | G. Ye, K. W. Wong, An efficient chaotic image encryption algorithm based on a generalized Arnold map, Nonlinear Dynam., 69 (2012), 2079–2087. https://doi.org/10.1007/s11071-012-0409-z doi: 10.1007/s11071-012-0409-z |
[13] | F. Sun, S. Liu, Z. Li, Z. Lü, A novel image encryption scheme based on spatial chaos map, Chaos Soliton. Fract., 38 (2008), 631–640. https://doi.org/10.1016/j.chaos.2008.01.028 doi: 10.1016/j.chaos.2008.01.028 |
[14] | F. Sun, Z. Lü, S. Liu, A new cryptosystem based on spatial chaotic system, Opt. Commun., 283 (2010), 2066–2073. https://doi.org/10.1016/j.optcom.2010.01.028 doi: 10.1016/j.optcom.2010.01.028 |
[15] | H. J. Liu, X. Y. Wang, Color image encryption using spatial bit-level permutation and high-dimension chaotic system, Opt. Commun., 284 (2011), 3895–3903. https://doi.org/10.1016/J.OPTCOM.2011.04.001 doi: 10.1016/J.OPTCOM.2011.04.001 |
[16] | Z. Zhu, W. Zhang, K. W. Wong, H. Yu, A chaos-based symmetric image encryption scheme using a bit-level permutation, Inform. Sciences, 181 (2011), 1171–1186. https://doi.org/10.1016/j.ins.2010.11.009 doi: 10.1016/j.ins.2010.11.009 |
[17] | P. Manjunath, K. L. Sudha, Chaos image encryption using pixel shuffling, Comput. Sci. Inform. Tech., 1 (2012), 169–179. https://doi.org/10.5121/csit.2011.1217 doi: 10.5121/csit.2011.1217 |
[18] | Y. Jiang, B. Li, A novel image encryption algorithm based on logistic and henon map, In: 2016 13th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), 2016, 66–69. |
[19] | G. Chen, Y. Mao, C. K. Chui, A symmetric image encryption scheme based on 3D chaotic cat maps, Chaos Soliton. Fract., 21 (2004), 749–761. https://doi.org/10.1016/j.chaos.2003.12.022 doi: 10.1016/j.chaos.2003.12.022 |
[20] | S. Zhou, Y. Qiu, G. Qi, A new conservative chaotic system and its application in image encryption, Chaos Soliton. Fract., 175 (2023), 113909. https://doi.org/10.1016/j.chaos.2023.113909 doi: 10.1016/j.chaos.2023.113909 |
[21] | Y. Luo, M. Du, A novel digital image encryption scheme based on spatial-chaos, J. Converg. Inform. Tech., 7 (2012), 199–207. https://doi.org/10.4156/jcit.vol7.issue3.23 doi: 10.4156/jcit.vol7.issue3.23 |
[22] | C. Li, Y. Liu, L. Y. Zhang, M. Z. Q. Chen, Breaking a chaotic image encryption algorithm based on modulo addition and XOR operation, Int. J. Bifurcat. Chaos, 23 (2013), 1350075. https://doi.org/10.1142/S0218127413500752 doi: 10.1142/S0218127413500752 |
[23] | C. Gangadhar, K. D. Rao, Hyperchaos based image encryption, Int. J. Bifurcat. Chaos, 19 (2009), 3833–3839. https://doi.org/10.1007/s10489-023-04727-w doi: 10.1007/s10489-023-04727-w |
[24] | Q. Zhang, X. L. Xue, X. P. Wei, A novel image encryption algorithm based on DNA subsequence operation, The Scientific World J., 17 (2015), 6954–6968. https://doi.org/10.3390/e17106954 doi: 10.3390/e17106954 |
[25] | S. Lian, J. Sun, Z. Wang, A block cipher based on a suitable use of the chaotic standard map, Chaos, Soliton. Fract., 26 (2005), 117–129. https://doi.org/10.1016/j.chaos.2004.11.096 doi: 10.1016/j.chaos.2004.11.096 |
[26] | Q. L. Chen, X. H. Hao, X. P. Yan, P. Li, A high performance waveform and a new ranging method for the proximity detector, Def. Technol., 16 (2020), 1–12. https://doi.org/10.1016/j.dt.2019.10.009 doi: 10.1016/j.dt.2019.10.009 |
[27] | F. Gao, D. H. Hu, H. Q. Tong, C. M. Wang, Chaotic analysis of fractional Willis delayed aneurysm system, Acta Phys. Sin.-Ch. Ed., 67 (2018). https://doi.org/10.7498/aps.67.20180262 |
[28] | D. Ding, F. Liu, H. Chen, N. Wang, D. Liang, Sliding mode control of fractional-order delayed memristive chaotic system with uncertainty and disturbance, Commun. Theor. Phys., 68 (2017), 741. https://doi.org/10.1088/0253-6102/68/6/741 doi: 10.1088/0253-6102/68/6/741 |
[29] | X. An, X. Li, Q. Shi, S. Qiao, L. Zhang, Dynamics explore of an improved HR neuron model under electromagnetic radiation and its applications, Nonlinear Dynam., 111 (2023), 9509–9535. https://doi.org/10.1007/s11071-023-08320-1 doi: 10.1007/s11071-023-08320-1 |
[30] | J. Li, J. Huang, Subharmonic resonance of a clamped-clamped buckled beam with 1:1 internal resonance under base harmonic excitations, Appl. Math. Mech., 41 (2010), 1–16. https://doi.org/10.1007/s10483-020-2694-6 doi: 10.1007/s10483-020-2694-6 |
[31] | H. M. Zhu, W. F. Chen, R. P. Zhu, L. Zhang, J. Gao, M. J. Liao, Dynamic analysis of a flexible rotor supported by ball bearings with damping rings based on FEM and lumped mass theory, J. Cent. South Univ., 27 (2020), 3684–3701. https://doi.org/10.1007/s11771-020-4510-z doi: 10.1007/s11771-020-4510-z |
[32] | J. K. Hale, Theory of functional differential equation, Theory of Functional Differential Equation, New York: Springer, 1977, 12–13. https://doi.org/10.1007/978-94-015-8084-7 |
[33] | S. Ruan, J. Wei, On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion, IMA J. Math. Appl. Med., 18 (2001), 41–52. https://doi.org/10.1093/imammb/18.1.41 doi: 10.1093/imammb/18.1.41 |
[34] | T. Faria, L. T. Magalhaes, Normal forms for retarded functional differential equations and applications to Bogdanov-Takens singularity, J. Differ. Equations, 122 (1995), 201–224. https://doi.org/10.1006/jdeq.1995.1145 doi: 10.1006/jdeq.1995.1145 |
[35] | T. Faria, L. T. Magalhaes, Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation, J. Differ. Equations, 122 (1995), 181–200. https://doi.org/10.1006/jdeq.1995.1144 doi: 10.1006/jdeq.1995.1144 |
[36] | T. Faria, Normal forms for semilinear functional differential equations in Banach spaces and applications, Part Ⅱ, Discrete Cont. Dyn.-A, 7 (2012), 155–176. https://doi.org/10.3934/dcds.2001.7.155 doi: 10.3934/dcds.2001.7.155 |
[37] | G. M. Mahmoud, A. A. Arafa, E. E. Mahmoud, Bifurcations and chaos of time delay Lorenz system with dimension 2n+1, Eur. Phys. J. Plus, 132 (2017), 461. https://doi.org/10.1140/epjp/i2017-11739-6 doi: 10.1140/epjp/i2017-11739-6 |
[38] | K. Tian, H. P. Ren, C. Grebogi, Existence of chaos in the chen system with linear time-delay feedback, Int. J. Bifurcat. Chaos, 29 (2019), 2708–2710. https://doi.org/10.1142/S0218127419501141 doi: 10.1142/S0218127419501141 |
[39] | W. Li, X. Niu, X. Li, Y. Yu, Hopf bifurcation analysis of the disturbed Lorenz-like System with the delayed, Pure Appl. Math., 262 (2015), 335–343. https://doi.org/10.1016/j.amc.2015.04.072 doi: 10.1016/j.amc.2015.04.072 |
[40] | E. Zhu, M. Xu, D. Pi, Hopf bifurcation and stability of the double-delay Lorenz system, Int. J. Bifurcat. Chaos, 33 (2023), 1–14. https://doi.org/10.1142/S0218127423500153 doi: 10.1142/S0218127423500153 |
[41] | G. R. Guan, C. M. Wu, J. Qian, An improved high performance Lorenz system and its application, Acta Phys. Sin.-Ch. Ed., 64 (2015), 20501–020501. https://doi.org/10.7498/aps.64.020501 doi: 10.7498/aps.64.020501 |
[42] | Y. Li, Z. Wei, A. A. Aly, A 4D hyperchaotic Lorenz-type system: Zero-Hopf bifurcation, ultimate bound estimation, and its variable-order fractional network, Eur. Phys. J., 231 (2022), 1847–1858. https://doi.org/10.1140/epjs/s11734-022-00448-2 doi: 10.1140/epjs/s11734-022-00448-2 |
[43] | X. L. Huang, Image encryption algorithm using chaotic Chebyshev generator, Nonlinear Dynam., 67 (2012), 2411–2417. https://doi.org/10.1007/s11071-011-0155-7 doi: 10.1007/s11071-011-0155-7 |
[44] | L. Teng, X. Wang, A bit-level image encryption algorithm based on spatiotemporal chaotic system and self-adaptive, Opt. Commun., 285 (2012), 4048–4054. https://doi.org/10.1016/j.optcom.2012.06.004 doi: 10.1016/j.optcom.2012.06.004 |
[45] | Z. Parvin, H. Seyedarabi, M. Shamsi, A new secure and sensitive image encryption scheme based on new substitution with chaotic function, Multimed. Tools Appl., 75 (2014), 10631–10648. https://doi.org/10.1007/s11042-014-2115-y doi: 10.1007/s11042-014-2115-y |
[46] | M. A. Murillo-Escobar, M. O. Meranza-Castillón, R. M. López-Gutiérrez, C. Cruz-Hernández, Suggested integral analysis for chaos-based image cryptosystems, Entropy, 21 (2019), 815. https://doi.org/10.3390/e21080815 doi: 10.3390/e21080815 |
[47] | R. Hosseinzadeh, M. Zarebnia, R. Parvaz, Hybrid image encryption algorithm based on 3D chaotic system and choquet fuzzy integral, Opt. Laser Technol., 120 (2019), 105678. https://doi.org/10.1016/j.optlastec.2019.105698 doi: 10.1016/j.optlastec.2019.105698 |
[48] | X. Wang, S. Chen, Y. Zhang, A chaotic image encryption algorithm based on random dynamic mixing, Opt. Laser Technol., 138 (2021), 106837. https://doi.org/10.1016/j.optlastec.2020.106837 doi: 10.1016/j.optlastec.2020.106837 |