With the increasing need for secure transmission and storage of medical images, the development of robust encryption algorithms is of paramount importance. Securing sensitive digital medical imagery information during transmission has emerged as a critical priority in the e-Healthcare systems. Recent research has highlighted the significance of developing advanced medical image encryption algorithms to ensure secure transmission during telediagnosis and teleconsultations. In this study, we propose a novel medical image encryption algorithm which is based on a novel substitution-box generation algebraic method using a combination of a multiplicative cyclic group with an order of 256 and a permutation group with a large order. To evaluate the security performance of the proposed generated S-box, various standard security indicators are assessed and analyzed. The newly proposed medical image encryption algorithm utilizes the generated S-box, along with bit-plane slicing, circular shifting, and XOR operations, to achieve enhanced security and robustness for encrypting sensitive imagery data. In order to assess the effectiveness of the proposed encryption algorithm, a comprehensive benchmarking analyses, specifically designed for evaluating image encryption schemes, have been conducted. The results obtained from the comparison and other analyses serve to validate the optimal features and high cryptographic strength exhibited by the proposed method. Hence, the proposed algorithm demonstrates significant effectiveness and holds considerable promise in the realm of medical image encryption for secure e-Healthcare systems.
Citation: Abdul Razaq, Louai A. Maghrabi, Musheer Ahmad, Qamar H. Naith. Novel substitution-box generation using group theory for secure medical image encryption in E-healthcare[J]. AIMS Mathematics, 2024, 9(3): 6207-6237. doi: 10.3934/math.2024303
With the increasing need for secure transmission and storage of medical images, the development of robust encryption algorithms is of paramount importance. Securing sensitive digital medical imagery information during transmission has emerged as a critical priority in the e-Healthcare systems. Recent research has highlighted the significance of developing advanced medical image encryption algorithms to ensure secure transmission during telediagnosis and teleconsultations. In this study, we propose a novel medical image encryption algorithm which is based on a novel substitution-box generation algebraic method using a combination of a multiplicative cyclic group with an order of 256 and a permutation group with a large order. To evaluate the security performance of the proposed generated S-box, various standard security indicators are assessed and analyzed. The newly proposed medical image encryption algorithm utilizes the generated S-box, along with bit-plane slicing, circular shifting, and XOR operations, to achieve enhanced security and robustness for encrypting sensitive imagery data. In order to assess the effectiveness of the proposed encryption algorithm, a comprehensive benchmarking analyses, specifically designed for evaluating image encryption schemes, have been conducted. The results obtained from the comparison and other analyses serve to validate the optimal features and high cryptographic strength exhibited by the proposed method. Hence, the proposed algorithm demonstrates significant effectiveness and holds considerable promise in the realm of medical image encryption for secure e-Healthcare systems.
[1] | Y. Dai, H. Z. Wang, Z. X. Zhou, Z. Y. Jin, Research on medical image encryption in telemedicine systems, Technol. Health Care, 24 (2016), S435–S442. http://dx.doi.org/10.3233/THC-161166 |
[2] | V. Pavithra, J. Chandrasekaran, Developing security solutions for telemedicine applications: Medical image encryption and watermarking, In: Research anthology on telemedicine efficacy, adoption, and impact on healthcare delivery. http://dx.doi.org/10.4018/978-1-7998-8052-3.ch032 |
[3] | W. J. Cao, Y. C. Zhou, C. L. P. Chen, L. M. Xia, Medical image encryption using edge maps, Signal Process., 132 (2017), 96–109. https://doi.org/10.1016/j.sigpro.2016.10.003 doi: 10.1016/j.sigpro.2016.10.003 |
[4] | Z. Y. Hua, S. Yi, Y. C. Zhou, Medical image encryption using high-speed scrambling and pixel adaptive diffusion, Signal Process., 144 (2018), 134–144. https://doi.org/10.1016/j.sigpro.2017.10.004 doi: 10.1016/j.sigpro.2017.10.004 |
[5] | D. S. Laiphrakpam, M. S. Khumanthem, Medical image encryption based on improved ElGamal encryption technique, Optik, 147 (2017), 88–102. https://doi.org/10.1016/j.ijleo.2017.08.028 doi: 10.1016/j.ijleo.2017.08.028 |
[6] | S. T. Kamal, K. M. Hosny, T. M. Elgindy, M. M. Darwish, M. M. Fouda, A new image encryption algorithm for grey and color medical images, IEEE Access, 9 (2021), 37855–37865. https://doi.org/10.1109/ACCESS.2021.3063237 doi: 10.1109/ACCESS.2021.3063237 |
[7] | K. Jain, A. Aji, P. Krishnan, Medical image encryption scheme using multiple chaotic maps, Pattern Recogn. Lett., 152 (2021), 356–364. https://doi.org/10.1016/j.patrec.2021.10.033 doi: 10.1016/j.patrec.2021.10.033 |
[8] | M. Ş. Açikkapi, F. Özkaynak, A. B. Özer, Side-channel analysis of chaos-based substitution box structures, IEEE Access, 7 (2019), 79030–79043. https://doi.org/10.1109/ACCESS.2019.2921708 |
[9] | N. Mouha, Q. J. Wang, D. W. Gu, B. Preneel, Differential and linear cryptanalysis using mixed-integer linear programming, In: Information security and cryptology: 7th International Conference, Inscrypt 2011, Beijing, China, November 30-December 3, 2011. |
[10] | H. M. Heys, A tutorial on linear and differential cryptanalysis, Cryptologia, 26 (2002), 189–221. https://doi.org/10.1080/0161-110291890885 doi: 10.1080/0161-110291890885 |
[11] | A. Shafique, K. H. Khan, M. M. Hazzazi, I. Bahkali, Z. Bassfar, M. U. Rehman, Chaos and cellular automata-based substitution box and its application in cryptography, Mathematics, 11 (2023), 2322. https://doi.org/10.3390/math11102322 doi: 10.3390/math11102322 |
[12] | A. H. Zahid, M. J. Arshad, M. Ahmad, N. F. Soliman, W. El-Shafai, Dynamic S-box generation using novel chaotic map with nonlinearity tweaking, Comput. Mater. Con., 75 (2023), 3011–3026. https://doi.org/10.32604/cmc.2023.037516 |
[13] | A. Razaq, G. Alhamzi, S. Abbas, M. Ahmad, A. Razzaque, Secure communication through reliable S-box design: A proposed approach using coset graphs and matrix operations, Heliyon, 9 (2023), e15902. https://doi.org/10.1016/j.heliyon.2023.e15902 |
[14] | A. Alkhayyat, M. Ahmad, N. Tsafack, M. Tanveer, D. H. Jiang, A. A. Abd El-Latif, A novel 4D hyperchaotic system assisted josephus permutation for secure substitution-box generation, J. Sign. Process. Syst., 94 (2022), 315–328. https://doi.org/10.1007/s11265-022-01744-9 |
[15] | N. A. Azam, U. Hayat, M. Ayub, A substitution box generator, its analysis, and applications in image encryption, Signal Process., 187 (2021), 108144. https://doi.org/10.1016/j.sigpro.2021.108144 |
[16] | A. A. A. El-Latif, B. Abd-El-Atty, A. Belazi, A. M. Iliyasu, Efficient chaos-based substitution-box and its application to image encryption, Electronics, 10 (2021), 1392. https://doi.org/10.3390/electronics10121392 doi: 10.3390/electronics10121392 |
[17] | N. Siddiqui, A. Naseer, M. Ehatisham-ul-Haq, A novel scheme of substitution-box design based on modified Pascal's triangle and elliptic curve, Wireless Pers. Commun., 116 (2021), 3015–3030. https://doi.org/10.1007/s11277-020-07832-y |
[18] | A. Sarkar, J. Dey, S. Karforma, Musically modified substitution-box for clinical signals ciphering in wireless telecare medical communicating systems, Wireless Pers. Commun., 117 (2021), 727–745. https://doi.org/10.1007/s11277-020-07894-y doi: 10.1007/s11277-020-07894-y |
[19] | S. Ibrahim, H. Alhumyani, M. Masud, S. S. Alshamrani, O. Cheikhrouhou, G. Muhammad, et al., Framework for efficient medical image encryption using dynamic S-boxes and chaotic maps, IEEE Access, 8 (2020), 160433–160449. https://doi.org/10.1109/ACCESS.2020.3020746 |
[20] | C. R. Zhang, J. X. Chen, D. M. Chen, W. Wang, Y. S. Zhang, Y. C. Zhou, Exploiting substitution box for cryptanalyzing image encryption schemes with DNA coding and nonlinear dynamics, IEEE T. Multimedia, 26 (2024), 1114–1128. https://doi.org/10.1109/TMM.2023.3276504 doi: 10.1109/TMM.2023.3276504 |
[21] | X. L. Liu, X. J Tong, Z. Wang, M. Zhang, A new n-dimensional conservative chaos based on generalized Hamiltonian system and its' applications in image encryption, Chaos Soliton. Fract., 154 (2022), 111693. https://doi.org/10.1016/j.chaos.2021.111693 doi: 10.1016/j.chaos.2021.111693 |
[22] | H. Nematzadeh, R. Enayatifar, H. Motameni, F. G. Guimarães, V. N. Coelho, Medical image encryption using a hybrid model of modified genetic algorithm and coupled map lattices, Opt. Laser. Eng., 110 (2018), 24–32. https://doi.org/10.1016/j.optlaseng.2018.05.009 doi: 10.1016/j.optlaseng.2018.05.009 |
[23] | Z. Mishra, B. Acharya, High throughput and low area architectures of secure IoT algorithm for medical image encryption, J. Inf. Secur. Appl., 53 (2020), 102533. https://doi.org/10.1016/j.jisa.2020.102533 doi: 10.1016/j.jisa.2020.102533 |
[24] | X. L. Liu, X. J. Tong, Z. Wang, M. Wang, A novel hyperchaotic encryption algorithm for color image utilizing DNA dynamic encoding and self-adapting permutation, Multimed. Tools Appl., 81 (2022), 21779–21810. https://doi.org/10.1007/s11042-022-12472-4 doi: 10.1007/s11042-022-12472-4 |
[25] | A. T. Hashim, A. K. Jabbar, Q. F. Hassan, Medical image encryption based on hybrid AES with chaotic map, J. Phys.: Conf. Ser., 1973, 012037. https://doi.org/10.1088/1742-6596/1973/1/012037 doi: 10.1088/1742-6596/1973/1/012037 |
[26] | W. El-Shafai, F. Khallaf, E. S. M. El-Rabaie, F. E. A. El-Samie, Robust medical image encryption based on DNA-chaos cryptosystem for secure telemedicine and healthcare applications, J. Ambient Intell. Human. Comput., 12 (2021), 9007–9035. https://doi.org/10.1007/s12652-020-02597-5 |
[27] | M. F. Khan, K. Saleem, M. A. Alshara, S. Bashir, Multilevel information fusion for cryptographic substitution box construction based on inevitable random noise in medical imaging, Sci. Rep., 11 (2021), 14282. https://doi.org/10.1038/s41598-021-93344-z doi: 10.1038/s41598-021-93344-z |
[28] | K. C. P. Shankar, S. P. Shyry, A novel hybrid encryption method using S-box and Henon maps for multidimensional 3D medical images, Soft Comput., 2023. https://doi.org/10.1007/s00500-023-08006-1 doi: 10.1007/s00500-023-08006-1 |
[29] | U. Hayat, N. A. Azam, H. R. Gallegos-Ruiz, S. Naz, L. Batool, A truly dynamic substitution box generator for block ciphers based on elliptic curves over finite rings, Arab. J. Sci. Eng., 46 (2021), 8887–8899. https://doi.org/10.1007/s13369-021-05666-9 doi: 10.1007/s13369-021-05666-9 |
[30] | K. Z. Zamli, F. Din, H. S. Alhadawi, Exploring a Q-learning-based chaotic naked mole rat algorithm for S-box construction and optimization, Neural Comput. Applic., 35 (2023), 10449–10471. https://doi.org/10.1007/s00521-023-08243-3 doi: 10.1007/s00521-023-08243-3 |
[31] | A. A. Alzaidi, M. Ahmad, H. S. Ahmed, E. A. Solami, Sine-cosine optimization-based bijective substitution-boxes construction using enhanced dynamics of chaotic map, Complexity, 2018 (2018), 1–16. https://doi.org/10.1155/2018/9389065 doi: 10.1155/2018/9389065 |
[32] | A. Razaq, M. Ahmad, A.Yousaf, M. Alawida, A. Ullah, U. Shuaib, A group theoretic construction of large number of AES-like substitution-boxes, Wireless Pers. Commun., 122 (2022), 2057–2080. https://doi.org/10.1007/s11277-021-08981-4 doi: 10.1007/s11277-021-08981-4 |
[33] | S. Ibrahim, A. M. Abbas, Efficient key-dependent dynamic S-boxes based on permutated elliptic curves, Inform. Sciences, 558 (2021), 246–264. https://doi.org/10.1016/j.ins.2021.01.014 doi: 10.1016/j.ins.2021.01.014 |
[34] | B. M. Alshammari, R. Guesmi, T. Guesmi, H. Alsaif, A. Alzamil, Implementing a symmetric lightweight cryptosystem in highly constrained IoT devices by using a chaotic S-box, Symmetry, 13 (2021), 129. https://doi.org/10.3390/sym13010129 doi: 10.3390/sym13010129 |
[35] | H. S. Alhadawi, M. A. Majid, D. Lambić, M. Ahmad, A novel method of S-box design based on discrete chaotic maps and cuckoo search algorithm, Multimed. Tools Appl., 80 (2021), 7333–7350. https://doi.org/10.1007/s11042-020-10048-8 doi: 10.1007/s11042-020-10048-8 |
[36] | M. Khan, T. Shah, M. A. Gondal, An efficient technique for the construction of substitution box with chaotic partial differential equation, Nonlinear Dyn., 73 (2013), 1795–1801. https://doi.org/10.1007/s11071-013-0904-x doi: 10.1007/s11071-013-0904-x |
[37] | M. Khan, T. Shah, An efficient construction of substitution box with fractional chaotic system, Signal Image Video P., 9 (2015), 1335–1338. https://doi.org/10.1007/s11760-013-0577-4 doi: 10.1007/s11760-013-0577-4 |
[38] | M. Long, L. L. Wang, S-box design based on discrete chaotic map and improved artificial bee colony algorithm, IEEE Access, 9 (2021), 86144–86154. https://doi.org/10.1109/ACCESS.2021.3069965 doi: 10.1109/ACCESS.2021.3069965 |
[39] | R. Soto, B. Crawford, F. G. González, R. Olivares, Human behaviour based optimization supported with self-organizing maps for solving the S-box design Problem, IEEE Access, 9 (2021), 84605–84618. https://doi.org/10.1109/ACCESS.2021.3087139 doi: 10.1109/ACCESS.2021.3087139 |
[40] | W. H. Yan, Q. Ding, A novel S-box dynamic design based on nonlinear-transform of 1D chaotic maps, Electronics, 10 (2021), 1313. https://doi.org/10.3390/electronics10111313 doi: 10.3390/electronics10111313 |
[41] | P. Z Zhou, J. X. Du, K. Zhou, S. F.Wei, 2D mixed pseudo-random coupling PS map lattice and its application in S-box generation, Nonlinear Dyn., 103 (2021), 1151–1166. https://doi.org/10.1007/s11071-020-06098-0 doi: 10.1007/s11071-020-06098-0 |
[42] | S. Yang, X. J. Tong, Z. Wang, M. Zhang, S-box generation algorithm based on hyperchaotic system and its application in image encryption, Multimed. Tools Appl., 82 (2023), 25559–25583. https://doi.org/10.1007/s11042-023-14394-1 doi: 10.1007/s11042-023-14394-1 |
[43] | D. Lambić, A novel method of S-box design based on discrete chaotic map, Nonlinear Dyn., 87 (2017), 2407–2413. https://doi.org/10.1007/s11071-016-3199-x doi: 10.1007/s11071-016-3199-x |
[44] | G. J Liu, W. W. Yang, W. W. Liu, Y. W. Dai, Designing S-boxes based on 3-D four-wing autonomous chaotic system, Nonlinear Dyn., 82 (2015), 1867–1877. https://doi.org/10.1007/s11071-015-2283-y doi: 10.1007/s11071-015-2283-y |
[45] | L. Y. Liu, Y. Q. Zhang, X. Y. Wang, A novel method for constructing the S-box based on spatiotemporal chaotic dynamics, Appl. Sci., 8 (2018), 2650. https://doi.org/10.3390/app8122650 doi: 10.3390/app8122650 |
[46] | X. Y. Wang, J. J. Yang, A novel image encryption scheme of dynamic S-boxes and random blocks based on spatiotemporal chaotic system, Optik, 217 (2020), 164884. https://doi.org/10.1016/j.ijleo.2020.164884 doi: 10.1016/j.ijleo.2020.164884 |
[47] | A. Razaq, Iqra, M. Ahmad, M. A. Yousaf, S. Masood, A novel finite rings based algebraic scheme of evolving secure S-boxes for images encryption, Multimed. Tools. Appl., 80 (2021), 20191–20215. https://doi.org/10.1007/s11042-021-10587-8 doi: 10.1007/s11042-021-10587-8 |
[48] | S. Saeed, M. S. Umar, M. A. Ali, M. Ahmad, Fisher-yates chaotic shuffling based image encryption, arXiv preprint, 2014. https://doi.org/10.48550/arXiv.1410.7540 |
[49] | A. Manzoor, A. H. Zahid, M. T. Hassan, A new dynamic substitution box for data security using an innovative chaotic map, IEEE Access, 10 (2022), 74164–74174. https://doi.org/10.1109/ACCESS.2022.3184012 doi: 10.1109/ACCESS.2022.3184012 |
[50] | X. L. Liu, X. J. Tong, M. Zhang, Z. Wang, A highly secure image encryption algorithm based on conservative hyperchaotic system and dynamic biogenetic gene algorithms, Chaos Soliton. Fract., 171 (2023), 113450. https://doi.org/10.1016/j.chaos.2023.113450 doi: 10.1016/j.chaos.2023.113450 |
[51] | J. Pieprzyk, G. Finkelstein, Towards effective nonlinear cryptosystem design, IEE P. Comput. Dig. T., 135 (1988), 325–335. |
[52] | E. Biham, A. Shamir, Differential cryptanalysis of DES-like cryptosystems, J. Cryptology, 4 (1991), 3–72. https://doi.org/10.1007/BF00630563 doi: 10.1007/BF00630563 |
[53] | M. Matsui, Linear cryptanalysis method for DES cipher, In: Workshop on the theory and application of of cryptographic techniques Lofthus, Norway, May 23–27, 1993 Proceedings, Springer, 765 (2003). |
[54] | A. F. Webster, S. E. Tavares, On the design of S-boxes. In: Conference on the theory and application of cryptographic techniques, Heidelberg: Springer Berlin, 1985,523–534. https://doi.org/10.1007/3-540-39799-X_41 |
[55] | I. Hussain, T. Shah, M. A. Gondal, H. Mahmood, Generalized majority logic criterion to analyze the statistical strength of S-boxes, Z. Naturforsch. A, 67 (2012), 282–288. https://doi.org/10.5560/zna.2012-0022 doi: 10.5560/zna.2012-0022 |
[56] | I. Hussain, A. Anees, T. A. Al-Maadeed, A novel encryption algorithm using multiple semifield S-boxes based on permutation of symmetric group, Comp. Appl. Math., 42 (2023), 80. https://doi.org/10.1007/s40314-023-02208-x |
[57] | A. Razzaque, A. Razaq, S. M. Farooq, I. Masmali, M. I. Faraz, An efficient S-box design scheme for image encryption based on the combination of a coset graph and a matrix transformer, Electron. Res. Arch., 31 (2023), 2708–2732. https://doi.org/10.3934/era.2023137 doi: 10.3934/era.2023137 |
[58] | S. L Zhu, X. H. Deng, W. D. Zhang, C. X. Zhu, Secure image encryption scheme based on a new robust chaotic map and strong S-box, Math. Comput. Simulat., 207 (2023), 322–346. https://doi.org/10.1016/j.matcom.2022.12.025 doi: 10.1016/j.matcom.2022.12.025 |
[59] | Y. Y. Su, X. J. Tong, M. Zhang, Z. Wang, Efficient image encryption algorithm based on dynamic high-performance S-box and hyperchaotic system, Phys. Scripta, 98 (2003), 065215. https://doi.org/10.1088/1402-4896/acd1c3 doi: 10.1088/1402-4896/acd1c3 |
[60] | A. M. Eskicioglu, P. S. Fisher, Image quality measures and their performance, IEEE T. Commu., 43 (1995), 2959–2965. https://doi.org/10.1109/26.477498 doi: 10.1109/26.477498 |
[61] | N. F. F. Areed, S. S. A. Obayy, Novel design of symmetric photonic bandgap based image encryption system, Prog. Electroma. Res. C, 30 (2012), 225–239. https://doi.org/10.2528/PIERC12050205 doi: 10.2528/PIERC12050205 |
[62] | Q. Huynh-Thu, M. Ghanbari, Scope of validity of PSNR in image/video quality assessment, Electron. Lett., 44 (2008), 800–801. https://doi.org/10.1049/el:20080522 doi: 10.1049/el:20080522 |
[63] | Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE T. Image Process., 13 (2004), 600–612. https://doi.org/10.1109/TIP.2003.819861 doi: 10.1109/TIP.2003.819861 |
[64] | Z. Wang, A. C. Bovik, A universal image quality index, IEEE Signal Proc. Let., 9 (2002), 81–84. https://doi.org/10.1109/97.995823 doi: 10.1109/97.995823 |