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Abstract: Chaos theory has been widely utilized in password design, resulting in an encryption
algorithm that exhibits strong security and high efficiency. However, rapid advancements in
cryptanalysis technology have rendered single system generated sequences susceptible to tracking
and simulation, compromising encryption algorithm security. To address this issue, we propose an
image encryption algorithm based on hybrid heterogeneous time-delay chaotic systems. Our algorithm
utilizes a collection of sequences generated by multiple heterogeneous time-delay chaotic systems,
rather than sequences from a single chaotic system. Specifically, three sequences are randomly
assigned to image pixel scrambling and diffusion operations. Furthermore, the time-delay chaotic
system comprises multiple hyperchaotic systems with positive Lyapunov exponents, exhibiting a more
complex dynamic behavior than non-delay chaotic systems. Our encryption algorithm is developed
by a plurality of time-delay chaotic systems, thereby increasing the key space, enhancing security,
and making the encrypted image more difficult to crack. Simulation experiment results verify that our
algorithm exhibits superior encryption efficiency and security compared to other encryption algorithms.
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1. Introduction

After the relationship between chaos theory [1,2] and cryptography was found. the theory [3,4] has
aroused the attention of cryptographers. They have suggested that the properties of quasi-randomness
and initial value sensitivity of chaotic systems [5, 6] can satisfy the requirements of encryption
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algorithms [7–9]. Subsequently, they have developed a considerable number of excellent encryption
algorithms. In encryption algorithms, the pseudo-random sequence generated by the chaotic system
is essentially adopted to perform scrambling and diffusion operations on image pixels. This type of
algorithm shows the advantages of simple implementation and strong attack resistance, and they fall
into three categories, including image encryption algorithms with low-dimensional chaotic systems,
image encryption algorithms with high-dimensional chaotic systems, and image encryption algorithms
combined with chaotic systems and other methods.

In the algorithm of image encryption with low-dimensional chaotic systems, Guo et al. [10] first
proposed the concept of the “chaos password”, which draws upon the sequence generated by the
Logistic mapping to implement image encryption. The algorithm’s security is entirely determined by
the generated pseudo-random sequence. Subsequently, a symmetric product cipher was developed
using the two-dimensional (2D) Baker map, whereas the operational efficiency of the encryption
algorithm cannot be ensured [11]. On the basis of Kolmogoroff flows and shift registers, a block-
oriented symmetric cryptosystem was employed to increase image encryption efficiency [12].

The sequence of high-dimensional chaotic systems is recognized to be more irregular and
unpredictable as compared with that of low-dimensional chaotic systems. The key space of the
algorithm is significantly larger than the key space of the algorithm constructed with low-dimensional
chaotic systems [13–15]. Accordingly, they are more suitable for image encryption. For instance, the
Cat mapping’s sequence is employed to perform the scrambling operation; next, the Logistic mapping
is adopted for the diffusion operation [16]. The image pixel is scrambled twice by the Henon map and
the Lorenz map to increase the efficiency of image encryption [17]. However, the diffusion operation
is not implemented on the image pixels, and the algorithm’s security cannot be ensured. Based on the
problems exposed in [17], the image pixel scrambling operation is performed using the Logistic map,
and then the diffusion operation is implemented using the Henon map sequence, so as to improve the
algorithm’s security [18]. Furthermore, a secure symmetric encryption is developed using the sequence
of 3D Cat maps to perform image pixel scrambling operations multiple times [19]. Park proposed a
conservative chaotic system [20] with a simple structure, large LEs, continuous chaotic ranges, and
high complexity, which is utilized to generate a novel image encryption algorithm exhibiting superior
encryption performance. The above algorithms all exhibit a sufficiently large key space to be resistant
to brute force attacks.

In the image encryption algorithm combining chaotic systems and other methods, the image pixel
scrambling operation is performed using the DNA sequence, and the scrambling operation and the
diffusion operation are carried out again using the 2D Logistic chaotic map [24]. The algorithm
exhibits strong key sensitivity, while being easy to implement, and even capable of resisting statistical
attacks. Furthermore, the plaintext image is first encoded into a DNA sequence, and then the sequence
generated by chaos is employed to perform permutation and replacement operations on the encoded
image pixels [25].

Since the theory of chaotic cryptography is not well established, the above schemes only
demonstrate their security experimentally and cannot provide strict mathematical proofs. Thus, the
research of chaotic cryptography is still a challenging frontier subject, which is worth investigating
in depth. Existing chaotic encryption algorithms suggest that the security of low-dimensional or
hyper-chaotic systems as chaotic passwords cannot be ensured; an attacker can always find a cracking
method to predict the sequence came from a chaotic system, as an attempt to decipher the intercepted
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ciphertext. For instance, the improved CKBA algorithm of image encryption [21] was cracked
by Li et al. [22] through selected plaintext and known plaintext attacks. Using the same method,
they successfully deciphered the hyperchaotic system-based image encryption algorithm [23]. The
chaotic system with time-delay is characterized by its infinite dimension, stronger randomness,
more complex dynamic behavior, and being more difficult to predict. Accordingly, the time-delay
chaotic system becomes the choice of the next generation of chaotic ciphers. Moreover, the above
encryption algorithms always use the sequence generated by a single chaotic system to realize
scrambling operations and diffusion operations. This measure can be easily tracked using cryptanalysis
techniques, thus causing the lost security of the encryption algorithm and the exposure of the encrypted
information. In this paper, the focus is placed on an algorithm of image encryption based on a hybrid
heterogeneous chaotic system with time-delay. The main feature of this algorithm refers to using the
sequences generated by multiple heterogeneous time-delay chaotic systems to form a sequence set.
Three sequences in the set are randomly assigned into image pixel scrambling and diffusion operations
during image encryption. This encryption scheme can avoid brute force attacks because it cannot
simulate the encryption sequence, and the key space of the encryption algorithm is increased, which
improves the security of the algorithm. In addition, the encryption efficiency is improved by adopting
non-iterative encryption.

The paper is organized as follows. In this first section, the research status of image encryption
technology is briefed. In the second section, the stability and Hopf bifurcation of single-delay chaotic
systems are studied. In the third section, image encryption is performed using the heterogeneous
single-delay chaotic system. In the fourth section, the algorithm’s encryption effect is verified. Lastly,
the conclusions of this paper are drawn.

2. The chaotic system with time-delay

Since chaotic systems with time-delay is characterized by an infinite-dimensional state space and a
highly complex dynamic behavior, they are used for serving as a chaotic password [26–29]. Besides the
initial value conditions and parameters of the chaotic system, the chaotic cipher’s key space of should
also cover the time-delay and the position of the time-delay. Time-delay chaotic systems at different
locations exhibit different dynamic behaviors. A chaotic system with time-delays at different positions
is termed a heterogeneous time-delay chaotic system. For the state transition of a time-delay chaotic
system, the bifurcation criticality of the system should be explored, in which Hopf bifurcation [30,31]
has been most commonly investigated.

Over the past few years, there have been rare studies of the Hopf bifurcation of chaotic systems
with time-delay. In general, the linearization of the time-delay chaotic system at the singular point
is the transcendental equation. Subsequently, the roots’ distribution of the transcendental equation
determines the Hopf bifurcation condition of the chaotic system with time-delay, which was analyzed
by Hale [32]. The above result lays a theoretical basis for the Hopf bifurcation study of time-delay
chaotic systems. Wei Junjie et al. [33] proposed the exponential polynomial zero-point distribution
theorem based on Rouche’s theorem, which has deepened the study of Hopf bifurcation theory. Faria
and Magalhães [34–36] generalized and applied canonical theory to time-delay differential equations.
They proposed a canonical calculation method which significantly contributed to the development of
the bifurcation theory. Thus far, the bifurcation study of time-delay chaotic systems has been initiated
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and gradually deepened. Gamal et al. [37] presented a generalized form of the time-delay Lorenz
system. This Lorenz system had 2n+1dimensions. Furthermore, they investigated the stability of trivial
and non-trivial fixed points and the existence Hopf bifurcation conditions. Kun et al. [38] adopted the
improved undetermined coefficient method to validate the homoclinic orbit of the Chen system with
time delay feedback and proposed the helical involute projection method. Lian et al. [39] conducted the
Hopf bifurcation study of Lorenz-like systems with time-delay. Additionally, Li et al. [40] conducted
a Hopf bifurcation study of interfering Lorenz-like systems with time-delay. The research and analysis
of the mentioned literature confirm that different time delay positions significantly affect the dynamic
behavior of the system. In a 3D general Lorenz system, multiple heterogeneous single delay chaotic
systems can be formed using time delays at different positions and can be generated by the sequence
that the image encryption algorithm is dependent on.

The unified system was proposed by Lü et al. in 2002. The system links the Lorenz system, Lü
system and Chen system. Its system model is expressed as

ẋ = (25α + 10)(y − x)
ẏ = (28 − 35α)x − xz + (29α − 1)y
ż = xy − (8 + α)z/3

(2.1)

where x, y, z denote state variables and α ∈ [0, 1] represents the system parameter. When α ∈ [0, 0.8),
the system pertains to the Lorenz system; when α ∈ (0.8, 1], the system belongs to the Chen
system; and when α = 0.8, the system belongs to the Lü system. The unified chaotic system model
expresses the basic structure of the Lorenz model well through a single parameter. However, its system
parameters are too singular, limiting the parameter range. Subsequently, researchers formed numerous
deformations of Lorenz systems based on continuous updating (e.g., Lorenz-like systems [41]), and
presented corresponding bifurcation laws and stability conditions [42]. Without loss of generality, this
paper elucidates a general Lorenz system and the bifurcation law of its heterogeneous single-delay
chaotic system. The system’s equation is expressed as:

ẋ = a(y − x)
ẏ = bx + dy − xz
ż = −cz + xy

(2.2)

where a, b, c, d denote system parameters. Equation (2.2) contains seven terms, of which there are
only two nonlinear terms, compared with other chaotic or hyperchaotic systems. Since the structure of
the system is simpler, the circuit implementation can be achieved more easily. Thus, the system has a
promising application in secure communication and other fields. Figure 1 illustrates the phase diagram
and state vector trend of a general Lorenz system over time when a = 10, b = 28, c = 8/3, and d = −1.

AIMS Mathematics Volume 9, Issue 3, 5582–5608.



5586

(a) plots the change curve of the state variable x, y, z over
time t

(b) presents the phase diagram of the system in space O−xyz

Figure 1. Change trend of the general Lorenz system.

Figure 1 suggests that the general Lorenz system has two chaotic attractors with two wings and the
state variable keeps periodic oscillation permanently with time. It is therefore implied that the system
has entered a chaotic state.

Numerous researchers have obtained the time-delayed Lorenz chaotic system by imposing time-
delay on the state variables. However, different positions of time delays can be introduced to form
functional differential dynamical systems with different dynamical behaviors. In Eq (2.2), applying a
single time delay to the state variables, nine forms of heterogeneous single time-delay chaotic systems
can be established. 

ẋ = a(y(A) − x(B))
ẏ = bx(C) + dy(D) − x(E)z(F)
ż = −cz(G) + x(H)y(I)

where A − Z represents the imposition of a time delay of the form t − τ and τ(> 0) denotes time lag.
The nine heterogeneous time-delay chaotic systems consist of three identical equilibrium points:

(0, 0, 0), (
√

(b + d)c,
√

(b + d)c, b + d), (−
√

(b + d)c,−
√

(b + d)c, b + d).

When the parameters a > 0, b + d < 0, c > 0, the system contains a unique equilibrium point
O(0, 0, 0), and the time-delay general Lorenz system shows a better parameter range than other systems.
Next, the stability of O(0, 0, 0) of a single delay Lorenz system with a delay at position A (System A
for short) is considered.

The linearization equation of system A at the point O(0, 0, 0) is expressed as
ẋ = a[y(t − τ) − x]
ẏ = bx + dy
ż = −cz

(2.3)
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where the value range of a, b, c, and d is a > 0, b + d < 0, c > 0, a + c > d, |d| > |b|. The characteristic
equation of Eq (2.3) is expressed as∣∣∣∣∣∣∣∣∣

−a − λ ae−λτ 0
b e − λ 0
0 0 −c − λ

∣∣∣∣∣∣∣∣∣ = 0. (2.4)

Equation (2.4) can be reduced to

λ3 + (a + c − d)λ2 + (ca − cd − ad)λ − acd − ab(λ + c)e−λτ = 0. (2.5)

Where p1 = a + c − d; p2 = ca − cd − ad; p3 = −acd; p4 = −ab; p5 = −abc. Thus, the following
lemma can be expressed as follows.

Lemma 1. If τ = 0, a > 0, b + d < 0, c > 0, a + c > d and |d| > |b|, the zero equilibrium point of system
A is locally asymptotically stable.

Proof. When τ = 0, the characteristic Eq (2.5) is transformed into

λ3 + p1λ
2 + (p2 + p4)λ + p3 + p5 = 0. (2.6)

Since a > 0, b + d < 0, c > 0, a + c > d, and |d| > |b|, it is easy to obtain that p1 > 0, p2 + p4 > 0,
and p3 + p5 > 0. According to the Routh-Hurwitz theorem, all roots of Eq (2.6) are common in having
negative real parts. Thus, the point O(0, 0, 0) of system A is asymptotically stable when τ = 0. �

When τ > 0, suppose λ = iω (ω is an undetermined constant greater than zero) is a pure imaginary
root of Eq (2.5) so that the imaginary part ω satisfies

− iω3 − p1ω
2 + ip2ω + p3 + (ip4ω + p5)(cosωτ − i sinωτ) = 0. (2.7)

According to the equality of plural numbers, it can be obtained that{
p5 cosωτ + p4ω sinωτ = p1ω

2 − p3

p4ω cosωτ − p5 sinωτ = ω3 − p2ω.
(2.8)

Equation (2.8) can be equivalently transformed into

ω6 + (p2
1 − 2p2)ω4 + (p2

2 − 2p1 p3 − p2
4)ω2 + p2

3 − p2
5 = 0. (2.9)

A conclusion for Eq (2.9) can be reached as follows.

Lemma 2. If a > 0, b + d < 0, c > 0, a + c > d and |d| > |b|, Eq (9) has at least one positive real root.

Proof. Set u = ω2. Then, Eq (2.9) can be reduced to

u3 + (p2
1 − 2p2)u2 + (p2

2 − 2p1 p3 − p2
4)u + p2

3 − p2
5 = 0. (2.10)

Suppose

f (u) = u3 + (p2
1 − 2p2)u2 + (p2

3 − 2p1 p3 − p2
4)u + p2

3 − p2
5. (2.11)
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Equation (2.11) can be converted into

f (u) =
1 + (p2

1 − 2p2)1
u + (p2

3 − 2p1 p3 − p2
4) 1

u2 + (p2
3 − p2

5) 1
u3

1
u3

. (2.12)

It can be derived from Eqs (2.11) and (2.12) that

f (0) = p2
3 − p2

5 < 0, lim
u→+∞

f (u) = +∞.

According to the zeros value theorem, there is at least one real number u0 ∈ (0,+∞) that makes
f (u0) = 0. Thus, Eq (2.10) has one positive real root at minimum. Since u = ω2, Eq (2.9) has at least
one positive real root. �

Suppose ω0 is a real root of Eq (2.9). Then, Eq (2.5) has a pure imaginary root iω0. It can be
obtained from Eq (2.8) that

cosωτ =
p4ω

4 − (p1 p5 + p2 p4)ω2 + p3 p5

p2
4ω

2 + p2
5

. (2.13)

By substituting ω = ω0 into Eq (2.13), the time-delay τ can be calculated as:

τk =
1
ω0

arccos(
p4ω

4
0 − (p2 p4 − p1 p5)ω2

0 − p3 p5

p2
4ω

2
0 + p2

5

) +
2kπ
ω0

, k = 0, 1, 2, · · · (2.14)

Thus, (ω0, τk) is the solution of Eq (2.5), suggesting that λ = ±iω0 is a pair of conjugate pure
imaginary roots of Eq (2.5) when τ = τk.

Suppose τ0 = min{τk}. Then, time delay τ = τ0 is the minimum value when the pure imaginary root
λ = ±iω0 of Eq (2.5) appears. Thus, we have the following lemma.

Lemma 3. If a > 0, b + d < 0, c > 0, a + c > d, |d| > |b|, and τ = τ0, then, Eq (2.5) has a pair of pure
imaginary roots λ = ±iω0.

Suppose λ(τ) = α(τ) + iω(τ) satisfies α(τk) = 0 and ω(τk) = ω0. The following presents the
transversal conditions.

Lemma 4. If a > 0, b + d < 0, c > 0, a + c > d, |d| > |b| and f ′(ω2
0) > 0, then dReλ(τ)

dτ

∣∣∣τ=τk > 0.

Proof. The derivation regarding τ of both sides of Eq (2.5) is performed to obtain

[3λ2 + 2p1λ + p2 + p4e−λτ − τ(p4λ + p5)e−λτ]
dλ
dτ

= λ(p4λ + p5)e−λτ. (2.15)

It can be calculated according to Eq (2.5) that

(p4λ + p5)e−λτ = λ(λ2 + p1λ + p2). (2.16)

Substituting Eq (2.16) into Eq (2.15) yields

(
dλ
dτ

)−1 = −
3λ2 + 2p1λ + p2

λ2(λ2 + p1λ + p2)
+

p4

λ(p4λ + p5)
−
τ

λ
(2.17)

τk = iω0 and therefore
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5589

Re[( dλ
dτ )−1

∣∣∣τ=τk ] = −Re[ 3λ2+2p1λ+p2
λ2(λ2+p1λ+p2)

∣∣∣τ=τk ] + Re[ p4
λ(p4λ+p5)

∣∣∣τ=τk ]

= Re[ −3ω2
0+2ip1ω0+p2

ω2
0(ω2

0−ip1ω0−p2) ] + Re( p4

p4ω
2
0−ip5ω0) )

=
(p2−3ω2

0)(ω2
0−p2)−2p2

1ω
2
0

ω2
0[(p2−ω

2
0)2

+p2
1ω

2
0]
−

p2
4

p2
4ω

2
0+p2

5
.

(2.18)

When τ = τk, Eq (2.5) has pure imaginary roots iω0, which are substituted into Eq (2.5) to obtain

− iω3
0 − p1ω

2
0 + ip2ω0 + p2 − (ip4ω0 + p5)e−iω0τ = 0 (2.19)∣∣∣e−iω0τ

∣∣∣ = 1, because e−iω0τ = cosω0τ − i sinω0τ. Thus, it can be calculated using Eq (2.19) that∣∣∣−p1ω
2
0 + p3 + i(p2ω0 − ω

3
0)
∣∣∣ = |−p5 − ip4ω0)| .

Namely,

ω2
0(p2 − ω

2
0)2 + (p1ω

2
0 − p3)2 = (p4ω0)2 + p2

5. (2.20)

As obtained by combining Eqs (2.18) and (2.20),

Re[(
dλ
dτ

)−1
∣∣∣τ=τk ] =

3ω4
0 + 2(p2

1 − 2p2)ω2
0 + (p2

2 − 2p1 p3 − p2
4)

p2
4ω

2
0 + p2

5

=
f ′(ω2

0)

p2
4ω

2
0 + p2

5

> 0.

S ign[Re( dλ
dτ

∣∣∣τ=τk )] = S ign{Re[( dλ
dτ )−1

∣∣∣τ=τk ]}. Thus, the lemma is proved. �

According to Lemma 4 and Hopf bifurcation theory, we draw the following conclusions.

Theorem 1. If a > 0, b + d < 0, c > 0, a + c > d, |d| > |b|, and f ′(ω2
0) > 0, then,

(1) when τ ∈ [0, τ0), system A is asymptotically stable at the point O(0, 0, 0)

(2) when τ > τ0, system A is unstable at the point O(0, 0, 0)

(3) τ = τk(k = 0, 1, 2, · · · ) is the Hopf bifurcation value of system A, suggesting that Hopf bifurcation
occurs at the point O(0, 0, 0) in system A.

Considering that the parameters of system A are b + d < 0, c > 0 and a + c > d, system A is
simulated with a = 10, c = 2.5 and d = 2. In this case, system A can be converted into

ẋ = 10y(t − τ) − 10x
ẏ = −4x + 2y − xz
ż = −2.5z + xy.

(2.21)

It can be calculated using mathematical software that the positive real root of Eq (2.9) is ω0 =

3.2376, f ′(ω2
0) = 2.0909 × 103 > 0, and τ0 = 0.2173 in Eq (2.14). Thus, Corollary 1 can be simplified

into the following corollaries.

Corollary 1. If a > 0, b + d < 0, c > 0, a + c > d and f ′(ω2
0) > 0, then,

(1) When τ ∈ [0, 0.2173), system (2.21) is asymptotically stable at the point O(0, 0, 0).

(2) When τ > 0.2173, system (2.21) is unstable at the point O(0, 0, 0).
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(3) τ = 0.2173 + 0.6177kπ(k = 0, 1, 2, 3, · · · ) is the Hopf bifurcation value of system (2.21), suggesting
that a Hopf bifurcation occurs in system (2.21) at the point O(0, 0, 0), leading to limit cycles.

Mathematical software is applied to draw the state variables’ trajectory diagram and phase diagram
when the time-delay takes different values, as illustrated in Figures 2–4. The results obtained is verified.

(a) plots the change curve of the state variable, system x, y, z
over time t

(b) presents the phase diagram of the system in space O−xyz

Figure 2. The trend of changes in system (2.21) when τ = 0.17, x(t) = 0.01, y(t) = 0.02, and
z(t) = 0.03(t ∈ [−0.17, 0]).

As shown in Figure 2, the value of the state variable of system (2.21) approaches the equilibrium
point O(0, 0, 0) over time and as a result of which the equilibrium point O(0, 0, 0) of system (2.21) is
asymptotically stable.

(a) plots the change curve of the state variables, system x, y,
z over time t

(b) presents the phase diagram of the system in space O−xyz

Figure 3. The trend of changes in system (2.21) when , x(t) = 0.01, and z(t) = 0.03(t ∈
[−0.2173, 0]).

It can be observed in Figure 3 that when τ = 0.2173, the variable x, y, z keeps periodic oscillation,
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and a limit cycles appear in the O − xyz space, suggesting that a Hopf bifurcation occurs at the point
O(0, 0, 0).

(a) plots the change curve of the state variables, system x, y,
z over time t

(b) presents the phase diagram of the system in space O−xyz

Figure 4. The trend of changes in system (2.21) when τ = 0.25, x(t) = 0.01, y(t) = 0.02 and
z(t) = 0.03(t ∈ [−0.25, 0]).

As shown from Figure 4, the value of the state variables x, y, z of system (2.21) shifts away from
the equilibrium point progressively with time t, suggesting that the point O(0, 0, 0) is unstable when
τ = 0.25.

The system’s chaos is further verified in the following and the bifurcation diagram of system (2.21)
over τ and the phase diagram of system (2.21) when τ = 0.3 are respectively drawn, as shown
in Figure 5. Figure 5(a) shows the bifurcation diagram of system (2.21) and system (2.21) enters
chaos when τ is close to 0.3, further verifying the inferred results. Figure 5(b) shows the attractive
substructure of the system, which can be observed to be complex and not similar to the Lorenz system
or other chaotic systems.

(a) system’s bifurcation diagram over τ. (b) system’s phase diagram when τ = 0.3.

Figure 5. System chaotic performance over τ.
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Based on the above analysis method, the Hopf bifurcation critical values of the heterogeneous
single-delay general Lorenz system are obtained using time delays at different positions under a = 10,
b = −4, c = 2.5, and d = 2, as listed in Table 1.

Table 1. Hopf bifurcation critical values of the heterogeneous single-delay general Lorenz
system.

Position A B C D E F G H I
Hopf bifurcation
critical value 0.2173 0.1850 0.3276 0.3819 0.8107 0.2765 6265 0.4396 0.2253

A sequence set is constructed from the chaotic sequences generated by nine heterogeneous single-
delay chaotic systems, and three sequences are randomly assigned into image pixel scrambling and
diffusion operations.

3. Image encryption scheme

Figure 6 shows the whole process of encrypting and decrypting images by combining the chaotic
sequences generated by nine heterogeneous single time-delay chaotic systems. The sequence generated
by the chaotic system exhibits pseudo-random properties, and it is employed for scrambling and
diffusion operations during encryption, so as to form a chaotic cipher. The chaotic cipher is
characterized by a large key space, strong self-adaptation of the key stream and high security. With the
theory of chaos having been deeply researched, researchers have revealed that low-dimensional or high-
dimensional chaotic systems are subject to problems (e.g., simple structure and periodic windows). It
is therefore revealed that the sequence resistance of the low-dimensional chaotic system is weak and
easy to crack, and the security of the password cannot be ensured. Moreover, the chaotic cipher adopts
the sequence of a single chaotic system for scramble operations and diffusion operations. The sequence
is extremely easy to identify, and cryptographic security is not ensured. In accordance with the above
problems, a sequence set composed of chaotic sequences came from multiple heterogeneous single-
delay chaotic systems as appeared in this paper, and three sequences from the set are randomly selected
for image pixel scrambling and diffusion operations. Thus, the cryptanalysis technology cannot capture
the properties of the chaotic system, which is conducive to ensuring the password’s security.
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separate channels

Randomly select three sequences from the set of chaotic sequences

X Y Z

Encryption 

process

Plaintext

X Y Z

Merge channels

separate channels

Ciphertext

Use the same chaotic sequence as the diffusion operation 

X Y Z

X Y Z

Merge channels

Decrypted text 

Randomly select three sequences from the set of chaotic sequences

Use the same chaotic sequence as the scrambling operation 

Figure 6. Encryption and decryption process and intermediate results.

The sequences from the heterogeneous time-delay chaotic system are employed to form a sequence
set, and three sequences are randomly selected from the set for image scrambling and diffusion
operations. It is therefore ensured that the randomly selected sequence does not necessarily originate
from a chaotic system with a single time-delay, and cryptographic security is achieved.

3.1. Time-delay chaotic system generates pseudorandom sequences

Chaotic systems with time-delay and non-time-delay are essentially different in a considerable
number of ways, and their dynamic behaviors are completely different. Time-delay chaotic systems
refer to a class of infinite-dimensional dynamical systems. No matter how small the time delay is,
the system’s state space is infinite-dimensional and exhibits more complex dynamic behavior. Before
encryption, nine heterogeneous single-delay general Lorenz systems are adopted to simultaneously
generate 27 pseudo-random sequences for the formation of a sequence set. Subsequently, three
sequences corresponding to the images after the color image separation channel are randomly selected
from the sequence set for scrambling operations and diffusion operations. Accordingly, the chaotic
cipher’s key space is larger than that of the previous chaotic cipher. If the image size is M × N × 3, the
amount of data generated using the time-delay chaotic system is significantly larger than M × N. N
and M denote the horizontal and vertical pixel values of the image, respectively.
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3.1.1. Encryption method

The scrambling operation is the primary work of the encryption algorithm. To be specific, randomly
selected sequences from the sequence set are arranged in an ascending order, and then the pixel
positions of the plaintext image are transformed according to the sequence, so as to achieve the location
of the obfuscated plaintext image pixels. The diffusion operation randomly selects sequences from the
sequence set again to build a matrix and multiplies the matrix by the scrambled pixel matrix to capture
the pixel matrix of the encrypted image.

For a color plaintext image P with a size of M × N × 3, where 3 denotes the number of channels
of the color image, in accordance with the channel, P falls into three layers of PR, PG, and PB, and
scrambling and diffusion operations are performed for each layer. With PR as an example, the 2D
image matrix PR is expanded into a one-dimensional vector by row or column, expressed as A; the
following operations are performed with a sequence X randomly selected from the sequence set:

(1) Truncate the number of M × N at the given position parameter d and X to form {xi, i =

1, 2, · · · ,MN}; each element of {xi} is rounded according to Eq (3.1).

xi = (xi ∗ 104) mod MN + 1. (3.1)

(2) Arrange {xi} in ascending order, remove duplicates, and perform a difference operation with the set
{1, 2, 3, · · · ,MN}. The results are sorted in ascending order and added to the end of {xi}.

(3) Swap the A(xi) and A(xMN−i+1) positions. After the scrambling operation ends, the vector after
scrambling is recorded as PS R.

Sequences are selected randomly again from the sequence set to build a matrix, and a diffusion
operation is carried out on the matrix of the scrambled image. The diffusion operation can be performed
using Eq (3.2), and its inverse operation is Eq (3.3). The diffusion operation and the scrambling
operation of the plaintext image are over.

Ci = Ci−1 ∗ xi ∗ PS Ri (3.2)

PS Ri = Ci/Ci−1/xi (3.3)

The decryption algorithm is the inverse encryption algorithm’s process, described as follows:
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Algorithm: Image encryption algorithm based on heterogeneous time-delay chaotic
system.
Input: Plaintext image;
Encryption key: chaotic system parameters, time delay position, time delay value,
truncation sequence position parameter;
Output: Ciphertext image;
Step 1: Read plaintext images, construct matrices PR, PG and PB, and form column
matrices AR, AG and AB, respectively.
Step 2: Establish a sequence set in accordance with the key information; randomly
select three sequences (X,Y,Z) from the set; intercept the sequence following the
position parameter.
Step 3: Perform a scrambling operation on PR, PG and PB. According to Eq (3.1),
round, sort and append the intercepted sequence {xi} to form a novel sequence {xi}.
Then, exchange the pixel positions in AR, AG and AB to form a scrambling matrix
PS R, PS G and PS B.
Step 4: Implement a diffusion operation on PS R, PS G and PS B. Again, three
sequences (X,Y,Z) are randomly selected from the set, and the sequences are
truncated based on the position parameter. The interception sequence {xi} is
adopted for operation according to Eq (3.2) to form diffusion matrices PDR, PDG

and PDB.
Step 5: Combine PDR, PDG and PDB.

3.1.2. Decryption method

Decryption algorithm is the reverse process of encryption algorithm, as presented below:

Algorithm: Image Decryption algorithm based on heterogeneous time-delay
chaotic system..
Input: Ciphertext image;
Encryption key: chaotic system parameters, time delay position, time delay value,
truncation sequence position parameter;
Output: Decrypted image;
Step 1: Read the ciphertext image and construct the matrix CR, CG and CB.
Step 2: Form a sequence set according to the key information; select three
sequences (X,Y,Z) from the set in the sequence selection manner; intercept the
pseudo-random sequence {xi} following the position parameter.
Step 3: Implement the inverse diffusion operation onCR, CG and CB; use the
intercepted sequence {xi} to operate based on Eq (3.3) to form matrices CDR, CDG

and CDB.
Step 4: Perform the scrambling inverse operation on CDR, CDG and CDB. Again,
three sequences (X,Y,Z) are selected from the set by sequence selection.
According to Eq (3.3), round, sort and append the intercepted sequence to form a
novel sequence {xi}. Subsequently, exchange the pixel positions in CDR, CDG and
CDB to establish a matrix CS R, CS G and CS B.
Step 5: Combine CS R, CS G and CS B.
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3.2. Experimental results and algorithm performance analysis

The algorithm’s effectiveness is verified by taking the Lena color image of size 1 as the test object.
Color images’ encryption and decryption are performed using the aforementioned heterogeneous single
delay Lorenz system to form a sequence set. The number of sequence elements generated by the chaotic
system with time-delay is significantly larger than the size of the color image, and is stored in a fixed
manner. In the sequence, a certain number of elements are intercepted based on the position parameters
to participate in the diffusion and scrambling operations. Table 1 and Figure 4 depict the parameters
and initial conditions of the heterogeneous single-delay Lorenz system, with the location parameter of
di ≥ 300. The encryption algorithm’s performance is evaluated through histogram analysis, adjacent
pixel correlation coefficient analysis, NPCR and UACI analysis.

3.2.1. Histogram

Figure 7 illustrates the R, G, and B pixel histograms for the plaintext image. Figure 8 exhibits the R,
G, and B pixel histograms for the encrypted image. Figure 9 depicts the R, G, and B pixel histograms
for the decrypted image.

Figure 7. R, G, and B pixel histogram of the plaintext image.

Figure 8. R, G, and B pixel histogram of the encrypted image.

Figure 9. R, G, and B pixel histogram of the decrypted image.

Figure 7 depicts that the pixel values’ distribution of the R, G and B channels of the plaintext
image has apparent statistical laws, and the plaintext image’s pixel value change curve is significant.
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After scrambling and expansion operations are completed, the pixel values of the ciphertext image are
evenly distributed in the respective gray level interval (Figure 8). In other words, the frequency of
the respective encrypted image’s pixel appears close. Moreover, the three channels are basically the
same, and thus, statistical methods cannot be adopted to attack. As demonstrated in Figure 9, the pixel
values’ distribution of the R, G and B channels of the plaintext image is basically the same as that of
the decrypted image. This suggests that the decryption effect is perfect, and the image can be restored
to the plaintext image without being affected by the decryption algorithm. The above results confirm
that the information of the plaintext image is effectively diffused, and the encryption algorithm has a
good ability to resist statistical attacks.

3.2.2. Adjacent pixel correlation coefficient

The Pearson correlation coefficient is capable of effectively measuring the dependence of two
adjacent sequences in an image in a certain direction. Next, the correlation coefficient is calculated
directly using Eq (3.4) for the images before and after encryption.

r =

n(
n∑

i=1
xiyi) − (

n∑
i=1

xi)(
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i=1
yi)√

[n(
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i ) − (
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2

][n(
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2

]

(3.4)

where n(
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i=1
xiyi) − (
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i=1

xi)(
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i=1
yi) denotes the sample variance, n(
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x2
i ) − (
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i ) − (
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denote the sample standard deviations of the sequences X j and Y j ( j = 1, 2, · · · ,m − 1), respectively.
The correlation coefficient is one of the important indicators reflecting the encryption algorithm’s
performance. In general, the correlation coefficient between adjacent pixels can be calculated from
the vertical direction, the horizontal direction, and the diagonal direction according to Eq (3.4). When
determined in the horizontal direction, m is the row number of the encrypted image; when obtained
in the vertical direction, m is the column number of the encrypted image; when calculated from the
diagonal direction, m is the diagonal line number of the encrypted image. Table 2 lists the calculation
result.

Table 2. Pearson correlation coefficients between adjacent pixels in different directions.

Image Horizontal direction Vertical direction Diagonal direction
R G B R G B R G B

Original image 0.9002 0.9016 0.9675 0.9412 0.9522 0.9213 0.9423 0.9702 0.9772
Encrypted image 0.0122 0.0023 0.0206 0.0012 0.0056 0.0165 0.0025 0.0021 0.0024

Table 2 depicts that the encrypted image’s correlation coefficients on the vertical, horizontal and
diagonal lines all approach zero for the encryption implemented under the heterogeneous single-delay
Lorenz system mapping. However, the above are just some of the overall results. The correlation of
the plaintext image and the encrypted image in different directions are depicted one by one using a
scatter plot to analyze the correlation between any two adjacent pixels in depth. Figure 10 illustrates
the correlation coefficient results for the Lena image in the horizontal, vertical, and diagonal directions.

AIMS Mathematics Volume 9, Issue 3, 5582–5608.



5598

Figure 11 illustrates the correlation coefficient results of the encrypted image in horizontal, vertical,
and diagonal directions.

Figure 10. Correlation coefficients of the encrypted image in horizontal, vertical, and
diagonal directions. (a) Horizontal direction, r = 0.0122, (b) Vertical direction, r = 0.0012,
(c) Diagonal direction, r = 0.0025.

Figure 11. Encrypted image’s correlation coefficients in horizontal, vertical, and diagonal
directions. (a) Horizontal direction, r = 0.0122, (b) Vertical direction, r = 0.0012, (c)
Diagonal direction, r = 0.0025.

As depicted in Figure 10, the plaintext image shows a high correlation between any two adjacent
pixels in different directions. However, the correlation between adjacent pixels corresponding to the
encrypted image is close to 0 (Figure 11). To be specific, the correlation coefficients changed from
0.9002, 0.9412 and 0.9423 to 0.0122, 0.0012 and 0.0025, respectively. It is therefore revealed that
the encryption algorithm eliminates the correlation between the plaintext image’s adjacent pixels, thus
making it difficult for attackers to acquire any information of the plaintext image through correlation
analysis.

3.2.3. Keyspace

The keyspace elements of the encryption and decryption algorithm consist of the time-delay Lorenz
system’s parameters a, b, c, initial conditions x(t), y(t), z(t), time-delays τi, i = 1 to 9, time-
delay position parameters, as well as intercepting pseudo-random sequences’ position parameters. In
MATLAB, 96-bits of storage system parameters, initial conditions and double delay are required, and
the rest can be stored with 64 bits. The position parameter of time-delays is the position relation of
time- delay quantities τi in the Lorenz system, and different position relations express a chaotic system
with time-delay. Moreover, the pseudo-random sequence interception positions are three random
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values, respectively representing the value positions on different state vectors. Accordingly, the number
of all the different combinations of this cryptosystem is significantly higher than 2256. The above large
keyspace and the use at a time make the encryption algorithm sufficiently resistant to brute force
attacks.

3.2.4. Key sensitivity

Key sensitivity is recognized as another significant indicator to measure the image encryption
algorithm’s performance. Encryption algorithms with prominent performance should generally be
sensitive to keys, so cryptanalysts cannot crack them by repeated trials. The sensitivity here reveals
that the decryption algorithm cannot recover the plaintext image or acquire the relevant information of
the plaintext image even after a small modification of any element in the keyspace. In other words,
only when a completely correct key is employed can the plaintext image be recovered by a decryption
algorithm. Figure 12 presents the image (12 (b)) obtained by decryption with a correct key, the
image (12 (c)) obtained by decryption with a wrong delay parameter τ, and the image (12 (d) obtained
by intercepting position parameters in the direction of wrong pseudo-random sequencex under the
time-delay quantities of τA = 0.1521.

Figure 12. Key sensitivity test. (a) Plaintext image, (b) Decryption image τA = 0.1521, (c)
Decryption image τA = 0.1522, (d) Decryption image dx = 400.

According to Figure 12(b),(c) when the parameters of the heterogeneous single time-delay chaotic
system change slightly and other keys are adopted correctly, the decryption algorithm can neither
recover and obtain the plaintext image nor acquire any information of the plaintext image. According
to Figure 12(c),(d) the decryption algorithm cannot acquire any plaintext image’s information when
the position parameters intercepted by the pseudo-random sequence are changed or when other keys
remain unchanged. This is because the small changes of system parameters and the changes of
sequence interception positions generally cause a completely different chaotic matrix B, so the matrix A
determined by A = CB is overall inconsistent with the correct scrambling matrix. Thus, the decryption
algorithm cannot recover the plaintext image.

3.2.5. NPCR and UACI

The average intensity of change (UACI) and the average rate of change of pixels (NPCR) represent
two indicators to measure the diffusion effect of encryption algorithms. NPCR compares the number of
changes of elements in the pixel matrix corresponding to the plaintext image and the encrypted image
to ensure that sufficient elements of the pixel matrix are changed. UACI reveals the average change in
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the pixel value of the corresponding position of the plaintext image and the encrypted image. They are
defined as

NPCR =

M−1∑
i=0

N−1∑
j=0

D(i, j)

M × N
× 100% (3.5)

UACI =
1

M × N

M−1∑
i=0

N−1∑
j=0

|A(i, j) − AS D(i, j)|
255

. (3.6)

Here,

D(i, j) =

{
0, A(i, j) = AS D(i, j)
1, A(i, j) , AS D(i, j)

where A denotes the plaintext image pixel matrix; M and N represent its rows and column numbers,
respectively; and AS D represents the encrypted image’s pixel matrix. For two random images, the
expected values for UACI and NPCR are 96.6094% and 33.4635%, respectively [43]. The NPCR and
UACI of the encrypted image are close to their respective expected values, which indicates that the
information of the plaintext image is significantly diffused into the encrypted image. Accordingly, the
attacker’s attempt to obtain information about the plaintext image through differential attack will be
futile.

In accordance with Eqs (3.5) and (3.6), the UACI and NPCR values of the encrypted image can be
calculated respectively. Table 3 lists the calculation results.

Table 3. NPCR and UACI test results of encrypted images.

Image NPCR(%) UACI(%)
R G B R G B

Encrypted image 99.6011 99.6066 99.6200 33.1101 33.2622 33.3230
Average 99.6092 33.2384

The results in Table 3 reveal that the average NPCR of encrypted images is 99.6092%, and the
average UACI is nearly 33.2384%, both close to the expected value. To obtain better NPCR and UACI
values, the number of columns should be up-regulated in the permutation matrix A. At this time, the
size of the required chaos matrix B will increase. In this way, the information of the plaintext image
will be better diffused into the encrypted image. Accordingly, the algorithm can effectively resist
differential attacks.

3.2.6. Correlation comparison between adjacent pixels of encrypted images

The correlation coefficient’s reduction between adjacent pixels of an encrypted image is an
essential criterion to measure the encryption algorithm’s security. This paper attempts to reflect
the proposed algorithm’s security by comparing it with other encryption algorithms. The image
encryption schemes involved in the comparison consist of image encryption algorithms based on
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multiple chaotic systems [43], bit-level scrambling and diffusion [21,44], generalized Arnold map [12],
DNA sequence operation [24], and cyclic shift and XOR operation [45]. Table 4 lists the correlation
coefficients between adjacent encrypted images’ pixels under various schemes. To be specific, the
results of correlation coefficient in the respective direction can be obtained by averaging the correlation
coefficients of the R, G, and B layer pixel matrices.

Table 4. Comparison of correlation coefficients of adjacent pixels.

Encryption algorithm Our Huang [43] Lin [21] Ye [12] Zhang [24] Zahra [45]
Horizontal direction 0.0012 -0.0752 0.0315 0.0464 0.0713 0.0048
Vertical direction 0.0122 -0.0753 0.2651 0.0562 -0.3255 0.0231
Diagonal direction 0.0361 0.0466 0.0455 0.0397 -0.0423 0.0280
Average 0.0169 0.0661 0.2119 0.0478 0.1467 0.0190

As depicted in Table 4, in the comparison of the correlation coefficients of adjacent pixels, the
proposed algorithm has the smallest correlation coefficients in the horizontal and vertical directions.
In the diagonal direction, the proposed encryption method can lead to a smaller correlation between
adjacent pixels of the encrypted image, besides Zahra’s result. In the three directions, the results
obtained by all algorithms are averaged by taking the absolute value, and the proposed algorithm is
also proven to be optimal.

3.2.7. Chosen/known plain image attack

Various image encryption algorithms with excellent statistical results have been selected/cracked
by known plaintext image attacks. In this paper, we consider the following measures to prevent this
powerful attack. According to Eq (3.1), the permutation-diffusion process is implemented in a single
stage, and thus the algorithm can resist divide-and-conquer attacks. According to Table 1, the encrypted
chaotic sequence is obtained from the delay and the position of the delay in the chaotic system. The
key to this algorithm is not using a single chaotic system to generate data, but employing multiple
chaotic systems to generate data. Therefore, the encrypted chaotic sequences originating from multiple
chaotic systems cannot be simulated and recognized by AI tools, thus preventing the secret key from
being cracked.

In the selected plaintext image attack, cryptanalysts have temporary access to encryption equipment
and can choose a specific image for encryption, attempting to find the used secret key: First, the
cryptanalyst selects a black image with all pixel values fixed at zero (Figure 13(a)). Then, the
cryptanalyst encrypts the black image (Figure 13(b)), resulting in the chaotic sequence possibly used
in the encryption process (secret key). Afterward, the cryptanalyst can implement the known plaintext
image attack using the Lena image (Figure 13(c)), but without success (Figure 13(d)). From Table 1,
the Z−value of Figure 13(a) is S = 0, and the Lena image is encrypted using S , 0. Therefore, we
obtain different Z−value and chaotic sequences for each plaintext image.
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Figure 13. Chosen/known plain image attack. (a) chosen black plain image, (b) encrypted
black image, (c) encrypted Lena image, and (d) decrypted Lena image with possible secret
key from encrypted black image

In image encryption, the Z-value is commonly used to represent a chaotic sequence of pixel values.
A chaotic sequence is a deterministic sequence that appears to be random and can be used in encryption
algorithms to generate pseudo-random keystreams.In the context described, the Z-value may be a
specific value from a sequence generated by a chaotic system, used to represent the initial state of
pixel values or some form of key information. Cryptanalysts can utilize this Z-value to attempt to
break the encryption algorithm by selecting specific plaintext images for encryption and observing the
generated chaotic sequence in order to infer the key information used for encryption.In summary, the
Z-value in image encryption can be used as part of a chaotic sequence to generate pseudo-random
keystreams, thereby facilitating the process of encrypting and decrypting images.

3.2.8. Information entropy

Information entropy is a mathematical property that determines the randomness, unpredictability,
or complexity of a message. If the encryption process does not produce enough disorder at the output,
the cryptosystem can be the subject of the entropy attack. According to the information entropy
calculation method given in the literature [46,47], we calculated the images before and after encryption
respectively. In Table 5, the entropy results of both The Lena 256 × 256 RGB plain image and
its corresponding encrypted image are presented. Therefore, the entropy value close to eight in the
encrypted image means a highly unpredictable message; hence, the encryption algorithm can resist an
entropy attack.

Table 5. Information entropy of the plain and encrypted image.

Plain Image Encrypted Image
R G B R G B

H 7.6215 7.9425 7.7426 7.8695 7.9526 7.9265

3.2.9. Robustness evaluation

An excellent encryption system, if its encrypted image can effectively resist cropping and noise
attacks, possesses good robustness. Taking the cropping attack for example, when the encrypted result
is subjected to pixel cropping attacks, the quality of the reconstructed image is significantly reduced.
Figure 14 demonstrates various degrees of pixel cropping and the corresponding decryption results,
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along with an analysis of the encryption scheme’s resistance to cropping attacks. It can be seen from
the figure that the algorithm has a good ability to resist cropping attacks.

Figure 14. Clipping attack result.

3.2.10. Time efficiency analysis

In this section, we analyze the speed of the encryption system. To verify the significant improvement
in encryption efficiency of the proposed scheme, we separately calculate the encryption time of the
Lena image and the encryption time is obtained many times and averaged. From Table 6, it can be seen
that the efficiency of encrypting images using this scheme is significantly better than that of encrypting
plaintext images. Comparative experiments also show that our scheme has obvious advantages. The
three algorithms were implemented using MATLAB 2022b and were implemented on an AMD Ryzen
96 900HX with Radeon Graphics, and the execution efficiency of the algorithms on color images was
calculated.

Table 6. Speed analysis.

ours [48] [47]
Average Speed (s) 1.4126 2.0322 2.0716

4. Conclusions

In view of the excellent qualities of time-delay chaotic systems, such as infinite dimension, a unique
encryption scheme designed, and the proposed image encryption algorithm has the advantages of large
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key space, high encryption efficiency and good security. The image encryption algorithm based on
heterogeneous time-delay chaotic systems consists of adding a time-delay to different state variables of
chaotic system to form multiple very complex time-delay chaotic systems. Subsequently, the resulting
sequences generate a set of sequences employed for cryptographic operations (e.g., image scrambling
and diffusion). In accordance with the location where the time lag is added, an encryption strategy
is formulated in this location. In this paper, the designed image encryption scheme is presented from
four perspectives, including an encryption algorithm, decryption algorithm, algorithm performance
analysis and comparative analysis. The proposed encryption algorithm is characterized by its large
key space, low computational complexity, and strong ability to resist statistical and differential attacks,
which is simple. Moreover, this algorithm is easy to implement. Heterogeneous time-delay chaotic
systems exhibit complex dynamic behavior and are capable of ensuring the security of the algorithm by
generating chaotic sequences with strong randomness. However, this sequence generation calculation
takes a long time. The sequence generated by the time-delay chaotic system can be stored in advance,
and it can then be selected randomly and intercepted to achieve real-time encryption.
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