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Abstract: While chaotic systems have found extensive applications across diverse scientific domains 

due to their inherent advantages, they often degrade into cyclic patterns when simulated on hardware 

with limited computational precision. This results in a pronounced decline in properties related to 

chaotic dynamics. To address this issue, we introduce the delayed exponent coupled chaotic map 

(DECCM). This model is designed to enhance the chaotic dynamics of the original map, especially at 

lower computational precisions. Additionally, DECCM can transform any proficient 1-dimensional 

seed map into an N-dimensional chaotic map. Extensive simulation and performance tests attest to the 

robust chaotic characteristics of our approach. Furthermore, DECCM holds distinct advantages over 

premier algorithms, particularly in period analysis experiments. We also introduce various seed maps 

into DECCM to present 2D and 3D examples, ensuring their generalization through relevant 

performance evaluations. 
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1. Introduction 

A chaotic system is a complex nonlinear dynamical system characterized by high dynamic 

complexity. It possesses excellent characteristics such as sensitivity to initial values, ergodicity, non-

periodicity, long-term unpredictability and pseudo-randomness. These attributes have led to the wide 

application of chaos theory across various disciplines and fields for a long time [1,2], including 

physics [3–5],  mathematics [6–8], engineering [9–11], economics [12–14] and computer 
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science [15,16]. Besides, due to its natural resemblance to confusion and diffusion in cryptography, 

the application of chaos to encryption algorithms was proposed by Mathews [17] in 1989. Numerous 

chaos-based encryption algorithms have been developed and popularized since then [18–20]. 

There are currently two primary methods to realize chaotic systems. One is simulated chaotic 

systems [21], i.e., continuous chaotic systems implemented on analog circuits and modeled by ordinary 

differential equations. The performance of such simulations can be more susceptible to environmental 

factors, potentially leading to instability and slow responsiveness. The second method is realization on 

finite precision devices, such as computers, where chaotic systems can be described by discrete 

iterative equations, known as digital chaotic maps. However, this approach has a limitation due to the 

confined state space of finite-precision devices. During the realization of a chaotic map, motion 

trajectories will eventually enter a loop, leading to a significant weakening of various chaotic 

properties. This phenomenon, known as chaotic dynamic degradation, renders the degraded chaotic 

map unsuitable for designing cryptosystems. To address the issue of degradation in digital chaotic map 

dynamics, researchers have proposed numerous different methods [8,22]. 

Nowadays, there are several effective approaches to address the issue of degradation. Primarily, 

it is very effective to increase the precision of the device [23]. Greater precision implies that the 

simulation of the chaotic map is more fitting, making it harder to degenerate into loops. However, the 

need for high-precision equipment can lead to higher implementation costs, and it is also not easy to 

control the trajectory cycle of the chaotic map. The second approach to address degradation is to 

increase the dimensionality [21,24]. High-dimensional chaotic maps typically offer better resistance 

to chaotic dynamics degradation compared to their low-dimensional counterparts, thanks to their 

inherent dimensional and complexity advantages. In [24], a method for constructing an N-dimensional 

chaotic system is introduced. This method uses a one-dimensional chaotic map as the foundational 

seed to generate chaotic maps of any dimension. One of its key benefits is its resistance to transmission 

noise. Meanwhile, [21] introduces a 3-dimensional logistic map. This map is combined with the 

analog-digital hybrid chaotic (ADHC) system to counteract the degradation of dynamics. However, 

solutions for high-dimensional chaotic maps tend to be specialized for specific chaotic maps. 

Consequently, this method is less universal and challenging to apply to chaotic maps outside of a 

specific set. As a third approach, some researchers suggest using feedback control [3,25] to address 

the degradation of chaotic dynamics. The core principle of this approach involves adding a state 

feedback control function to the original chaotic map. In [3], a solution is presented using an enhanced 

minimal antithetic integral feedback controller (AIFC) scheme. This solution aims to determine if 

sustained non-periodic oscillations can coexist when such a regulator circuit implements Robust 

perfect adaptation (RPA). However, even with feedback control, the chaotic map remains deterministic. 

As a result, this method might not be sufficiently effective in rectifying the degradation of chaotic 

dynamics. Another approach to address this bottleneck is introducing external perturbations, as 

suggested in [26–28]. In [28], new chaotic system trajectories were derived from the trajectory errors 

of three chaotic systems with distinct initial values, making it challenging for attackers to decipher. 

However, in related studies where perturbation sources are essential, these new systems tend to be 

dominated by the perturbation sources. Introducing additional perturbation sources also results in a 

rise in application costs. Finally, coupling chaotic systems to delay the degradation is also an effective 

method, such as the methods in [29–31], where new chaotic models are derived by coupling multiple 

chaotic maps. However, while simply coupling the chaotic system does increase its complexity, it 

doesn't address the chaotic degradation that arises due to the condition xp = xq within the constraints of 
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finite precision. 

After evaluating the strengths and weaknesses of the aforementioned methods, this paper 

introduces a digital chaotic map model that employs both delayed feedback and coupling to enhance 

the chaotic dynamics in the face of finite precision. This model, called the delayed exponent coupled 

chaotic map (DECCM), amalgamates the benefits of both strategies. It's versatile enough to be 

expanded beyond two dimensions and can incorporate any one-dimensional map as the seed to produce 

a novel chaotic map. This sets it apart from some recent solutions that restrict either the dimensionality 

or the types of mappings, as seen in [30,32]. Importantly, our model preserves the phase space of the 

seed map. This indicates that in contrast to methods in [21,24], our approach isn't aimed at diminishing 

the dynamics of the original chaotic map by introducing a new stochastic source. Instead, we seek to 

improve them. And after various experimental results, it has been proved that the proposed scheme 

effectively improves the dynamic degradation observed in chaotic maps with lower precision. Here 

are the main innovations of this paper: 

(1) The proposed model effectively addresses the degradation of chaotic dynamics caused by 

implementing a chaotic map on finite precision devices. Both the number of iterations before first 

entering a cycle and the period of the cycle substantially outperform other leading remedial schemes. 

Even if a sub-dimension is caught in a cycle it has little effect on the other sub-dimensions. 

(2) The scheme demonstrates broad applicability as it can extend any number of one-dimensional 

maps into delayed coupled maps of higher dimensions, while maintaining excellent characteristics of 

chaotic dynamics. 

(3) The ability of the scheme to maintain fairly stable high entropy values at all precision implies 

its excellent stochasticity. 

The remainder of this article is organized as follows: In Section 2, we introduce the proposed 

generalized model DECCM aimed at mitigating the degradation of chaotic dynamics. Section 3 

showcases the advantages of DECCM by contrasting it with alternative solutions using various tests, 

including trajectories and sensitivity analysis, period analysis, bifurcation diagrams, phase space, 

lyapunov exponent, entropy analysis, auto-correlation analysis and correlation dimension, among 

others. To demonstrate the applicability of DECCM to different seed mappings, Section 4 provides a 

new 3D chaotic map as an example; the new system also undergoes the same tests detailed in Section 3. 

We conclude the paper in Section 5, summarizing our findings and discussing potential directions for 

future research. 

2. A novel N-dimensional delayed exponent coupled chaotic map 

The mathematical model of a chaotic map can be described as: 

𝑥𝑖+1  =  𝑓(𝑥𝑖 , 𝑟),                                (1) 

where xi denotes the state variable, r is the control coefficient, f is the iterative function. With 

appropriate selection of control coefficient r, the map f will be chaotic, with rich dynamic behaviors 

and high sequence complexity. However, once the map f is realized on a finite precision device, it will 

suffer dynamical degradation, the mathematical model of which can be written as: 

𝑥𝑖+1  =  𝐹𝐿[ 𝑓(𝑥𝑖 , 𝑟)] .                             (2) 

Here, FL[] is the precision function that limits the state space. With the control of function FL[], the 
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trajectory of map f will enter a cycle inevitably, and its dynamical charactersitics will deteriorate 

rapidly. Thus, this kind of digital chaotic map cannot be regarded as mathematical chaos anymore, 

which is not suitable for cryptographic applications. Therefore, in order to reduce the dynamical 

degradation of the digital chaotic map, in this section, a delayed exponent coupling chaotic map is 

proposed. 

The tendency of a chaotic map to enter a cycle stems from the possibility of encountering xp = xq 

(0 < p < q < M, M is the length of the chaotic map) during the iteration of the mapping with limited 

precision. When this occurs, and other parameters remain unchanged, the system inevitably falls into 

a loop. To counteract this, we initially introduce a delayed feedback term k × xi-1 to Eq (2). This ensures 

that if xp = xq arises, the delayed term will make the necessary corrections to prevent the system from 

looping. The mathematical representation is detailed below: 

𝑥𝑖+1  =  𝐹𝐿[ 𝑓(𝑥𝑖) + 𝑘 × 𝑥𝑖−1].                         (3) 

Subsequently, we expand the Eq (3) to two dimensions to augment the system's complexity and 

dynamics. To prevent the system from converging after numerous iterations, we incorporate the 

exponential function ex, known for its divergent nature, to couple with the other dimension. At the 

same time, the other dimension is also added with the delay feedback term. Concurrently, we employ 

the modulus function mod to ensure the entire system remains bounded. The comprehensive system 

can be articulated as: 

{
𝑥𝑖+1 = 𝐹𝐿[ 𝑓(𝑥𝑖) × 𝑒

𝑦𝑖 + 𝑘1 × (𝑥𝑖−1 + 𝑦𝑖−1)]   𝑚𝑜𝑑 1,

𝑦𝑖+1 = 𝐹𝐿[ 𝑓(𝑦𝑖) × 𝑒
𝑥𝑖 + 𝑘2 × (𝑦𝑖−1 + 𝑥𝑖−1)]   𝑚𝑜𝑑 1.

                (4) 

Now, we can advance to extending the system across N dimensions to get the generalized model 

called the delayed exponent coupled chaotic map, whose mathematical model can be written as: 

{
 
 
 

 
 
 𝑥𝑖+1

(1)  = 𝐹𝐿[ 𝑓1(𝑥𝑖
(1))  × 𝑒𝑥𝑖−1

(2)

 + 𝑘1 × (𝑥𝑖−1
(1) + 𝑥𝑖−1

(𝑁))]                        𝑚𝑜𝑑 1,

𝑥𝑖+1
(2)  = 𝐹𝐿[𝑓2(𝑥𝑖

(2))  × 𝑒𝑥𝑖−1
(3)

 + 𝑘2 × (𝑥𝑖−1
(2) + 𝑥𝑖−1

(1) )]                         𝑚𝑜𝑑 1,
……

𝑥𝑖+1
(𝑁−1)  = 𝐹𝐿[ 𝑓𝑁−1(𝑥𝑖

(𝑁−1))  × 𝑒𝑥𝑖−1
(𝑁)

 + 𝑘𝑁−1 × (𝑥𝑖−1
(𝑁−1) + 𝑥𝑖−1

(𝑁−2))] 𝑚𝑜𝑑 1,

𝑥𝑖+1
(𝑁)  = 𝐹𝐿[ 𝑓𝑁(𝑥𝑖

(𝑁))  × 𝑒𝑥𝑖−1
(1)

 + 𝑘𝑁−1 × (𝑥𝑖−1
(𝑁) + 𝑥𝑖−1

(𝑁−1))]                 𝑚𝑜𝑑 1.

       (5) 

Here, 𝑥𝑖
(𝑗)

 denotes the state variable of sub-map j, 1 < j ≤ N, and i is the iterative step. k1, k2, ..., kN are 

the control coefficients. And fj can be chosen to be any one-dimensional map. In this model, the delayed 

state of sub-map j+1 is coupled to the sub-map j. The e exponent function 𝑒𝑥𝑖−1
𝑗+1

 is used to make the 

system diverge and the modular function mod is to make the system bounded. Both divergence and 

boundedness can make the system present complex chaotic behavior. In order to further improve its 

chaotic characteristics and reduce the dynamical degradation, a linear delayed feedback control 

function 𝑘𝑗 × (𝑥𝑖−1
(𝑗)

+ 𝑥𝑖−1
(𝑗−1)

) is used in this model. 

This delayed exponent coupled chaotic map has good dynamical properties, its output sequence 

has high complexity, and it is able to reduce dynamical degradation even with a low computing 

precision. A series of numerical experiments will be provided in the next section to prove the 

effectiveness of this new chaotic model. 
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3. A two-dimensionality example of the DECCM 

Theoretically, the DECCM is valid for any dimension with N ≧ 2. In this section, the dimension 

N is selected to be 2 as an example of DECCM, whose mathematical models are described in Eq (6). 

{
𝑥𝑖+1 = 𝐹𝐿[ 𝑟1 × 𝑥𝑖(1 − 𝑥𝑖) × 𝑒

𝑦𝑖 + 𝑘1 × (𝑥𝑖−1 + 𝑦𝑖−1)]     𝑚𝑜𝑑 1,

𝑦𝑖+1 = 𝐹𝐿[ 𝑟2 × 𝑦𝑖(1 − 𝑦𝑖) × 𝑒
𝑥𝑖 + 𝑘2 × (𝑦𝑖−1 + 𝑥𝑖−1)]     𝑚𝑜𝑑 1.

            (6) 

In order to demonstrate the validity of the DECCM, we select f1 and f2 as the logistic map, the 

mathematical model of which can be described as Eq (7). Then various tests are performed to verify 

its dynamic behavior. If no additional explanation is stated, the initial values, parameters and the 

computing precision p are selected as x0=0.2147, x1 = 0.3257, y0 = 0.2579, y1 = 0.6547, k1 = 0.4, k2 =0.8, 

r1 = 3.99, r2 = 3.98 and p = 2-12. 

In addition, to enable a visual comparison, some of the test results will be compared with a logistic 

map having limited precision. The mathematical model for this comparison is expressed as 

𝑥𝑖+1 =  𝐹𝐿[ 𝑟 × 𝑥𝑖(1 − 𝑥𝑖)],                          (7) 

where the initial value and parameters are chosen as x0 = 0.12567, r = 3.98, respectively, if no additional 

explanation is stated. 

3.1. Trajectories and sensitivity analysis 

Trajectory diagrams offer a straightforward insight into the traversal characteristics of chaotic 

systems and the presence or absence of cycles. The trajectory plotted in Figure 1 illustrates that the x 

and y dimensional variables in Eq (6) all follow highly random trajectories, with no discernible cyclic 

structure. Figure 2(a) shows that in the precision limit of the 2-12 case the logistic map falls into a loop 

after only about 50 iterations. In contrast, Figure 2(b) demonstrates that our scheme avoids entering 

the loop even after 5000 iterations. These experiments imply that our method effectively mitigates the 

degradation of the dynamics resulting from limited precision. We will conduct more detailed 

experiments in the period analysis section later on. 

 

Figure 1. Trajectories of x, y and z dimensional variables of Eq (5). 
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Figure 2. Comparison of trajectories with limited precision: (a) logistic map, (b) Eq (6). 

Sensitivity to the key (initial condition) is a characteristic of an ideal chaotic system, implying 

that even a minor change in the initial parameters can result in a substantial deviation in the chaotic 

trajectory. In this case, we opt to alter the initial conditions by 2-12 to observe the changes in the x-

dimensional trajectory. As shown in Figure 3, this slight error in the initial values leads to a divergence 

from the original trajectory after only a a small number of iterations. This indicates that the model is 

highly sensitive to initial conditions and is unpredictable in the long term. 

 

Figure 3. Key sensitivity analysis: (a) the key error is x0 + 2-12, (b) the key error is y1+2-12, 

(c) the key error is k1 + 2-12, (d) the key error is k2 + 2-12. 
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3.2. Period analysis 

Currently, when using computers to simulate chaotic systems, the limited precision of the 

hardware may cause chaotic simulations to enter cycles, leading to a degradation in their chaotic 

dynamics. When evaluating the periodicity of a digital map, two aspects must be considered: the 

number of iterations required to first enter the cycle, and the length of the cycle once it has been entered. 

In this experiment, the length of each generated sequence is set to 200,000 of Eqs (6) and (7). Then we 

select a random set of 200 secret keys (initial conditions) within the parameter range and sequentially 

adjust the precision limit from 2-6 to 2-16. This adjustment will be used to compute both the average 

number of iterations required for the first entry into the period and the average length of the cycle 

period. The results are presented in Table 1. It can be seen that the number of iterations and the period 

length required for both chaotic systems to enter the cycle for the first time are enhanced with the 

increase in precision, which proves the effect of precision on the degradation of the dynamics of chaotic 

systems. Specifically, the number of iterations required for Eq (6) to enter the cycle for the first time 

is much larger than that of the logistic map, and this difference grows almost exponentially. Moreover, 

the magnitude of Eq (6)'s cycle period is also significantly larger than that of the logistic map. It's 

worth mentioning that this method starts to fail to detect loops at precision greater than 2-15. This 

requirement for less precision contrasts with the precision 2-20 required by [26] and the precision 2-36 

required by [30]. These results highlight DECCM's significant effect on mitigating the degradation of 

chaotic dynamics. 

Table 1. Period analysis at different precisions (U denotes undetected). 

Precision 
Average iterations when Eq 

(7) first enters the period 

Average iterations when Eq 

(6) first enters the period 
Period of Eq (7) Period of Eq (6) 

2-6 3.77 648.3 1.65 29.86 

2-7 6.77 2459.34 6 121.24 

2-8 13.72 9653.44 3.98 136.8 

2-9 9.84 21711.42 14.76 598.42 

2-10 10.37 39586.44 21.34 608.62 

2-11 8.37 44012.44 16.44 2152.08 

2-12 81.44 95844.28 3.97 3526.18 

2-13 20.88 89346.56 42.69 8892.4 

2-14 53.19 179780.08 37 20218.92 

2-15 99.51 165171.26 49.72 34827.74 

2-16 67.86 U 168.73 U 

3.3. Bifurcation diagram 

The bifurcation diagram illustrates the relationship between chaotic properties and control 

parameters. It enables the analysis of how system performance changes with parameters, particularly 

highlighting the abrupt alterations in system behavior under critical parameters. Figure 4 displays the 

bifurcation diagrams of the x-dimensional variables in response to the changes in k1 and k2. It 

demonstrates that even when k1 and k2 are selected within a broad parameter range [0, 20], there is no 

non-chaotic domain in Eq (6). This confirms that the chaotic properties of the DECCM are sufficiently 
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stable. 

 

Figure 4. Bifurcation diagram for x-dimension in Eq (6): (a) k1 as the variable, (b) k2 as the variable. 

3.4. Phase space 

A strange attractor represents a set of values to which a system tends to evolve. In chaotic systems, 

strange attractors often manifest, and they are characterized by fractal structures. The strange attractors 

of Eqs (6) and (7) are evident in the phase space plotted in Figure 5 (with the precision limited as 2-12 

and 2-30). In Figure 5(f), the phase space graph of the high precision limited logistic map displays a 

distinct inverted U-shape, but it is not very obvious at low precision. Figure 5(a) and (b) show that it 

does not completely destroy the phase space structure of logistic map, but has some visualization 

structure similar to it. In addition, the phase space of Eq (6) is much more widely distributed, 

encompassing almost the entire region, regardless of the precision. The results of this experiment show 

that the system does not completely destroy the chaotic attractor of the original mapping and exhibits 

a characteristic chaotic fractal structure. 

 

Figure 5. Phase space: (a) and (b) Eq (6) with precision set as 2-12, (c) Eq (7) with precision 

set as 2-12, (d) and (e) Eq (6) with precision set as 2-30, (f) Eq (7) with precision set as 2-30. 
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3.5. Lyapunov exponent 

In practical terms, the Lyapunov Exponent (LE) can serve as an indicator to ascertain whether a 

system is chaotic [33]. A chaotic system exhibits at least one positive LE, distinguishing it from other 

stochastic systems. Additionally, the larger the LE value, the more pronounced the chaotic 

characteristics become. We have configured the parameters k1 and r in Eqs (6) and (7) to fall within 

the range of (0, 4], with a step size of 0.1 for the LE analysis. It can be seen that in Fig. 6, over the 

entire parameter range, the LE of the logistic map is positive when r is approximately greater 

than 3.57. On the contrary, the result illustrates that even when the parameter k1 is varied across a 

broad range, our scheme consistently yields positive LE values. In comparison, our scheme has better 

chaotic performance over a wider range. This serves as sufficient evidence to validate the excellent 

chaotic characteristics of DECCM. 

 
Figure 6. Lyapunov exponents. 

Furthermore, we compare the x-dimensional LEs of Eq (6) with the 2D Logistic-Sine map (initial 

value is set as x0 = 0.2147, y0 = 0.2579, p1 = p2 = 50) in [21] and 3D logistic map (initial value is set as 

x0 = 0.1, y0 = 0.2, z0 = 0.3, x1 = 0.2, y1 = 0.2, z1 = 0.2, a = 1, b = 2.5, c = 4, λ = 1, ρ = 2, σ = 3) in [24] 

for improving chaotic degradation of logistic maps at different precision (2-6 to 2-14). It can be seen 

from Figure 7 that the LE of Eq (6) is not only quite competitive, but even superior to the other 

remedies when compared to the other schemes ([21] and [24]). This is particularly noticeable at lower 

precision levels, where Eq (6), with its higher LE, underscores its effectiveness in improving chaotic 

dynamics degradation. 

 

Figure 7. Comparison of Lyapunov exponent. 
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3.6. Entropy analysis 

Approximate entropy (ApEn) is one of the metrics utilized to gauge the complexity of a time 

series. A larger ApEn value signifies that the chaotically generated orbits are more intricate, possessing 

more repetitive structures and exhibiting stronger nonlinear dynamics. Permutation entropy (PE) is a 

statistical measure that quantifies the complexity of a time series. Different from other measures that 

focus on the distance between vectors, PE is based on the ordering or displacement of values in a time 

series rather than the distance between vectors. As such, PE contributes to an understanding of chaotic 

behavior. Figure 8(a) and (b) show that as k1 and k2 are varied in the range [0,10], the ApEn and PE 

values of the equation (6) are both positive and essentially stabilized at 1.67 and 0.98, respectively, 

except for some few cases when k1 or k2 = 0. Compared to the logistic map in Figure 8(c) where the 

entropy values have positive values only in very small intervals, Eq (6) exhibits better chaotic behavior 

over a larger range of parameters. 

 

Figure 8. Entropy analysis: (a) ApEn of Eq (6), (b) PE of Eq (6), (c) ApEn and PE of logistic map. 

Figure 9 also compares the ApEn and PE of various remedies under different precision constraints 

with that of our scheme. Results indicate that at different precisions (2-6~2-18), not only does the ApEn 

of Eq (6) remain essentially unaffected by changes in computational precision and remain very stable, 

it also consistently outperforms both [30] and [31]. In particular, at lower precisions, the PE of Eq (6) 

is notably higher than that of the model presented in [24,30,31]. The results consistently demonstrate 

that, irrespective of variations in computational precision, our proposed scheme maintains a stable 

performance, with its ApEn and PE values consistently surpassing those of other comparative methods. 

This underscores the robustness of our model, emphasizing its superior chaotic behavior and its ability 

to sustain its unpredictability in comparison to other established methods. These outcomes suggest that 

our scheme effectively improves the degradation of chaotic dynamics and consistently maintains 

robust stochastic and dynamic characteristics, even at lower computational precisions. 
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Figure 9. Comparison of: (a) ApEn, (b) PE. 

3.7. Auto-correlation analysis 

The auto-correlation analysis measures the correlation between two-time points in a sequence and 

is commonly employed to identify periodicity or repetition within the sequence. In the case of a 

sequence generated by a chaotic system, the auto-correlation should diminish quickly with increasing 

state intervals. As depicted in Figure 10, the auto-correlation value of Eq (6) is at its peak for the 

sequence when the interval is 0. As the time interval increases, the value of auto-correlation diminishes 

swiftly, approaching 0. These findings suggest that the chaotic sequences produced by Eq (6) possess 

a significant degree of independence, thereby ensuring a high level of randomness. 

 

Figure 10. Auto-correlation analysis of Eq (5): (a) x-dimensional, (b) y-dimensional. 

3.8. Correlation dimension 

The correlation dimension is a common metric used to describe the geometry of strange attractors 

in chaotic systems and to quantify the self-similarity of chaotic attractors. It serves as a parameter that 

characterizes the complexity of fractal structures. In this test, we modify the values of k1, k2 and k3 in 

Eq (6) to observe changes in the correlation dimension and compare it with the original logistic map. 

Figure 11 reveals that regardless of how the parameters k1 and k2 are varied, the correlation dimension 
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of our approach essentially stabilizes around 1.88, which is much larger than that of the logistic map. 

This observation indicates that the system maintains robustness over a fairly extensive range of 

parameters, thereby showcasing the favorable chaotic properties of this scheme. 

 

Figure 11. Correlation dimension. 

4. A three-dimensionality example of DECCM and its performance analysis 

In the preceding section, to examine the diverse dynamics of the DECCM, we expanded the model 

to two dimensions and selected two logistic maps as the seed mappings. In this section, to validate the 

DECCM's generalizability, we expand the model to three dimensions and select three different seed 

mappings to construct a new chaotic map, 3D logistic-Tent-Sine map (3D-LTS-M). We then assess 

their performance through a series of experiments. 

4.1. 3D logistic-tent-sine map 

When we set the dimension in Eq (5) to 3 and select the seed mapping f1, f2 and f3 as the logistic 

map, tent map and sinusoidal system, respectively, the mathematical model can be described as: 

{

𝑥𝑖+1 = 𝐹𝐿[ 𝑟 × 𝑥𝑖(1 − 𝑥𝑖) × 𝑒
𝑦𝑖 + 𝑘1 × (𝑥𝑖−1 + 𝑧𝑖−1)]             𝑚𝑜𝑑 1,

𝑦𝑖+1 = 𝐹𝐿[ 𝑢 × 𝑚𝑖𝑛{𝑦𝑖 , 1 − 𝑦𝑖}  × 𝑒
𝑧𝑖 + 𝑘2 × (𝑦𝑖−1 + 𝑥𝑖−1)]   𝑚𝑜𝑑 1,

𝑧𝑖+1 = 𝐹𝐿[𝑣 ×  𝑠𝑖𝑛(𝜋𝑧𝑖) × 𝑒
𝑥𝑖 + 𝑘3 × (𝑧𝑖−1 + 𝑦𝑖−1) ]             𝑚𝑜𝑑 1,

         (8) 

where min function takes the minimum value. If not otherwise specified, the initial parameters are 

chosen as x0 = 0.2147, x1 = 0.3257, y0 =0.2579, y1=0.6547, z0=0.0148, z1=0.1356, k1=0.8267, k2 =0.5998, 

k3 = 0.3141, r = 3.99, u = 1.99, v = 1 and p = 2-12. 

4.2. Performance analysis of examples 

We run performance tests on 3D-LTS-M given in the previous section to demonstrate the model’s 

generalizability. These tests also underscore the model’s versatility, its efficacy in mitigating the 

dynamic degradation of chaotic systems with limited precision and its other dynamic attributes. For 

ease of visualization, the x-dimension is chosen as the default for experimental observation unless 
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otherwise specified. 

4.2.1. Trajectories and sensitivity analysis 

In Figure 12, the x-dimensional iterative trajectories of Eq (8) are presented. Notably, throughout 

the 10000 iterations, none show signs of degenerating into a cycle even under the precision limit 

of 2-8. To further assess their dynamical behavior, we minutely adjusted the initial value k1 of 3D-

LTS-M by a deviation of 2-12 and plotted the resulting trajectories alongside their original counterparts 

(with the original trajectories depicted in blue and the modified ones in green) in Figure 13. 

Remarkably, the motion trajectories of all three dimensions began diverging from their original paths 

within just 10 iterations. These findings underscore the efficacy of DECCM in curtailing the 

degradation of chaotic dynamics, all the while preserving its inherent sensitivity to initial conditions. 

 

Figure 12. Trajectories of 3D-LTS-M: (a) x-dimension, (b) y-dimension, (c) z-dimension. 
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Figure 13. Sensitivity analysis of 3D-LTS-M: (a) x-dimension, (b) y-dimension, (c) z-dimension. 

4.2.2. Period analysis 

In this section, we randomly chose 200 sets of initial conditions for the logistic map, tent map, 

sine map and Eq (8). Subsequently, we calculated the average number of iterations required for these 

chaotic maps to enter a cycle for the first time under varying precision (2-6 ~ 2-15) constraints and the 

average value of their cycle periods. Table 2 displays the average number of iterations needed for each 

chaotic map to enter a cycle for the first time. It’s evident that the values for Eq (8) are significantly 

higher than these seed mappings under arbitrary precision constraints. The enhanced chaotic map 

effectively delays the average number of iterations needed to enter a cycle initially. Moreover, Table 3 

also indicates that the cycle period of 3D-LTS-M surpasses the value of its seed mapping cycle at all 

precision. After entering the cycle period, the period for Eq (8) increases more rapidly compared to the 

logistic map, tent map and sine map as precision improves. This further validates the scheme’s efficacy 

in extending the cycle period under precision constraints. Furthermore, Tables 2 and 3 compare the 

period analysis of the digital logistic map in Eq (8) and [26,30,31] at various precisions. The tables 

demonstrate that, in terms of delaying the entry into a cycle and the cycle length, 3D-LTS-M 

consistently outperforms [30,31] across whatever low or high precision thresholds. Equation (8)-x is 

also comparable to [26] at precision less than 8 and exceeds [26] with increasing precision. 

Additionally, the cycle duration is superior compared to other methods and simultaneously increases 

as the precision improves. This signifies that even when entering cycles simultaneously, 3D-LTS-M 

demonstrates enhanced and more secure dynamical characteristics compared to these other methods. 

The experimental results underscore the substantial efficacy of the proposed scheme in addressing the 

degradation of chaotic dynamics, particularly when the chaotic map is implemented on hardware with 

constrained computational precision. 

It’s noteworthy to observe from the table that the z-dimensional sequence of Eq (8) has never 

entered a period. This suggests that the chaotic map crafted using DECCM exhibits remarkable 

stability and robustness. This robustness is evident in the fact that even if certain sub-dimensional 

mappings descend into a cycle due to precision constraints, other dimensional mappings can sustain 

for prolonged durations without becoming cyclic, thereby preserving superior chaotic dynamic 

properties. 
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Table 2. Average iterations when first entering the period (U denotes undetected). 

Precision 
Logistic 

map 

Tent 

map 

Sine 

map 
Eq (8)-x Eq (8)-y Eq (8)-z [30] [31] [26] 

2-6 4.86 4.4 4.61 646.02 647 U 4.85 15.21 799.5 

2-7 5.61 5.83 5.6 2245.72 2588.56 U 5.34 27.03 1481 

2-8 7.64 11.87 7.88 3557.56 3723.36 U 16.83 61.84 4020.44 

2-9 10.65 14.78 8.17 6103.3 6513.24 U 22.9 94.09 4381.41 

2-10 16.97 13.86 12.87 6859.56 6646.12 U 26.38 126.07 3807.56 

2-11 20.49 29.67 19.51 12889.98 12374.44 U 35.43 1076.39 7922.22 

2-12 25.21 30.3 19.97 20395.36 20977.2 U 35.28 549.08 16104.42 

2-13 41.81 38.35 27.46 93712.5 91907.5 U 62.72 1304.28 42967.98 

2-14 50.72 50.87 35.45 187136.4 183628.6 U 71.2 4495 111737.6 

2-15 75.53 50.55 38.13 U U U 91.7 9175.53 172206.1 

Table 3. Average period analysis (U denotes undetected). 

Precision 
Logistic 

map 

Tent 

map 

Sine 

map 
Eq (8)-x Eq (8)-y Eq (8)-z [30] [31] [26] 

2-6 5.52 2.42 2.16 39.68 25.38 U 5.81 8.8 23.57 

2-7 8.69 3.32 2.05 82.94 95.88 U 27 16.02 76.07 

2-8 11.03 4.58 2.56 159.86 166.3 U 13.7 19.97 197.25 

2-9 12.84 6.19 3.57 341.46 364.88 U 16.7 89.26 460.47 

2-10 19.25 10.91 3.92 1020.72 1027.48 U 20.28 308.65 1143.4 

2-11 27.39 14.47 4 2109.02 2421.52 U 26.28 7.38 2076.78 

2-12 34.97 18.33 4.38 3625.18 4021.8 U 122 251.7 3236.32 

2-13 45.68 20.69 4.29 6987.98 7396.3 U 103.82 544 7031.02 

2-14 55.18 31.02 10.13 12862.6 13361.3 U 89.6 1679.38 18261.4 

2-15 89.9 38.62 11.8 U U U 121.63 187.76 27792.87 

4.2.3. Bifurcation diagram 

The bifurcation diagram visually illustrates the route of a chaotic system as it multiplies its cycles 

toward chaos. It offers a graphic representation of the system’s dynamic behavior in response to 

parameter variations. A complex, densely branched structure within the diagram typically signifies 

chaotic behavior. 

In this study, we set the parameters of 3D-LTS-M such that k1 = k2 = k3 = k. Subsequently, we 

observe the bifurcation diagram by adjusting the value of parameter k. As depicted in Figure 14, there’s 

a consistent absence of non-chaotic regions and periodic windows throughout the entire parameter 

space. The bifurcation diagram encompasses nearly the entire space, irrespective of how these 

parameters fluctuate within the (0,5] interval. This underscores the robust chaotic characteristics of the 

model. Remarkably, the parameter k is confined to the (0,5] range in this experiment, but the range of 

the parameter in practical applications is much larger than this. 
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Figure 14. Bifurcation diagram: (a) x-dimension, (b) y-dimension, (c) z-dimension. 

4.2.4. Phase space 

In Figure 15, we present the phase spaces of the three seed mappings at varying computational 

precisions, providing a visual insight into their singular attractors. Specifically, the digital phase spaces 

for the logistic map, tent map and sinusoidal system at computational precisions of 2-12 and 2-30 are 

depicted. It is evident from the figure that the phase space of the original digital chaotic map is 

significantly influenced by precision. At lower precisions, its structural clarity is somewhat diminished. 

 

Figure 15. Phase space of: (a) logistic map with precision 2-12, (b) digital tent map with 

precision 2-12, (c) digital sine map with precision 2-12, (d) original logistic map with 

precision 2-30, (e) original tent map with precision 2-30, (f) original sine map with 

precision 2-30. 

On the other hand, Figure 16 showcases the phase space of 3D-LTS-M at the same precisions of 

2-12 and 2-30. From this figure, one can observe that the phase space of the new map, across different 

precision levels, not only retains elements of the structure of the original seed mapping but also 
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disperses it across a broader area. This not only reaffirms the intent of DECCM to enhance the 

dynamical properties of the original chaotic map but also underscores that it does not arbitrarily create 

an entirely novel system. Moreover, while compensating for its shortcomings, the wider phase space 

implies more complex chaotic properties, increasing the robustness against space decomposition. 

 

Figure 16. Phase space of 3D-LTS-M: (a)~(c) precision is set as 2-12, (d)~(f) p+recision is set as 2-30. 

4.2.5. Lyapunov exponent 

Figure 17 shows the LEs of Eq (8) at different precision levels. It shows that 3D-LTS-M remains 

quite stable even at all computational precision and is always greater than 0. This emphasizes the 

effectiveness of DECCM in mitigating the degradation of the digital chaotic map while keeping the 

chaotic features at any computational precision. 

 

Figure 17. LEs of Eq (8). 
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4.2.6. Entropy analysis 

In this section, we change two parameters of k1, k2 and k3 in Eq (8) as variables. We then compute 

the ApEn and PE of Eq (8), showcasing the results in Figures 18 and 19, respectively. The data suggests 

that both ApEn and PE values for 3D-LTS-M consistently remain positive, registering higher values 

across all parameter ranges. In addition, except for a few cases when k1, k2 or k3 = 0, the entropy values 

are quite stable and their visual representations remain within a stable plane. These findings effectively 

demonstrate that the chaotic dynamics of Eq (8) is largely independent of the choice of parameters. 

These stable high entropy values show the intricate complexity of the random sequences spawned by 

Eq (8), highlighting their inherent unpredictability. Such results demonstrate the superior long-term 

unpredictability of the chaotic nature of DECCM. 

 

Figure 18. ApEn of Eq (8): (a)~(c) k1 and k2 as variables, (d)~(f) k1 and k3 as variables, 

(g)~(i) k2 and k3 as variables. 
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Figure 19. PE of Eq (8): (a)~(c) k1 and k2 as variables, (d)~(f) k1 and k3 as variables, (g)~(i) 

k2 and k3 as variables. 

In addition, Figure 20(a) and (b) illustrate the ApEn and PE values of Eq (8) in comparison to its 

seed mappings at various computational precisions. From the observations, it is evident that 3D-LTS-

M consistently upholds a stable, elevated level for both entropy values across both low and high 

precision ranges, settling approximately around 1.62 and 0.98, respectively. These values are 

significantly higher compared to those of several seed mappings. These findings affirm the potency of 

DECCM in addressing and ameliorating the degradation issues inherent in numerical chaotic dynamics. 

 

Figure 20. Entropy comparison: (a) ApEn, (b) PE. 
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4.2.7. Auto-correlation analysis 

In Figure 21, subfigures (a), (b) and (c) depict the x-dimensional, y-dimensional and z-

dimensional auto-correlation values for Eq (8), respectively. Like for Eq (6), auto-correlation peaks 

exclusively when the interval is zero. Meanwhile, as the time interval expands, the auto-correlation 

value swiftly drops to zero. This indicates that the DECCM is sufficient to improve any one-

dimensional mapping into which it is substituted to have significant independence and to improve its 

stochasticity. 

 

Figure 21. Auto-correlation analysis of Eq (8): (a) x-dimension, (b) y-dimension, (c) z-dimension. 

4.2.8. Correlation dimension 

In this section, we assess the correlation dimension of various chaotic maps at a fixed 

computational precision limit of 2-12 and set the parameters of 3D-LTS-M such that k1 = k2 = k3 = k. 

The domain of parameter k is defined from 0 to 10 with an increment of 0.25. The results, presented 

in Figure 22, reveal that both the logistic and tent maps experience a swift decline to 0 in their 

correlation dimension when their parameters exceed values of 4 and 2, respectively. Moreover, the 

correlation dimension for the sine map remains below 0.3 across the entire parameter range. When 

looking at the correlation dimension of Eq (8), one can see that across an extensive parameter range, 

all three dimensions of Eq (8) distinctly exhibit higher correlation dimensions and remain around 1.97. 

This underlines that chaotic maps fashioned using DECCM are endowed with a richer fractal structure 

across a broad swath of parameters. 

 

Figure 22. Correlation dimension comparison. 
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5. Conclusions 

Chaotic systems, due to their sensitivity to initial values, long-term unpredictability and other 

commendable properties, have found applications across a variety of disciplines. However, the limited 

precision of hardware devices poses a challenge. When simulating chaotic systems with these 

constraints, we encounter state space limitations, causing motion trajectories to eventually cycle, 

thereby leading to a decline in the digital chaotic map’s intrinsic properties. Consequently, such 

degraded systems become less suited for many disciplines. In response, we introduce the DECCM 

model in this paper, which can improve the dynamics degradation of any one-dimensional digital 

chaotic map, and not only generalize M seed mappings to N dimensions and maintain good dynamic 

properties, but also effectively solve the chaotic dynamics degradation problem that occurs when the 

original low-dimensional maps are simulated on finite precision devices. Periodicity, a primary factor 

contributing to chaotic degradation, is a significant concern in our approach. With DECCM, the 

number of iterations before entering a period and the period length substantially surpass those of the 

original seed mappings and some other state-of-the-art remedies. Further experiments confirm the 

enhanced complexity and chaotic attributes of the improved chaotic map. However, the adaptability of 

DECCM to high-dimensional chaotic systems requires further exploration, which will be the focus of 

our upcoming research. 
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