Research article

Decay rate of the solutions to the Bresse-Cattaneo system with distributed delay

  • Received: 12 February 2023 Revised: 04 April 2023 Accepted: 11 April 2023 Published: 24 May 2023
  • MSC : 35L55, 74D05, 93D15, 93D20

  • This study examines the pace at which solutions to a Bresse system in combination with the Cattaneo law of heat conduction and the dispersed delay term degradation. We establish our major finding utilizing the energy approach in the Fourier space.

    Citation: Abdelbaki Choucha, Asma Alharbi, Bahri Cherif, Rashid Jan, Salah Boulaaras. Decay rate of the solutions to the Bresse-Cattaneo system with distributed delay[J]. AIMS Mathematics, 2023, 8(8): 17890-17913. doi: 10.3934/math.2023911

    Related Papers:

  • This study examines the pace at which solutions to a Bresse system in combination with the Cattaneo law of heat conduction and the dispersed delay term degradation. We establish our major finding utilizing the energy approach in the Fourier space.



    加载中


    [1] M. Afilal, B. Feng, A. Soufyane, New decay rates for Cauchy problem of Timoshenko thermoelastic systems with past history: Cattaneo and Fourier law, Math. Methods Appl. Sci., 44 (2021), 11873–11894. https://doi.org/10.1002/mma.6579 doi: 10.1002/mma.6579
    [2] P. R. Agarwal, Q. Bazighifan, M. A. Ragusa, Nonlinear neutral delay differential equations of fourth-order: oscillation of solutions, Entropy, 23 (2021), 129. https://doi.org/10.3390/e23020129 doi: 10.3390/e23020129
    [3] H. Bounadja, B. Said-Houari, Decay rates for the Moore-Gibson-Thompson equation with memory, Evol. Equ. Control Theory., 10 (2021), 431–460.
    [4] S. Boulaaras, A. Choucha, A. Scapellato, General decay of the Moore-Gibson-Thompson equation with viscoelastic memory of Type II, J. Funct. Spaces, 2022 (2022), 9015775. https://doi.org/10.1155/2022/9015775 doi: 10.1155/2022/9015775
    [5] A. Choucha, S. Boulaaras, D. Ouchenane, Exponential decay and global existence Of solutions of a singular nonlocal viscoelastic system with distributed delay and damping terms, Filomat, 35 (2021), 795–826.
    [6] L. Djouamai, B. Said-Houari, A new stability number of the Bresse-Cattaneo system, Math. Methods Appl. Sci., 41 (2018), 2827–2847. https://doi.org/10.1002/mma.4784 doi: 10.1002/mma.4784
    [7] C. D. Enyi, Timoshenko systems with Cattaneo law and partial Kelvin-Voigt damping: well-posedness and stability, Appl. Anal., 2022. https://doi.org/10.1080/00036811.2022.2152802
    [8] M. E. Gurtin, A. S. Pipkin, A general decay of a heat condition with finite wave speeds, Arch. Rational. Mech. Anal., 31 (1968), 113–126.
    [9] M. Khader, B. Said-Houari, Decay rate of solution for the Cauchy problem in Timoshenko system with past history, Appl. Math. Optim., 75 (2017), 403–428. https://doi.org/10.1007/s00245-016-9336-6 doi: 10.1007/s00245-016-9336-6
    [10] N. Mori, S. Kawashima, Decay property for the Timoshenko system with Fourier's type heat conduction, J. Hyperbolic Differ. Equ., 11 (2014), 135–157. https://doi.org/10.1142/S0219891614500039 doi: 10.1142/S0219891614500039
    [11] A. S. Nicaise, C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Diff. Int. Equs., 21 (2008), 935–958.
    [12] R. Racke, Lectures on nonlinear evolution equations, Berlin: Springer, 1992.
    [13] B. Said-Houari, A. Soufyane, The Bresse system in thermoelasticity, Math. Methods. Appl. Sci., 38 (2015), 3642–3652. https://doi.org/10.1002/mma.3305 doi: 10.1002/mma.3305
    [14] B. Said-Houari, T. Hamadouche, The asymptotic behavior of the Bresse-Cattanao system, Commun. Contemp. Math., 18 (2016), 1550045. https://doi.org/10.1142/S0219199715500455 doi: 10.1142/S0219199715500455
    [15] C. C. Tannoudji, J. Dupont-Roc, G. Grynberg, Photons and atoms introduction to quantum electrodynamics. Photons et atomes. Introduction a l'electrodynamique quantique, Hoboken: Wiley, 1997.
    [16] J. B. Zuo, A. Rahmoune, Y. J. Li, General decay of a nonlinear viscoelastic wave equation with Balakrishnan-Taylor damping and a delay involving variable exponents, J. Funct. Spaces, 2022 (2022), 9801331. https://doi.org/10.1155/2022/9801331 doi: 10.1155/2022/9801331
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1129) PDF downloads(52) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog