In this paper, we study the minimizing property for the isosceles trapezoid solutions of the four-body problem. We prove that the minimizers of the action functional restricted to homographic solutions are the Keplerian elliptical solutions, and this functional has a minimum equal to $ \frac{3}{2}(2\pi)^{2/3}T^{1/3}\left(\frac{\xi (a, b)}{\eta (a, b)}\right) ^{2/3} $. Further, we investigate the dynamical behavior in the trapezoidal four-body problem using the Poincaré surface of section method.
Citation: Abdalla Mansur, Muhammad Shoaib, Iharka Szücs-Csillik, Daniel Offin, Jack Brimberg. Action minimizing orbits in the trapezoidal four body problem[J]. AIMS Mathematics, 2023, 8(8): 17650-17665. doi: 10.3934/math.2023901
In this paper, we study the minimizing property for the isosceles trapezoid solutions of the four-body problem. We prove that the minimizers of the action functional restricted to homographic solutions are the Keplerian elliptical solutions, and this functional has a minimum equal to $ \frac{3}{2}(2\pi)^{2/3}T^{1/3}\left(\frac{\xi (a, b)}{\eta (a, b)}\right) ^{2/3} $. Further, we investigate the dynamical behavior in the trapezoidal four-body problem using the Poincaré surface of section method.
[1] | W. B. Gordon, A minimizing property of Keplerian orbits, Amer. J. Math., 99 (1977), 961–971. |
[2] | S. Q. Zhang, Q. Zhou, A minimizing property of eulerian solutions, Celest. Mech. Dyn. Astron., 90 (2004), 239–243. https://doi.org/10.1007/s10569-004-0418-4 doi: 10.1007/s10569-004-0418-4 |
[3] | S. Q. Zhang, Q. Zhou, A minimizing property of Lagrangian solutions, Acta Math. Sinica, 17 (2001), 497–500. https://doi.org/10.1007/s101140100124 doi: 10.1007/s101140100124 |
[4] | A. Mansur, Instability of periodic orbits of some rhombus and parallelogram four body problems, 2012. |
[5] | A. Mansur, D. Offin, A minimizing property of homographic solutions, Acta Math. Sin. English Ser., 30 (2014), 353–360. https://doi.org/10.1007/s10114-013-1299-9 doi: 10.1007/s10114-013-1299-9 |
[6] | A. Mansur, The Maslov index of periodic orbits in the linearized rhombus four body problem, Int. J. Mech. Eng. Technol., 8 (2017), 1121–1136. |
[7] | A. Mansur, D. Offin, M. Lewis, Instability for a family of homographic periodic solutions in the parallelogram four body problem, Qual. Theory Dyn. Syst. 16 (2017), 671–688. https://doi.org/10.1007/s12346-017-0232-5 doi: 10.1007/s12346-017-0232-5 |
[8] | K. C. Chen, Action minimizing orbits in the parallelogram four body problem with equal masses, Arch. Rational Mech. Anal., 158 (2001), 293–318. https://doi.org/10.1007/s002050100146 doi: 10.1007/s002050100146 |
[9] | A. Mansur, D. Offin, A. Arsie, Extensions to Chen's minimizing equal mass parallelogram solutions, Taiwan. J. Math., 21 (2017), 1437–1453. https://doi.org/10.11650/tjm/171003 doi: 10.11650/tjm/171003 |
[10] | M. Santoprete, On the uniqueness of trapezoidal four-body central configurations, Nonlinearity, 34 (2021), 424–437. https://doi.org/10.1088/1361-6544/abbe61 doi: 10.1088/1361-6544/abbe61 |
[11] | M. Shoaib, Central configurations in the trapezoidal four-body problems, Appl. Math. Sci., 9 (2015), 1971–1979. https://doi.org/10.12988/ams.2015.5173 doi: 10.12988/ams.2015.5173 |
[12] | M. Shoaib, A. R. Kashif, A. Sivasankaran, Planar central configurations of symmetric five-body problems with two pairs of equal masses, Adv. Astron., 2016 (2016), 9897681. https://doi.org/10.1155/2016/9897681 doi: 10.1155/2016/9897681 |
[13] | M. Shoaib, A. R. Kashif, I. Szücs-Csillik, On the planar central configurations of rhomboidal and triangular four- and five-body problems, Astrophys. Space Sci., 362 (2017), 182. https://doi.org/10.1007/s10509-017-3161-5 doi: 10.1007/s10509-017-3161-5 |
[14] | E. S. Cheb-Terrab, H. P. de Oliveira, Poincaré sections of Hamiltonian systems, Comput. Phys. Commun., 95 (1996), 171–189. https://doi.org/10.1016/0010-4655(96)00032-X doi: 10.1016/0010-4655(96)00032-X |
[15] | I. Szücs-Csillik, The lie integrator and the Hénon-Heiles system, Rom. Astron. J., 20 (2010), 49–66. |