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Abstract: In this paper, we study the minimizing property for the isosceles trapezoid solutions
of the four-body problem. We prove that the minimizers of the action functional restricted to
homographic solutions are the Keplerian elliptical solutions, and this functional has a minimum equal
to 3

2 (2π)2/3T 1/3
(
ξ(a,b)
η(a,b)

)2/3
. Further, we investigate the dynamical behavior in the trapezoidal four-body

problem using the Poincaré surface of section method.
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1. Introduction

For the planar four-body problem, let m0,m1,m2,m3 be four point masses moving in R2 in
accordance with Newton’s Law:

miq̈i =
∂U

∂qi
,
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where qi ∈ R
2 denotes the position, and mi the mass of the ith particle. With configuration q =

(q0, q1, q2, q3), the force functionU(q) (negative of the potential energy) is defined as

U(q) =
∑
i< j

mim j

|qi − q j|
.

The Kinetic energy is defined as

K =

3∑
i=0

mi

2
|q̇i|

2,

while the Hamiltonian governing the equations of motion is

H(q, q̇) = K(q̇) −U(q), q̇ =
dq
dt
.

For this problem, we define the action functional to be of the form:

A(q) =

∫ T

0
L(q, q̇)dt,

where the Lagrangian L is defined as

L(q, q̇) =

3∑
i=0

mi|q̇i|
2

2
+

∑
i< j

mim j

|qi − q j|
.

Due to the work of Sundman (1908) on the three-body problem, it is known that the action AT

stays finite along collision orbits of the equations of motion. For this reason, special care must be
taken when considering the variational problem. If the action stays finite along a sequence of curves
tending to collision, then such a limiting curve on the boundary of the functional space AT could
provide the minimizing loop. This is exactly the situation discovered by [1] for the Kepler problem.

Gordon [1] proved that the elliptic Keplerian orbit minimizes the Lagrangian action of the two body
problem with periodic boundary conditions. He also found that the minimum value of the Keplerian
action functional could be computed as

AK =

∫ T

0

|q̇|2

2
dt +

µ

|q|
≥

3
2

(π)2/3(µ)2/3T 1/3. (1.1)

In [2,3], the authors have shown that the Lagrangian and Eulerian elliptical solutions for the planar
three body problem are the variational minimizers of the Lagrangian action functional. It is also known
that the homographic solutions to the rhombus four-body problem are the variational minimizers of the
action functional restricted to rhombus loop spaces, [4–7]. Chen [8] studied the existence of a new
family of periodic solutions for the planar four-body problem with equal masses. Chen minimized the
solutions over one-quarter of the period [0,T ] using numerical integration. Abdallah et al. [4, 9] have
extended Chen’s solutions to include the minimization over the full period [0, 4T ] without involving the
use of numerical techniques. Santoprete [10] uses a topological argument to show that there is at most
one central configuration for each cyclic ordering of the masses. In this paper, we will show that the
homographic solutions to the isosceles trapezoid four-body problem also minimize the action function,
and the proof does not involve any numerical integration. This result can be useful in studying certain
stability properties of the family of homographic solutions which belong to the isosceles trapezoid
four-body problem.
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2. Central configurations

An n-body system forms a planar non-collinear central configuration if

fi j =

n−1∑
k=0,k,i, j

mk(Rik − R jk)∆i jk = 0, (2.1)

where Ri j = r−3
i j and ∆i jk = (ri − r j) ∧ (ri − rk) represent the area of the triangle determined by the

sides ri − r j and ri − rk. Consider four positive point masses m0, m1, m2 and m3 having position vectors
ri and inter-body distances ri j. For a general four-body setup, Eq (2.1) gives the following six central
configuration equations when n = 4 [11–13]

f01 = m2(R02 − R12)∆012 + m3(R03 − R13)∆013 = 0,
f02 = m1(R01 − R21)∆021 + m3(R03 − R23)∆023 = 0,
f03 = m1(R01 − R31)∆031 + m2(R02 − R32)∆032 = 0,
f12 = m0(R10 − R20)∆120 + m3(R13 − R23)∆123 = 0, (2.2)
f13 = m0(R10 − R30)∆130 + m2(R12 − R32)∆132 = 0,
f23 = m0(R20 − R30)∆230 + m1(R21 − R31)∆231 = 0.

Consider four point masses m0 = m1 = 1,m2 = m3 on the vertices of a trapezoid. The four

point masses have position coordinates r0 = (−1
2 , 0), r1 = (1

2 , 0), r2 = ( a
2 ,

√
b2 − (1−a

2 )2), and r3 =

(−a
2 ,

√
b2 − ( 1−a

2 )2) respectively. Using the definitions of Ri j, ∆i jk and ri (i = 0, 1, 2, 3, ), we obtain

R01 = 1,R02 =
1
α

= R13,R03 =
1
β

= R12,R23 =
1
a3 ,

∆i jk = −∆ jik = −∆ik j = −∆k ji,∆i jk = ∆ jki = ∆ki j,

∆i jk = 0, i f i = j or i = k or j = k, (2.3)
∆012 = γ = ∆013, ∆023 = aγ = ∆123,

where

α = (a + b2)3/2, β = b3, γ =

√
b2 − (

1 − a
2

)2.

Using the specific values of Ri j and ∆i jk from Eq (2.3), the central configuration equation (2.2) become

f01 = 0, f23 = 0,

f02 = f13 = γ

(
−

m3

a2 +
am3

β
+

1
β
− 1

)
= 0,

f03 = f12 = γ

(
m3

a2 −
am3

α
+

1
α
− 1

)
= 0.

Solving f02 = 0 for m3, we get

m3 = m =
a2(β − 1)

a3 − β
. (2.4)
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Using the value of m from the above equation in f03 = 0, we obtain the following necessary and
sufficient condition for the existence of Isosceles trapezoidal central configurations

C(a, b) = a3(α + β − 2) − 2αβ + α + β = 0.

The mass m3 will be positive and unique in the region R(a, b) given below.

R(a, b) = {(a, b)|(0 < a < 1 ∧ a < b < 1)
∨ (a > 1 ∧ 1 < b < a)} . (2.5)

The region R(a, b) will form the region of central configurations for positive masses subject to the
constraint C(a, b) = 0. The R(a, b) and C(a, b) = 0 are given in Figure 1.

We use the numerical solution of C(a, b) = 0 and interpolation to write b as a function of a which
will also allow us to write m as a function of only one variable.

b = f (a) =

{
f1(a) when a ∈ (0, 0.55)
f2(a) when a ∈ (0.55, 1),

where

f1(a) = 0.12a3 + 0.06a2 − 0.24a + 1,
f2(a) = 111.839a6 − 502.035a5 + 930.907a4 − 912.067a3

+498.26a2 − 144.032a + 18.1344.

C(a, b) = 0

R(a, b)

0.0 0.2 0.4 0.6 0.8 1.0

0.90

0.92

0.94

0.96

0.98

1.00

a

b

Figure 1. R(a, b) and C(a, b) = 0.

3. Action minimizing orbits

In this section, we focus our attention on the homographic solutions qi(t) = φ(t)qi,0 where φ :
[0,T ] → C∗ is smooth, φ(0) = φ(T ) and deg(φ) , 0. We prove that these solutions are the variational
minimizers of the action functional of the isosceles trapezoid four body problem.

The main result in this paper is the following theorem
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Theorem 3.1. The minimizers for A(q) restricted to the homographic solutions qi(t) = φ(t)qi,0 are
precisely the Keplerian elliptical solutions and the minimum of the action is equal
to 3

2 (2π)2/3T 1/3
(
ξ(a,b)
η(a,b)

)2/3
.

Let’s call Cy the y -coordinate of the center of mass in the configuration analyzed in Section 2. Then

Cy :=
m
√

4b2 − 1 + 2a − a2

2 + 2m
.

Performing a vertical translation of length Cy, we can arrive at a reference frame where the center of
mass is located at (0, 0), the bases are parallel to the x -axis, and the trapezoid has the y-axis as a
symmetry axis. In this case, we have the following Cartesian coordinates for the points
q1,0, q2,0, q3,0, q4,0:

q1,0 := (−
1
2
,−Cy), q2,0 := (

1
2
,−Cy),

q3,0 := (
a
2
, h −Cy), q4,0 := (−

a
2
, h −Cy).

Observe that r1 = |q1,0| = |q2,0| =

√
1
4 + C2

y and r3 := |q3,0| = |q4,0| =

√
a2

4 + (h −Cy)2. Moreover

|q1,0−q2,0| = 1, |q1,0−q4,0| = |q2,0−q3,0| = b, |q4,0−q3,0| = a and |q4,0)−q2,0| = |q3,0−q1,0| = D :=
√

a + b2,

where D is the length of the diagonals of the trapezoid.

Proof. Recall that our solutions are homographic solutions and we want to restrict the action functional
to this kind of solutions.

Let |q̇1(t)|2 = |φ̇(t)|2r2
1, then the kinetic energy term K is equal to

K =
1
2

3∑
i=0

mi|q̇i(t)|2

= |φ̇(t)|2r2
1 + mr2

3 |φ̇(t)|2

= |φ̇(t)|2
(
r2

1 + mr2
3

)
= |q̇1(t)|2

1 + m
(
r3

r1

)2 .
The potential is given by

U =
∑

0≤i< j≤3

mim j

|qi − q j|
.

Using |qi − q j| = |φ(t)||qi,0 − q j,0| we get

U =
1
|φ(t)|

(
1 +

2m
b

+
m2

a
+

2m
D

)
.

Multiplying and dividing by r1 we obtain

U =
1
|q1|

(
r1 +

2mr1

b
+

m2r1

a
+

2mr1

D

)
.
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The action restricted to this class of homographic solutions can be computed as below:

A =

∫ T

0

1 + m
(
r3

r1

)2 |q̇1|
2dt

+

∫ T

0

[
r1 +

2mr1

b
+

m2r1

a
+

2mr1

D

]
1
|q1|

dt

=

2 + 2m
(
r3

r1

)2 ∫ T

0

|q̇1|
2

2
dt

+

[
r1 +

2mr1

b
+

m2r1

a
+

2mr1

D

] ∫ T

0

1
|q1|

dt.

Let

η(a, b) =

2 + 2m
(
r3

r1

)2 ,
and

ξ(a, b) = r1 +
2mr1

b
+

m2r1

a
+

2mr1

D
.

Then

A(q) = η

∫ T

0

|q̇1|
2

2
dt + ξ

∫ T

0

1
|q1|

dt.

The infimum ofA(q) is

inf
q
A(q) = inf

(a,b)>0
inf
q1

{
η

∫ T

0

|q̇1|
2

2
dt + ξ

∫ T

0

1
|q1|

dt
}

= inf
(a,b)>0

{
η inf

q1

(∫ T

0

|q̇1|
2

2
dt +

ξ

η

∫ T

0

1
|q1|

dt
)}
.

We use [1] to calculate the following infimum

inf
q1

(
∫ T

0

|q̇1|
2

2
dt +

ξ

η

∫ T

0

1
|q1|

dt)} =
3
2

(2π)
2
3 T 1/3(

ξ

η
)2/3.

Then

inf
q
A(q) = inf

(a,b)>0

η(a, b)
3
2

(2π)2/3T 1/3
(
ξ(a, b)
η(a, b)

)2/3


= inf
(a,b)>0

{
3
2

(2π)2/3T 1/3η(a, b)1/3 (ξ(a, b))2/3
}
.

Let φ(a, b) = 3
2 (2π)2/3T 1/3η(a, b)1/3ξ(a, b)2/3.The function φ(a, b) attains its infimum at (a0, b0) if and

only if η(a, b)ξ(a, b)2 attains its infimum at (a0, b0).
Taking advantage of the approximation obtained for b from C(a, b) = 0, we write φ(a, b) as a

function of a only:

φ(a) =
3
2

(2π)2/3T 1/3η(a)1/3ξ(a)2/3,
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where

η(a) =

a2

4
+


√

f (a)2 −
1
4

(a − 1)2 − g(a)

2 ·
·2a2

(
1 − f (a)3

)
/

[(
f (a)3 − a3

) (
g(a)2 +

1
4

)]
+ 2,

f (a) = b,

g(a) =
a2

√
4 f (a)2 − (a − 1)2

(
f (a)3 − 1

)
2
((

a2 − 1
)

f (a)3 + (a − 1)a2) .

To show that φ(a) is convex we need to show that d2φ(a)
da2 > 0. For this purpose we rewrite φ(a) as

φ(a) = η(a)ξ(a)2.

d2φ(a)
da2 = ξ(a)2η′′(a) + 4ξ(a)η′(a)ξ′(a)

+2η(a)ξ(a)ξ′′(a) + 2η(a)ξ′2,

where η′(a), η′′(a), ξ′(a) and ξ′′(a) are given in the appendix. To show that φ′′(a) > 0, we first check
the sign of each of the functions involved. Since a > 0, f (a)3 − a3 > 0, 1 − f (a)3 > 0 , therefore
η(a) > 0. Similarly, ξ(a) can be shown to be positive for all a ∈ (0, 1). The derivatives of η(a) and ξ(a)
are given in Figures 2 and 3. It is clear from the graphs that η′(a), ξ′(a), and ξ′′(a) are positive when
a ∈ (0, 0.92). The second derivative of η(a) is negative when a > 0.67; however it doesn’t effect the
positivity of φ′′(a) since the remaining terms dominate the term which has η′′(a). This can be confirmed
by the graph of φ′′(a) given in Figure 4. This proves that the function φ(a) is convex when a ∈ (0, 0.92).

η

η ′′

η ′

0.1 0.2 0.3 0.4 0.5
a

2

4

6

8

η,η′ ,η′′

η ′′

η ′
η

0.6 0.7 0.8 0.9
a

-15

-10

-5

5

η,η′ ,η′′

Figure 2. η(a), η′(a) and η′′(a).
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ξ

ξ ′′

ξ ′

0.1 0.2 0.3 0.4 0.5
a

1

2

3

4

5

6

ξ,ξ′ ,ξ′′

ξ ′′

ξ ′
ξ

0.6 0.7 0.8 0.9
a

-20

20

40

ξ,ξ′ ,ξ′′

Figure 3. ξ(a), ξ′(a) and ξ′′(a).

0.1 0.2 0.3 0.4 0.5
a

20

40

60

80

100

ϕ′′

0.60 0.65 0.70 0.75 0.80 0.85 0.90
a

-1000

1000

2000

3000

ϕ′′

Figure 4. φ′′(a).

For coercivity, we see that φ(a) is continuous for all positive values of a, φ(a) → ∞ as a → 0 and
when a → ∞, φ(a) tends to ∞, which implies φ(a) is coercive. Hence, φ(a) attains inf(a)>0{φ(a)} at
unique positive (a0) and satisfies φ′(a0) = 0. �

4. Some numerical examples

As far as we know, star systems can configure in many forms: single stars, binary stars, triple stars,
and even multiple-star systems. Astronomers currently estimate that up to 85 percent of stars may be in
binary stars. Latest investigations have shown that the four-star system (especially two binary, which
usually consists of two pairs of twin stars slowly circling each other at great distances) is itself more
common than previously believed (e.g., Capella, 4 Centauri, Mizar, 30 Ari, Kepler-64b, Kepler-1652,
HD98800, etc.).

Usually, the orbits of stars conserve information about the formation processes of the multiple
star systems, and exploring dynamically their motion helps us to understand the evolution of stars.
Accordingly, special types of the four-body problem investigated analytically and numerically can
provide a better understanding of the dynamical behavior of quadruple stellar systems.

We take into consideration the given isosceles trapezoidal central configurations presented in
Section 2.
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Let us consider four point masses m0 = m1 = 1,m2 = m3 = m on the vertices of a trapezoid as
introduced in Section 2. Using position coordinates from Section 2 we obtain the following reduced
Hamiltonian:

H =

4∑
i=1

p2
i

2mi−1
−

m0m1

r12
−

m0m2

r13
−

m0m3

r14
(4.1)

−
m1m2

r23
−

m1m3

r24
−

m2m3

r34
,

where

r2
12 = 1 + q2

1, r2
13 =

(
a + 1

2

)2

+ (q3 − q1)2,

r2
14 =

(
1 − a

2

)2

+ (γ − q1)2, r2
23 =

(
a − 1

2

)2

+ q2
3,

r2
24 =

(
a + 1

2

)2

+ γ2, r2
34 = a2 + (γ − q3)2,

ri j, i = 1, 4, i , j, describes the position of the body Pi with respect to the body P j, and qi, pi, i = 1, 4
are the generalized coordinates and momenta (for simplicity we take the gravitational constant equal
to 1).

The time evolution of the system is uniquely defined by Hamilton’s equations:

dq
dt

=
∂H
∂p

,

dp
dt

= −
∂H
∂q

, (4.2)

where H = H(q, p, t) is the Hamiltonian, which corresponds to the total energy of the system.
There are different behaviours for the solutions of Hamilton’s equations. These flows of the vector

fields can be drawn on a phase portrait. A very useful tool to understand these behaviours is the
Poincaré map, which gives us a different way of analyzing the data.

We know that the Poincaré map is the intersection of a periodic orbit in the state space of a
continuous dynamical system with a certain lower dimensional subspace, called the Poincaré section
or surface of section, transversal to the flow of the system. It is a discrete dynamical system that is
one dimension smaller than the original continuous periodic dynamical system. Therefore, the
Poincaré section can be helpful to understand the behaviour of a dynamical system, and we use it for
analyzing the reduced Hamiltonian system (4.2) to study the stability of periodic orbits.

For the investigation of the reduced Hamiltonian equations of motion (4.2), we have selected
several examples of trapezoidal four-body problems. We tested two cases with different masses:
m < 1 and m > 1. In both cases the Hamiltonian depends on the values a, b. In this direction, we
chose three examples: a < b, b < a and a = b. In these six situations we studied the quasiperiodic
orbits implemented using the Poincaré surface of section technique by selecting the phase element
p1 = 0 [14, 15].
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The structure of the whole center manifold can be better visualized by coloring the neighboring
quasiperiodic trajectories and islands, which are shown in the following figures. The exterior curve in
each plot is an orbit of the energy level corresponding to the plot. Inside the region, bounded by the
exterior curve, chaotic scattering appears with some quasiperiodic orbits and chains of islands.

In the first example, with a < b, we have a = 0.5, b = 1.5, m < 1, h ∈ {−5.32, ...,−5.16}. We can
distinguish three parts: the inner, the middle and the outer (Figure 5). At the h = −5.32 energy level
the inner part is empty, the outer part is close to instability, and the middle part contains many invariant
curves. At h = −5.26, −5.18 and −5.16, in the inner part appears a chaotic part of the “bell tilted to the
left” form with some horseshoe periodic orbits. Moving outwards, the inner part break up and chains
of islands in a chaotic band evolve in their place. Increasing the values of the energy, the outer part
expands, grow up, and then loses its shape.

Figure 5. Examples of Poincaré surface of sections in case a < b and m < 1 for possible
energy levels interval {-5.32...-5.16}.

.

The second example, with a < b has a = 2.5, b = 5, m < 1, h ∈ {−2.44, ...,−2.18} (see Figure 6),
and is a very interesting case. As the energy increases two horizontal lobes around two fixed points
evolve in two vertical chaotic symbiotical parts. It seems to be a flow of material between two-part,
as at the phenomenon possible between the binary stars. The initial “two horizontal lobes” domain is
small, but as the energy increases, the initial domain expands in a more than six times larger area. The
structure of the left initial part seems to evolve from the quasiperiodic trajectories through horseshoe
orbits in a chaotic scattering and merge together with the right part. Increasing the values of the energy,
the particles finally escape the system.

AIMS Mathematics Volume 8, Issue 8, 17650–17665.
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Figure 6. Examples of Poincaré surface of sections in case a < b and m < 1 for possible
energy levels interval {−2.44... − 2.18}.

The third example, when a > b, a = 1.5, b = 0.5, m < 1, h ∈ {−5.86, ...,−5} (see Figure 7),
shows invariant curves around the central stable fixed point. The closed curves break up and chains of
islands and chaotic bands evolve in their places. At some energy levels, the inside of the “rhombus”
form advances in an empty region. Farther out with increasing h, scattered points appear at the exterior
orbit, representing escaping particles, and the inside part becomes empty.

Figure 7. Examples of Poincaré surface of sections in case a > b and m < 1 for possible
energy levels interval {−5.86... − 5}.

The fourth example, when a = b = 2, m < 1, h ∈ {−3.6, ...,−3.2} (see Figure 8), has a right
fixed point with empty domain around, and we can observe the appearance of islands and of a chaotic
region. With Increasing value of the energy, the surface of section increases in area, and the islands are
replaced by chaos.
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Figure 8. Examples of Poincaré surface of sections in case a = b = 2 and m < 1 for possible
energy levels interval { −3.6... − 3}.

In the fifth example, when a < b, a = 0.5, b = 1.2, m > 1, h ∈ {−9.7, ...,−8.7} (see Figure 9), at
the energy value h = −9.7, quasi-periodic orbits appear with a chain of islands. A small increase in
the value of energy makes that the middle part becomes chaotic, and around the right side fixed point
emerge quasi-periodic and horseshoe orbits. Increasing the value of the energy, the surface of section
increases in area, and the whole structure is replaced by chaos.

Figure 9. Examples of Poincaré surface of sections in case a < b and m > 1 for possible
energy levels interval {−9.7... − 8.7}.

In the sixth example, when a < b, a = 2.5, b = 5, m > 1, h ∈ {−3.41, ...,−3.12} (see Figure 10),
we can see a similar “material flow” effect as in the m < 1 case, but now with existing right side fixed
point. In this situation also one can observe that in the structure of the left hemisphere, as the value of
the energy increases, the quasi-periodic orbits evolve in a chaotic background. The right hemisphere
becomes empty inside and by increasing the energy, this part also progresses in to chaos.

Figure 10. Examples of Poincaré surface of sections in case a < b and m > 1 for possible
energy levels interval {−3.41... − 3}.

The seventh example, ( a > b, a = 1.5, b = 0.5, m > 1, h ∈ {−10.9, ...,−8.5}; see Figure 11) is
similar to the m < 1 case in structure and topology. The obvious difference is around the central fixed
point. In this case, the empty space around this central point is bigger than in the case m < 1.
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Figure 11. Examples of Poincaré surface of sections in case a > b and m > 1 for possible
energy levels interval {−10.9... − 8.5}.

In the eighth example, (a = b = 2, m > 1, h ∈ {−5.57, ...,−4}; see Figure 12), when the value of
the energy increases, the exterior orbits and the left-center part show quasi-periodic trajectories,while
the right and the inner part around the right fixed point have an empty structure until in the inner part
appear chaotic behavior appears and the exterior part of the surface of section is deformed.

Figure 12. Examples of Poincaré surface of sections in case a = b and m > 1 for possible
energy levels interval {−5.7... − 4}.

5. Conclusions

In these examples, one can observe widespread chaotic regions, and the fact that some regular
trajectories still survive. A comparison between the cases when m < 1 and m > 1 indicates a similar
topology of the surface of structure (for a small variation of the value of the masses), and the interior
structure depend strongly on an initial conditions.

The isosceles trapezoidal four-body problem, as a special case of the trapezoidal problem of four
bodies, shows the main characteristic properties of such dynamical problems, for example the periodic
and escape orbits.
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15. I. Szücs-Csillik, The lie integrator and the Hénon-Heiles system, Rom. Astron. J., 20 (2010), 49–66.

AIMS Mathematics Volume 8, Issue 8, 17650–17665.

http://dx.doi.org/https://doi.org/10.1007/s10569-004-0418-4
http://dx.doi.org/https://doi.org/10.1007/s101140100124
http://dx.doi.org/https://doi.org/10.1007/s10114-013-1299-9
http://dx.doi.org/https://doi.org/10.1007/s12346-017-0232-5
http://dx.doi.org/https://doi.org/10.1007/s002050100146
http://dx.doi.org/https://doi.org/10.11650/tjm/171003
http://dx.doi.org/https://doi.org/10.1088/1361-6544/abbe61
http://dx.doi.org/https://doi.org/10.12988/ams.2015.5173
http://dx.doi.org/https://doi.org/10.1155/2016/9897681
http://dx.doi.org/https://doi.org/10.1007/s10509-017-3161-5
http://dx.doi.org/https://doi.org/10.1016/0010-4655(96)00032-X


17664

Supplementary

η′(a) =
2r3(a)2m′(a)

r1(a)2 −
4m(a)r3(a)2r′1(a)

r1(a)3

+
4m(a)r3(a)r′3(a)

r1(a)2 .

η′′(a) =
2r3(a)2m′′(a)

r1(a)2 −
8r3(a)2m′(a)r′1(a)

r1(a)3

+
8r3(a)m′(a)r′3(a)

r1(a)2 +
12m(a)r3(a)2r′21

r1(a)4

−
16m(a)r3(a)r′1(a)r′3(a)

r1(a)3 +
4m(a)r′23

r1(a)2

−
4m(a)r3(a)2r′′1 (a)

r1(a)3 +
4m(a)r3(a)r′′3 (a)

r1(a)2 .

ξ′(a) = m(a)r1(a)(−
m(a)

a2 −
2 f ′(a)
f (a)2 −

2 f (a) f ′(a) + 1
( f (a)2 + a)3/2

+
m′(a)

a
)

+r1(a)(
2

f (a)
+

2√
f (a)2 + a

+
m(a)

a
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+m(a)(
2

f (a)
+

2√
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+
m(a)

a
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ξ′′(a) = 2r1(a)m′(a)(−
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f (a)3

+
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a
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+r1(a)(
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f (a)
+
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f (a)2 + a

+
m(a)

a
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+2(
2

f (a)
+
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+
m(a)

a
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+m(a)(
2

f (a)
+

2√
f (a)2 + a

+
m(a)

a
)r′′1 (a) + r′′1 (a).

AIMS Mathematics Volume 8, Issue 8, 17650–17665.



17665

f ′(a) =

{
f ′1(a) when a ∈ (0, 0.55)
f ′2(a) when a ∈ (0.55, 1),

f ′1(a) = 0.366506a2 + 0.126123a − 0.235388,
f ′′1 (a) = 0.733011a + 0.126123,
f ′2(a) = 671.032a5 − 2510.18a4 + 3723.63a3

−2736.2a2 + 996.52a − 144.032,
f ′′2 (a) = 3355.16a4 − 10040.7a3 + 11170.9a2

−5472.4a + 996.52.
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