Let $ \mathcal{P}_r $ denote an almost–prime with at most $ r $ prime factors, counted according to multiplicity. In this paper, it is proved that for every sufficiently large even integer $ N $, the following equation
$ \begin{equation*} N = p_1^2+p_2^2+x^3+p_3^3+p_4^3+p_5^3 \end{equation*} $
is solvable with $ x $ being an almost–prime $ \mathcal{P}_7 $ and the other variables primes. This result constitutes a deepening upon that of previous results.
Citation: Min Zhang, Fei Xue, Jinjiang Li. On the Waring–Goldbach problem for two squares and four cubes[J]. AIMS Mathematics, 2022, 7(7): 12415-12436. doi: 10.3934/math.2022689
Let $ \mathcal{P}_r $ denote an almost–prime with at most $ r $ prime factors, counted according to multiplicity. In this paper, it is proved that for every sufficiently large even integer $ N $, the following equation
$ \begin{equation*} N = p_1^2+p_2^2+x^3+p_3^3+p_4^3+p_5^3 \end{equation*} $
is solvable with $ x $ being an almost–prime $ \mathcal{P}_7 $ and the other variables primes. This result constitutes a deepening upon that of previous results.
[1] | J. Brüdern, A sieve approach to the Waring–Goldbach problem Ⅰ. Sums of four cubes, Annales scientifiques de l'École Normale Supérieure, Serie 4, 28 (1995), 461–476. http://doi.org/10.24033/asens.1721 doi: 10.24033/asens.1721 |
[2] | J. Brüdern, A sieve approach to the Waring–Goldbach problem Ⅱ. On the seven cubes theorem, Acta Arith., 72 (1995), 211–227. http://doi.org/10.4064/aa-72-3-211-227 doi: 10.4064/aa-72-3-211-227 |
[3] | J. Brüdern, K. Kawada, Ternary problems in additive prime number theory, In: Analytic number theory, Boston, MA: Springer, 2002, 39–91. http://doi.org/10.1007/978-1-4757-3621-2_4 |
[4] | J. Brüdern, K. Kawada, On the Waring–Goldbach problem for cubes, Glasgow Math. J., 51 (2009), 703–712. http://doi.org/10.1017/S0017089509990140 doi: 10.1017/S0017089509990140 |
[5] | Y. C. Cai, The Waring–Goldbach problem: one square and five cubes, Ramanujan J., 34 (2014), 57–72. http://doi.org/10.1007/s11139-013-9486-y doi: 10.1007/s11139-013-9486-y |
[6] | Y. C. Cai, Waring–Goldbach problem: two squares and higher powers, Journal de Théorie des Nombres de Bordeaux, 28 (2016), 791–810. http://doi.org/10.5802/jtnb.964 doi: 10.5802/jtnb.964 |
[7] | H. Davenport, Multiplicative number theory, New York, NY: Springer, 1980. http://doi.org/10.1007/978-1-4757-5927-3 |
[8] | P. X. Gallagher, A large sieve density estimate near $\sigma = 1$, Invent. Math., 11 (1970), 329–339. http://doi.org/10.1007/BF01403187 doi: 10.1007/BF01403187 |
[9] | G. H. Hardy, J. E. Littlewood, Some problems of 'Partitio numerorum' Ⅲ: On the expression of a number as a sum of primes, Acta Math., 44 (1923), 1–70. http://doi.org/10.1007/BF02403921 doi: 10.1007/BF02403921 |
[10] | H. Halberstam, H. E. Richert, Sieve methods, London: Academic Press, 1974. |
[11] | G. Harman, A. V. Kumchev, On sums of squares of primes, Math. Proc. Cambridge Philos. Soc., 140 (2006), 1–13. http://doi.org/10.1017/S0305004105008819 doi: 10.1017/S0305004105008819 |
[12] | G. Harman, A. V. Kumchev, On sums of squares of primes Ⅱ, J. Number Theory, 130 (2010), 1969–2002. http://doi.org/10.1016/j.jnt.2010.03.010 doi: 10.1016/j.jnt.2010.03.010 |
[13] | L. K. Hua, Some results in the additive prime number theory, The Quarterly Journal of Mathematics, 9 (1938), 68–80. http://doi.org/10.1093/qmath/os-9.1.68 doi: 10.1093/qmath/os-9.1.68 |
[14] | L. K. Hua, Additive theory of prime numbers, Providence: American Mathematical Society, 1965. |
[15] | H. Iwaniec, Rosser's sieve, Acta Arith., 36 (1980), 171–202. http://doi.org/10.4064/aa-36-2-171-202 doi: 10.4064/aa-36-2-171-202 |
[16] | H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith., 37 (1980), 307–320. http://doi.org/10.4064/aa-37-1-307-320 doi: 10.4064/aa-37-1-307-320 |
[17] | K. Kawada, L. Zhao, The Waring–Goldbach problem for cubes with an almost prime, Proc. Lond. Math. Soc., 119 (2019), 867–898. http://doi.org/10.1112/plms.12244 doi: 10.1112/plms.12244 |
[18] | A. V. Kumchev, D. I. Tolev, An invitation to additive prime number theory, Serdica Math. J., 31 (2005), 1–74. |
[19] | A. V. Kumchev, L. Zhao, On sums of four squares of primes, Mathematika, 62 (2016), 348–361. http://doi.org/10.1112/S0025579315000285 doi: 10.1112/S0025579315000285 |
[20] | M. C. Leung, M. C. Liu, On generalized quadratic equations in three prime variables, Monatshefte für Mathematik, 115 (1993), 133–167. http://doi.org/10.1007/BF01311214 doi: 10.1007/BF01311214 |
[21] | H. Z. Li, The exceptional set of Goldbach numbers, The Quarterly Journal of Mathematics, 50 (1999), 471–482. http://doi.org/10.1093/qjmath/50.200.471 doi: 10.1093/qjmath/50.200.471 |
[22] | H. Z. Li, The exceptional set of Goldbach numbers (Ⅱ), Acta Arith., 92 (2000), 71–88. http://doi.org/10.4064/aa-92-1-71-88 doi: 10.4064/aa-92-1-71-88 |
[23] | H. Z. Li, Representation of odd integers as the sum of one prime, two squares of primes and powers of 2, Acta Arith., 128 (2007), 223–233. http://doi.org/10.4064/aa128-3-3 doi: 10.4064/aa128-3-3 |
[24] | H. Z. Li, Sums of one prime and two prime squares, Acta Arith., 134 (2008), 1–9. http://doi.org/10.4064/aa134-1-1 doi: 10.4064/aa134-1-1 |
[25] | Yu. V. Linnik, Hardy–Littlewood problem on representation as the sum of a prime and two squares, Dokl. Akad. Nauk SSSR, 124 (1959), 29–30. |
[26] | Yu. V. Linnik, An asymptotic formula in an additive problem of Hardy–Littlewood, (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 24 (1960), 629–706. |
[27] | T. Liu, Representation of odd integers as the sum of one prime, two squares of primes and powers of $2$, Acta Arith., 115 (2004), 97–118. http://doi.org/10.4064/aa115-2-1 doi: 10.4064/aa115-2-1 |
[28] | Z. X. Liu, G. S. Lü, Two results on powers of 2 in Waring–Goldbach problem, J. Number Theory, 131 (2011), 716–736. http://doi.org/10.1016/j.jnt.2010.11.007 doi: 10.1016/j.jnt.2010.11.007 |
[29] | Z. X. Liu, Cubes of primes and almost prime, J. Number Theory, 132 (2012), 1284–1294. http://doi.org/10.1016/j.jnt.2012.01.004 doi: 10.1016/j.jnt.2012.01.004 |
[30] | W. C. Lu, Exceptional set of Goldbach number, J. Number Theory, 130 (2010), 2359–2392. http://doi.org/10.1016/j.jnt.2010.03.017 doi: 10.1016/j.jnt.2010.03.017 |
[31] | G. S. Lü, H. W. Sun, Integers represented as the sum of one prime, two squares of primes and powers of 2, Proc. Amer. Math. Soc., 137 (2009), 1185–1191. http://doi.org/10.1090/S0002-9939-08-09603-2 doi: 10.1090/S0002-9939-08-09603-2 |
[32] | F. Mertens, Ein Beitrag zur analytyischen Zahlentheorie, J. Reine Angew. Math., 78 (1874), 46–62. http://doi.org/10.1515/crll.1874.78.46 doi: 10.1515/crll.1874.78.46 |
[33] | J. Pintz, Landau's problems on primes, Journal de Théorie des Nombres de Bordeaux, 21 (2009), 357–404. http://doi.org/10.5802/jtnb.676 doi: 10.5802/jtnb.676 |
[34] | J. Pintz, A new explicit formula in the additive theory of primes with applications Ⅱ. The exceptional set in Goldbach's problem, 2018, arXiv: 1804.09084. |
[35] | G. J. Rieger, Über die Summe aus einem Quadrat und einem Primzahlquadrat, J. Reine Angew. Math., 231 (1968), 89–100. http://doi.org/10.1515/crll.1968.231.89 doi: 10.1515/crll.1968.231.89 |
[36] | E. C. Titchmarsh, The theory of the Riemann Zeta–function, Oxford: Oxford University Press, 1986. |
[37] | R. C. Vaughan, Sums of three cubes, Bull. London Math. Soc., 17 (1985), 17–20. http://doi.org/10.1112/blms/17.1.17 doi: 10.1112/blms/17.1.17 |
[38] | R. C. Vaughan, The Hardy–Littlewood method, 2 Eds., Cambridge: Cambridge University Press, 1997. http://doi.org/10.1017/CBO9780511470929 |
[39] | I. M. Vinogradov, Elements of number theory, New York: Dover Publications, 1954. |
[40] | M. Q. Wang, On the sum of a prime and two prime squares, (Chinese), Acta Math. Sinica (Chin. Ser.), 47 (2004), 845–858. http://doi.org/10.12386/A20040108 doi: 10.12386/A20040108 |
[41] | M. Q. Wang, X. M. Meng, The exceptional set in the two prime squares and a prime problem, Acta Math. Sinica, 22 (2006), 1329–1342. http://doi.org/10.1007/s10114-005-0701-7 doi: 10.1007/s10114-005-0701-7 |
[42] | M. Zhang, J. Li, On the Waring–Goldbach problem for squares, cubes and higher powers, Ramanujan J., 56 (2021), 1123–1150. http://doi.org/10.1007/s11139-020-00334-2 doi: 10.1007/s11139-020-00334-2 |
[43] | L. Zhao, The additive problem with one prime and two squares of primes, J. Number Theory, 135 (2014), 8–27. http://doi.org/10.1016/j.jnt.2013.08.008 doi: 10.1016/j.jnt.2013.08.008 |