This paper considers a model-free control approach to Euler-Lagrange equations and proposes a new quantitative performance measure with its Lyapunov-based computation method. More precisely, this paper aims to solve a trajectory tracking problem for uncertain Euler-Lagrange equations by using a model-free controller with a proportional-integral-derivative (PID) control form. The $ L_\infty $-gain is evaluated for the closed-loop systems obtained through the feedback connection between the Euler-Lagrange equation and the model-free controller. To this end, the input-to-state stability (ISS) for the closed-loop systems is first established by deriving an appropriate Lyapunov function. The study further extends these arguments to develop a computational approach to determine the $ L_\infty $-gain. Finally, the theoretical validity and effectiveness of the proposed quantitative performance measure are demonstrated through a simulation of a $ 2 $-degree-of-freedom ($ 2 $-DOF) robot manipulator, which is one of the most representative examples of Euler-Lagrange equations.
Citation: Hae Yeon Park, Jung Hoon Kim. Model-free control approach to uncertain Euler-Lagrange equations with a Lyapunov-based $ L_\infty $-gain analysis[J]. AIMS Mathematics, 2023, 8(8): 17666-17686. doi: 10.3934/math.2023902
This paper considers a model-free control approach to Euler-Lagrange equations and proposes a new quantitative performance measure with its Lyapunov-based computation method. More precisely, this paper aims to solve a trajectory tracking problem for uncertain Euler-Lagrange equations by using a model-free controller with a proportional-integral-derivative (PID) control form. The $ L_\infty $-gain is evaluated for the closed-loop systems obtained through the feedback connection between the Euler-Lagrange equation and the model-free controller. To this end, the input-to-state stability (ISS) for the closed-loop systems is first established by deriving an appropriate Lyapunov function. The study further extends these arguments to develop a computational approach to determine the $ L_\infty $-gain. Finally, the theoretical validity and effectiveness of the proposed quantitative performance measure are demonstrated through a simulation of a $ 2 $-degree-of-freedom ($ 2 $-DOF) robot manipulator, which is one of the most representative examples of Euler-Lagrange equations.
[1] | T. Brogårdh, Present and future robot control development–An industrial perspective, Annu. Rev. Control, 31 (2007), 69–79. https://doi.org/10.1016/j.arcontrol.2007.01.002 doi: 10.1016/j.arcontrol.2007.01.002 |
[2] | C. J. Chien, A. Tayebi, Further results on adaptive iterative learning control of robot manipulators, Automatica, 44 (2008), 830–837. https://doi.org/10.1016/j.automatica.2007.06.023 doi: 10.1016/j.automatica.2007.06.023 |
[3] | K. K. Tan, S. Huang, T. H. Lee, Decentralized adaptive controller design of large-scale uncertain robotic systems, Automatica, 45 (2009), 161–166. https://doi.org/10.1016/j.automatica.2008.06.005 doi: 10.1016/j.automatica.2008.06.005 |
[4] | T. Sun, L. Cheng, W. Wang, Y. Pan, Semiglobal exponential control of Euler-Lagrange systems using a sliding-mode disturbance observer, Automatica, 112 (2020), 108677. https://doi.org/10.1016/j.automatica.2019.108677 doi: 10.1016/j.automatica.2019.108677 |
[5] | P. Yang, Y. Su, Proximate fixed-time prescribed performance tracking control of uncertain robot manipulators, IEEE/ASME Trans. Mech., 27 (2022), 3275–3285. https://doi.org/10.1109/TMECH.2021.3107150 doi: 10.1109/TMECH.2021.3107150 |
[6] | S. K. Kommuri, S. Han, S. Lee, External torque estimation using higher order sliding-mode observer for robot manipulators, IEEE/ASME Trans. Mech., 27 (2022), 513–523. https://doi.org/10.1109/TMECH.2021.3067443 doi: 10.1109/TMECH.2021.3067443 |
[7] | H. Gao, W. He, C. Zhou, C. Sun, Neural network control of a two-link flexible robotic manipulator using assumed mode method, IEEE Trans. Ind. Inform., 15 (2019), 755–765. https://doi.org/10.1109/TII.2018.2818120 doi: 10.1109/TII.2018.2818120 |
[8] | K. Shao, R. Tang, F. Xu, X. Wang, J. Zheng, Adaptive sliding mode control for uncertain Euler-Lagrange systems with input saturation, J. Franklin Inst., 358 (2021), 8356–8376. https://doi.org/10.1016/j.jfranklin.2021.08.027 doi: 10.1016/j.jfranklin.2021.08.027 |
[9] | M. A. Dahleh, I. J. Diaz-Bobillo, Control of uncertain systems: a linear programming approach, Prentice-Hall, 1994. |
[10] | I. S. Khalil, J. C. Doyle, K. Glover, Robust and optimal control, Prentice-Hall, 1996. |
[11] | Z. Hou, S. Jin, Model free adaptive control: theory and applications, CRC Press, 2013. |
[12] | R. E. Precup, R. C. Roman, A. Safaei, Data-driven model-free controllers, CRC Press, 2021. |
[13] | L. Yin, Y. Zhu, Y. Xu, T. Li, Dynamic optimal operational control for complex systems with nonlinear external loop disturbances, AIMS Math., 7 (2022), 16673–16691. https://doi.org/10.3934/math.2022914 doi: 10.3934/math.2022914 |
[14] | F. Ivanauskas, V. Laurinavičius, M. Sapagovas, A. Neciporenko, Reaction-diffusion equation with nonlocal boundary condition subject to PID-controlled bioreactor, Nonlinear Anal.: Model. Control, 22 (2017), 261–272. https://doi.org/10.15388/NA.2017.2.8 doi: 10.15388/NA.2017.2.8 |
[15] | C. Zhao, L. Guo, Control of nonlinear uncertain systems by extended PID, IEEE Trans. Automat Control, 66 (2021), 3840–3847. https://doi.org/10.1109/TAC.2020.3030876 doi: 10.1109/TAC.2020.3030876 |
[16] | D. Zhao, Z. Wang. G. Wei, Q. L. Han, A dynamic event-triggered approach to observer-based PID security control subject to deception attacks, Automatica, 120 (2020), 109128. https://doi.org/10.1016/j.automatica.2020.109128 doi: 10.1016/j.automatica.2020.109128 |
[17] | X. Z. Zhu, P. Casau, C. Silvestre, Event-triggered global trajectory tracking control of a quadrotor: synthesis, simulations, and experiments, Int. J. Robust Nonlinear Control, 31 (2021), 6144–6165. https://doi.org/10.1002/rnc.5565 doi: 10.1002/rnc.5565 |
[18] | J. Alvarez-Ramirez, I. Cervantes, R. Kelly, PID regulation of robot manipulators: stability and performance, Syst. Control Lett., 41 (2000), 73–83. https://doi.org/10.1016/S0167-6911(00)00038-4 doi: 10.1016/S0167-6911(00)00038-4 |
[19] | R. Kelly, Global positioning of robot manipulators via PD control plus a class of nonlinear integral actions, IEEE Trans. Automatic Control, 43 (1998), 934–938. https://doi.org/10.1109/9.701091 doi: 10.1109/9.701091 |
[20] | R. Ortega, A. Loria, R. Kelly, A semiglobally stable output feedback PI$^2$D regulator for robot manipulators IEEE Trans. Automatic Control, 40 (1995), 1432–1436. https://doi.org/10.1109/9.402235 |
[21] | M. Takegaki, S. Arimoto, A new feedback method for dynamic control of manipulators, ASME J. Dyn. Syst., Meas., Control, 103 (1981), 119–125. https://doi.org/10.1115/1.3139651 doi: 10.1115/1.3139651 |
[22] | E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE Trans. Automatic Control, 34 (1989), 435–443. https://doi.org/10.1109/9.28018 doi: 10.1109/9.28018 |
[23] | E. D. Sontag, Y. Wang, On characterizations of the input-to-state stability property, Syst. Control Lett., 24 (1995), 351–359. https://doi.org/10.1016/0167-6911(94)00050-6 doi: 10.1016/0167-6911(94)00050-6 |
[24] | D. Angeli, Input-to-state stability of PD-controlled robotic systems, Automatica, 35 (1999), 1285–1290. https://doi.org/10.1016/S0005-1098(99)00037-0 doi: 10.1016/S0005-1098(99)00037-0 |
[25] | M. Krstic, Z. Li, Inverse optimal design of input-to-state stabilizing nonlinear controllers, IEEE Trans. Automatic Control, 43 (1998), 336–350. https://doi.org/10.1109/9.661589 doi: 10.1109/9.661589 |
[26] | R. Rao, X. Li, Input-to-state stability in the meaning of switching for delayed feedback switched stochastic financial system, AIMS Math., 6 (2021), 1040–1064. https://doi.org/10.3934/math.2021062 doi: 10.3934/math.2021062 |
[27] | T. Wei, X. Xie, X. Li, Input-to-state stability of delayed reaction-diffusion neural networks with multiple impulses, AIMS Math., 6 (2021), 5786–5800. https://doi.org/10.3934/math.2021342 doi: 10.3934/math.2021342 |
[28] | H. K. Khalil, Lyapunov stability, In: Nonlinear systems, Prentice-Hall, 2002,111–194. |
[29] | M. Vidyasagar, Lyapunov stability, In: Nonlinear systems analysis, Prentice-Hall, 1993,135–269. |
[30] | J. H. Kim, T. Hagiwara, Computing the $L_\infty$-induced norm of linear time-invariant systems via Kernel approximation and its comparison with input approximation, IET Control Theory Appl., 9 (2015), 700–709. https://doi.org/10.1049/iet-cta.2014.0453 doi: 10.1049/iet-cta.2014.0453 |
[31] | J. H. Kim, T. Hagiwara, $L_{1}$ discretization for sampled-data controller synthesis via piecewise linear approximation, IEEE Trans. Automatic Control, 61 (2016), 1143–1157. https://doi.org/10.1109/TAC.2015.2452815 doi: 10.1109/TAC.2015.2452815 |
[32] | J. H. Kim, T. Hagiwara, $L_1$ optimal controller synthesis for sampled-data systems via piecewise linear kernel approximation, Int. J. Robust Nonlinear Control, 31 (2021), 4933–4950. https://doi.org/10.1002/rnc.5513 doi: 10.1002/rnc.5513 |
[33] | M. Vidyasagar, Optimal rejection of persistent bounded disturbances, IEEE Trans. Automatic Control, 31 (1986), 527–534. https://doi.org/10.1109/TAC.1986.1104315 doi: 10.1109/TAC.1986.1104315 |
[34] | J. H. Kim, S. Hur, Y. Oh, Maximum tracking errors in PD-controlled robotic manipulators, 2016 IEEE/SICE International Symposium on System Integration, 2016,676–681. https://doi.org/10.1109/SII.2016.7844077 |
[35] | M. W. Spong, S. Hutchinson, M. Vidyasagar, Dynamics, In: Robot modeling and control, John Wiley & Sons, 2020,165–214. |
[36] | Y. Feng, X. Yu, Z. Man, Non-singular terminal sliding mode control of rigid manipulators, Automatica, 38 (2002), 2159–2167. https://doi.org/10.1016/S0005-1098(02)00147-4 doi: 10.1016/S0005-1098(02)00147-4 |
[37] | F. L. Lewis, D. M. Dawson, C. T. Abdallah, Computed-torque control, In: Robot manipulator control: theory and practice, CRC Press, 2003,169–260. |