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Abstract: This paper considers a model-free control approach to Euler-Lagrange equations and
proposes a new quantitative performance measure with its Lyapunov-based computation method. More
precisely, this paper aims to solve a trajectory tracking problem for uncertain Euler-Lagrange equations
by using a model-free controller with a proportional-integral-derivative (PID) control form. The L∞-
gain is evaluated for the closed-loop systems obtained through the feedback connection between the
Euler-Lagrange equation and the model-free controller. To this end, the input-to-state stability (ISS)
for the closed-loop systems is first established by deriving an appropriate Lyapunov function. The
study further extends these arguments to develop a computational approach to determine the L∞-gain.
Finally, the theoretical validity and effectiveness of the proposed quantitative performance measure are
demonstrated through a simulation of a 2-degree-of-freedom (2-DOF) robot manipulator, which is one
of the most representative examples of Euler-Lagrange equations.
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1. Introduction

Motion control is an essential aspect of industrial systems, wherein achieving accurate trajectory
tracking represents a primary objective. In order to achieve high accuracy in motion control, a number
of methods have been introduced in the context of industrial systems [1] by noting that the dynamics
of physical systems are generally described by Euler-Lagrange equations. The control approaches
discussed in that study can be interpreted as providing various model-based methods based on the
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position control mode, in which position, velocity and torque controllers are connected in series
so that torque set-point and velocity set-point is generated by the velocity and position controllers,
respectively. Motivated by the success in achieving high tracking performances via the control methods
in [1], a number of model-based approaches have been developed subsequently to tackle various control
problems in Euler-Lagrange equations, e.g., adaptive control [2, 3], disturbance observer [4], sliding
mode control [5, 6], neural network control [7] and so on. More interestingly, the adaptive control
approach is also significantly extended in [8] by taking a leakage-type adaptive law tailored to solving
input saturation problems in Euler-Lagrange systems.

Even though some important properties in control systems such as stability and tracking
performance could be often achieved by using the aforementioned model-based control approaches,
it should be required for taking these approaches to derive accurate mathematical models of the control
systems. However, obtaining exact dynamic information of real control systems becomes more difficult
as the size and complexity of the control systems become larger. For such large-scale systems, there
should exist inescapable errors between the nominal model and the real dynamics, and they often lead
to instability and/or performance deterioration for the feedback systems between the real system and
a controller obtained through a model-based approach. To solve this difficulty in taking model-based
control approaches, there have been various studies on robust control [9, 10]. However, the relevant
model uncertainties should be characterized for employing these studies in terms of norm-boundness,
structurality and so on. Hence, this requirement makes it difficult to directly apply the arguments in
robust control [9, 10] to real systems.

As an intrinsic method for alleviating the difficulty occurring from the above model-based control
approaches, one could take the model-free control approaches as in [11, 12]. Some dynamic
characteristics for real systems, such as a positive definiteness of the inertia matrix and a skew-
symmetric property relevant to the inertia matrix and Coriolis matrix in Euler-Lagrange equations, are
taken in those studies for ensuring the convergence of the associated state trajectory and/or the stability
and robustness of the corresponding closed-loop systems, although the overall model information is
not employed in the model-free control approaches. More interestingly, the control inputs in the
model-free control architectures are usually generated in a heuristic fashion, based on the online or
offline input/output data from the real systems. However, it is also a non-trivial task to establish an
immediately applicable control law as a model-free structure from such input/output data due to a
number of processes of trial and error.

In connection with this, one of the most representative and readily applicable model-free control
methods is the proportional-integral-derivative (PID) control, which is also often applied to a number
of control systems, irrespective of the associated system models. For instance, two-layer structure
optimal setting control systems with exogenous disturbances are considered with PID control law for
a bottom loop in [13], the nonlocal boundary condition for parabolic reaction-diffusion equations with
PID controllers is tackled in [14], a PID control law for affine-nonlinear uncertain dynamical systems
is considered in [15], an observer-based adaptive PID controller subject to cyberattacks is discussed
in [16] and an event-triggered PID controller with respect to quadrotors is introduced in [17].

To clarify some theoretical effectiveness of applying the PID controller to Euler-Lagrange
equations, the global asymptotic stability (GAS) for Euler-Lagrange equations equipped with a PID
controller is discussed [18–21], in which there is no consideration of external disturbances. A concept
of input-to-state stability (ISS) with the consideration of external disturbances is introduced in [22]
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for the first time, and this issue is further theoretically tackled in [23]. More precisely, the notion of
ISS means that the states of the systems are bounded even if unknown bounded disturbances, such as
parameter perturbations and model uncertainties, exist. Those studies [22, 23] further shed new light
on the arguments relevant to the disturbance ISS for nonlinear systems [24–27]. Roughly speaking, the
stability of nonlinear systems could be established by constructing adequate Lyapunov functions in the
employment of the ISS or disturbance ISS, in which the arguments on Lyapunov stability [28,29] play
significant roles in deriving the relevant assertions.

Furthermore, the Lyapunov arguments with respect to the stability for Euler-Lagrange equations
could be more sophisticated by using the arguments on passivity [28, 29], in which it is intrinsically
assumed that the signals considered in systems have finite energy, i.e., those of finite L2 norms. In
this sense, the applications of passivity-based arguments to Euler-Lagrange equations are confined to
themselves to the treatment of decaying signals in the time-domain. However, it is quite practically
meaningful to take the corresponding performance specifications on the time-domain bound for the
relevant error signals in Euler-Lagrange equations, i.e., the L∞ norm, rather than taking the L2 norm of
those signals. More importantly, there is no discussion on the L∞-gain with respect to Euler-Lagrange
equations in aforementioned studies because it is quite difficult to lead to an analytic form for the
L∞-gain with respect to nonlinear systems, while the L∞-induced norm for linear equations is deeply
studied in [30–33].

With this in mind, this paper aims at deriving sophisticated arguments on the L∞-gain of the closed-
loop systems obtained by connecting the Euler-Lagrange equation and a PID control law. To do this,
we first consider a trajectory tracking problem of Euler-Lagrange equations and develop a sort of
PID control law for achieving a desired tracking performance. By noting the dynamical properties
of the Euler-Lagrange equation, we also deal with the disturbance ISS associated with the provided
PID controller by constructing a relevant Lyapunov function. At the same line, we propose a new
quantitative performance measure for Euler-Lagrange equations by re-interpreting the corresponding
Lyapunov function through the L∞ norm of signals. To put it concisely, the L∞-gain is taken as the
quantitative performance measure for dealing with the corresponding trajectory tracking errors caused
by unknown elements in the time-domain bounds. More importantly, the quantitative performance
measure (i.e., the L∞-gain) of the closed-loop systems could be obtained by computing the minimum
eigenvalue of an adequately constructed positive definite matrix. A computational approach to taking
the corresponding control parameters is also derived based on the quantitative performance measure.

To summarize, the contributions of this paper on a model-free control approach to Euler-Lagrange
equations are as follows.

• Synthesis of an effective PID control law: A readily applicable model-free controller for the
Euler-Lagrange equations is introduced.
• Disturbance ISS: The disturbance ISS for the closed-loop systems obtained through the feedback

connection between the Euler-Lagrange equations and the PID controller is ensured by deriving
an adequate Lyapunov function.
• Quantitative performance measure: With respect to the characteristics of desired control

objectives in Euler-Lagrange equations, the L∞-gain for the aforementioned closed-loop systems
is defined.
• Performance analysis: The explicit method for computing the above L∞ gain is established.
• Computational approach to taking parameters: We introduce a computational approach to
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taking the corresponding control parameters based on the quantitative performance measure
together with its computation method.

Finally, it should be remarked that some earlier results of this paper were partially presented at the
conference [34], but they are limited to the PD control law and no computational approach to taking
the relevant parameters was provided in that study. In this sense, the arguments derived in this paper
can be regarded as generalized and extended versions of those in [34].

This paper is organized as follows. We first introduce the underlying mathematical notations used
in this paper in Section 2. We next formulate the problem definition relevant to a trajectory tracking
problem of Euler-Lagrange equations in Section 3. A new quantitative performance measure (i.e., the
L∞-gain) for Euler-Lagrange equations together with its computation method is given in Section 4. We
then verify in Section 5 the effectiveness and validity of the main results through a simulation result
associated with a trajectory tracking problem of a 2-degree-of-freedom (2-DOF) robot manipulator,
whose dynamics are one of the most representative examples of Euler-Lagrange equations. Finally,
conclusion remarks are given in Section 6.

2. Mathematical notations

This section provides the underlying mathematical notations used for establishing the main results
in this paper.

We denote the sets of ν-dimensional real numbers, ν-dimensional nonnegative real numbers and
ν-dimensional symmetric matrices by Rν, Rν+ and Sν, respectively. The notation ≻ (⪰) is used for
M1,M2 ∈ S

ν to mean the binary relation such that

M1 ≻ M2 (M1 ⪰ M2)
⇔ xT (M1 − M2)x > 0 (xT (M1 − M2)x ≥ 0), ∀x ∈ Rν(x , 0).

In other words, M1 ≻ (⪰)M2 implies that M1 − M2 is a positive (semi-)definite matrix. Furthermore,
we denote the minimum eigenvalue of a matrix (·) and the ν-dimensional identity matrix by λmin(·) and
Iν, respectively.

We denote the Euclidean-norm of a vector f (t) ∈ Rν by | f (t)|2, i.e.,

| f (t)|2 :=

 ν∑
i=0

f 2
i (t)

1/2

=
(

f T (t) f (t)
)1/2

while the∞-norm of a vector f (t) ∈ Rν is denoted by | · |∞, i.e.,

| f (t)|∞ := max
1≤i≤ν
| fi(t)|

where fi(t) implies the ith element of the vector f (t). With respect to this, we use the notation ∥ · ∥∞ for
the L∞ norm of a real-valued vector function, i.e.,

∥ f ∥∞ := ess sup
0≤t<∞

max
1≤i≤ν
| fi(t)| = ess sup

0≤t<∞
| f (t)|∞.

We next introduce the classes of functions considered in this paper as follows [28, 29]. A function
β(·) : R+ → R+ is said to be of class K , if it is continuous, strictly increasing and β(0) = 0. A function
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β(·) : R+ → R+ is said to be of class K∞, if it satisfies all the conditions of class K as well as the
condition that β(t)→ ∞ as t → ∞. A function ξ(·, ·) : R+ ×R+ → R+ is said to be of classKL, if ξ(·, t)
is of class K for each fixed t, ξ(s, ·) is monotonically decreasing and converges to 0 as t → ∞ for each
fixed s, i.e., ξ(s, t)→ 0 (t → ∞).

By using these notations, we also introduce some fundamental properties of the disturbance input-
to-stability (ISS) as follows [22–25].

Definition 1. Let us consider the system

ẋ(t) = A(x, t)x(t) + B1(x, t)w(t) + B2(x, t)u(t) (2.1)

where x(t) ∈ Rn is the state vector, w(t) ∈ Rnw is the exogenous input vector and u(t) ∈ Rnu is the control
input vector. The disturbance ISS is defined for this system when there exist a classK function β and a
class KL function ξ such that the solution for (2.1) exists for all t ≥ 0 and satisfies

|x(t)|2 ≤ β
(

sup
0≤s≤t
|w(s)|2

)
+ ξ(|x(0)|2, t) (2.2)

for an arbitrary x(0) ∈ Rn and for a bounded exogenous input function w(·).

Remark 1. The disturbance ISS can be also regarded as a generalized version of the global asymptotic
stability (GAS) since the inequality (2.2) is essentially equivalent to the GAS for the case of w ≡ 0.

Because a direct application of the arguments in Definition 1 in establishing the disturbance ISS
for Euler-Lagrange equations is quite difficult, we introduce the following necessary and sufficient
condition, by which the difficulty in the employment of disturbance ISS would be alleviated.

Lemma 1. The system described by (2.1) is said to be disturbance input-to-state stable, if and only
if there exist a positive definite and radially unbounded function V(x, t), a class K function β1, and a
class K∞ function β2 such that the following inequality holds:

dV(x, t)
dt

≤ β1(|w(t)|2) − β2(|x(t)|2). (2.3)

Furthermore, this radially unbounded function V(x, t) is called also an ISS-Lyapunov function for the
system given by (2.1).

Remark 2. The implication of taking (2.3) could be also interpreted as ensuring the fact that all
trajectories with respect to nonlinear systems satisfying the disturbance ISS should converge to a
specific ball centered at the origin x = 0, in which the radius is determined depending on the L∞
norm of w. In other words, such a ball establishes also the attractive property [29] for systems with
the disturbance ISS property.

Based on Lemma 1, the disturbance ISS for Euler-Lagrange equations equipped with a PID control
law would be dealt with in the subsequent sections.
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3. Problem definition

The problem definition to be tackled in this paper is formulated in this section. Let us first take the
n-dimensional Euler-Lagrange equation given by

M(q(t))q̈(t) +C(q(t), q̇(t))q̇(t) + g(q(t)) = τ(t) + d(t) (3.1)

where M(q(t)) ∈ Rn×n is the Inertia matrix, C(q(t), q̇(t)) ∈ Rn×n is the Coriolis and centrifugal torques
matrix, g(q(t)) ∈ Rn is the gravitational torque vector, q(t) ∈ Rn is the n-dimensional generalized
coordinates, τ(t) ∈ Rn is the control input torque vector and d(t) ∈ Rn is the unknown disturbance
vector.

For this Euler-Lagrange equation (3.1), we aim to achieve the trajectory tracking performance
described by

q(t)→ qd(t), (t → ∞) (3.2)

where qd(t) is the reference trajectory determined depending on the desired control objectives. With
respect to quantitative interpretations of the above trajectory tracking performance, we also define the
tracking error as e(t) := qd(t) − q(t). Then, we say the Euler-Lagrange equation of (3.1) satisfies the
tracking performance of (3.2) if the L∞ norm ∥e∥∞ is bounded. Subsequently, the tracking performance
of the Euler-Lagrange equation (3.1) is said to be improved when the maximum of the L∞ norm ∥e∥∞
becomes smaller.

As a preliminary step to establishing methods for tackling the above performance tracking problem,
we introduce the following properties of Euler-Lagrange equations (3.1) [35]:

(i) q(·), q̇(·), q̈(·), qd(·), q̇d(·), q̈d(·), d(·) are assumed to be continuous and bounded functions of t with
the zero initial condition.

(ii) 0 ≺ M and there exist constants m∗,m∗ ∈ R+ such that

m∗In ⪯ M(q(t)) ⪯ m∗In, ∀q(t) ∈ Rn. (3.3)

(iii) There exist constants c∗, g∗ ∈ R+ such that

|C(q(t), x)y|2 ≤ c∗|x|2|y|2,∀q(t), x, y ∈ Rn, (3.4)
|g(q(t))|2 ≤ g∗, ∀q(t) ∈ Rn. (3.5)

(iv) Ṁ = C +CT and all the initial conditions C(q(0), q̇(0)), g(q(0)) are zeros.

4. Main results

This section provides the main results of this paper, i.e., a PID control law, which is readily
applicable to Euler-Lagrange equations, together with the relevant arguments on the disturbance ISS
and the L∞-gain analysis. These results could be further extended to deriving a computational approach
to determining the corresponding control parameters. To this end, this section is divided into two
subsections, the arguments associated with the PID control law and the computational approach to
determining control parameters, respectively.
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4.1. Synthesis of a PID control law with its theoretical extensions

In this subsection, we are in a position to consider the PID control law given by

ϵ̇(t) = e(t), (4.1)
τ(t) = α (KIϵ(t) + KPe(t) + ė(t)) =: αh(t) (4.2)

where α > 0 is a scalar parameter, KI and KP are diagonal positive definite matrices such that K2
P ≻ 2KI .

Because the PID control law given by (4.2) is used in this paper, it is natural to consider the behavior
of the signals ϵ(t), e(t) and ė(t) when we proceed to construct the corresponding mathematical proofs.

As a preliminary step to prove the disturbance ISS associated with the PID control law described
by (4.2), we define the exogenous input vector w(t) ∈ Rn as

w(t) := M(q(t))ṡ(t) +C(q(t), q̇(t))s(t) + g(q(t)) − d(t) (4.3)

where

s(t) := q̇d(t) + KPe(t) + KIϵ(t). (4.4)

Then, defining the state vector x(t) ∈ R3n as

x(t) :=
[
ϵT (t) eT (t) ėT (t)

]T
(4.5)

leads to the state-space equation described by

ẋ(t) = A(x, t)x(t) + B(x, t)w(t) − B(x, t)τ(t) (4.6)

where

A(x, t) :=


0 I 0
0 0 I

−M−1CKI −M−1CKP − KI −M−1C − KP

 , (4.7)

B(x, t) :=


0
0

M−1

 . (4.8)

One of the main contributions in this paper is to show that the closed-form equation obtained by
connecting the state-space equation (4.6) with the PID control law (4.2) satisfies the disturbance ISS.
With respect to this, let us consider the Lyapunov function V(x, t) defined as

V(x, t) =
1
2

xT Px (4.9)

where

P :=


KI MKI + αKIKP KI MKP + αKI KI M

KPMKI + αKI KPMKP + αKP KPM
MKI MKP M

 .
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Here, V(x, t) is a obviously positive function for all x ∈ R3n, because it can also be represented by

V(x, t) =
1
2

hT Mh +
1
2

[
ϵ

e

]T [
αKIKP αKI

αKI αKP

] [
ϵ

e

]
. (4.10)

Based on this representation, we give the following theorem relevant to the disturbance ISS.

Theorem 1. The closed-form equation obtained by connecting the state-space equation (4.6) and the
PID control law (4.2) satisfies disturbance ISS.

Proof. Let us first note from (4.2) and (4.4) that

s(t) = h(t) + q̇(t). (4.11)

Substituting this into (4.3) derives that

w(t) = M(q(t))(ḣ(t) + q̈(t)) +C(q(t), q̇(t))(h(t) + q̇(t)) + g(q(t)) − d(t)
= M(q(t))q̈(t) +C(q(t), q̇(t))q̇(t) + g(q(t)) − d(t) + M(q(t))ḣ(t) +C(q(t), q̇(t))h(t). (4.12)

This admits from (3.1) the representation

M(q(t))ḣ(t) +C(q(t), q̇(t))h(t) = w(t) − τ(t). (4.13)

Combining (4.13) with (4.2) also leads to

M(q(t))ḣ(t) +C(q(t), q̇(t))h(t) = w(t) − αh(t). (4.14)

On the other hand, we can obtain from (4.10) that

V̇(x, t) =
1
2

ḣT Mh + hT Mḣ + hT Ṁh +
[
e
ė

]T [
αKIKP αKI

αKI αKP

] [
ϵ

e

]
+

[
ϵ

e

]T [
αKIKP αKI

αKI αKP

] [
e
ė

]
=hT Mḣ +

1
2

hT Ṁh +
[
ϵ

e

]T [
αKIKP αKI

αKI αKP

] [
e
ė

]
, (4.15)

since KI and KP are diagonal matrices. This further admits from the assertion (iv) that

V̇(x, t) =hT Mḣ +
1
2

hT Ṁh +
[
ϵ

e

]T [
αKIKP αKI

αKI αKP

] [
e
ė

]
=hT Mḣ +

1
2

hT (C +CT )h +
[
ϵ

e

]T [
αKIKP αKI

αKI αKP

] [
e
ė

]
=hT (Mḣ +Ch) +

[
ϵ

e

]T [
αKIKP αKI

αKI αKP

] [
e
ė

]
. (4.16)

Then, substituting (4.14) into (4.16) leads to

V̇(x, t) = hT (Mḣ +Ch) +
[
ϵ

e

]T [
αKIKP αKI

αKI αKP

] [
e
ė

]
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= hT w − αhT h +
[
ϵ

e

]T [
αKIKP αKI

αKI αKP

] [
e
ė

]

= hT w − αhT h +
α

2
xT


0 KIKP KI

KIKP 2KI KP

KI KP 0

 x

= hT w −
α

2
hT h −

α

2
hT h +

α

2
xT


0 KIKP KI

KIKP 2KI KP

KI KP 0

 x

= hT w −
α

2
hT h −

α

2
xT

[
KI KP In

]T [
KI KP In

]
x +
α

2
xT


0 KIKP KI

KIKP 2KI KP

KI KP 0

 x

= hT w −
α

2
hT h −

α

2
xT


K2

I 0 0
0 (K2

P − 2KI) 0
0 0 In

 x. (4.17)

Furthermore, if we note from the AM–GM inequality that

hT w ≤
α

2
hT h +

1
2α

wT w, (4.18)

then (4.17) can be further represented by

V̇(x, t) = hT w −
α

2
hT h −

α

2
xT


K2

I 0 0
0 (K2

P − 2KI) 0
0 0 In

 x

≤
1

2α
wT w −

α

2
xT


K2

I 0 0
0 (K2

P − 2KI) 0
0 0 In

 x

≤
1

2α
|w(t)|22 −

α

2
η · |x(t)|22 (4.19)

where

η := min{λmin(K2
I ), λmin((K2

P − 2KI)), λmin(In)}. (4.20)

Because
1

2α
|w(t)|22 and

α

2
η|x(t)|22 are class K∞ functions of |w(t)|2 and |x(t)|2, respectively, it is obvious

from (4.19) and Lemma 1 that the closed-form equation obtained by (4.6) and (4.2) satisfies the
disturbance ISS. This completes the proof. □

The disturbance ISS discussed in Theorem 1 clearly implies that the state vector signal x(·) is
bounded if the exogenous vector signal w(·) is bounded, i.e.,

∥w∥∞ < ∞ ⇒ ∥x∥∞ < ∞. (4.21)

Next, we are concerned with computing the L∞-gain of the closed-form equation. With this regard,
the performance index function γ(t) is first defined as the∞-norm of the state vector x(t) when V̇(x, t) ≥
0. Otherwise, γ(t) is defined as 0 (i.e., when V̇(x, t) < 0). Based on the performance index function,
we introduce the following theorem relevant to the L∞-gain of the closed-form equation.
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Theorem 2. Denote a lower bound of α by α0(> 0) and decompose α as α = α0 + α1 with α1 > 0. We
also define the matrix T as

T :=


2K2

I KIKP KI

KPKI 2(K2
P − KI) KP

KI KP 2In

 .
Then, the following inequality holds:

∥γ∥∞ ≤

√
n
α0
·

√
1

α1λmin(T )
∥w∥∞. (4.22)

Proof. Similarly for the proof of Theorem 1, let us first note that

hT w ≤
α0

2
hT h +

1
2α0

wT w. (4.23)

Then, we could see from (4.17) that

V̇(x, t) = hT w −
α

2
hT h −

α

2
xT


K2

I 0 0
0 (K2

P − 2KI) 0
0 0 In

 x

≤
1

2α0
wT w −

α1

2
hT h −

α1

2
xT


K2

I 0 0
0 (K2

P − 2KI) 0
0 0 In

 x

=
1

2α0
wT w −

α1

2
xT

[KI KP In

]T [
KI KP In

]
+


K2

I 0 0
0 (K2

P − 2KI) 0
0 0 In


 x

=
1

2α0
wT w −

α1

2
xT T x

≤
1

2α0
wT w −

α1

2
λmin(T )xT x. (4.24)

From the fact that |w(t)|22 ≤ n|w(t)|2∞ and −|x(t)|22 ≤ −|x(t)|2∞, (4.24) can be further simplified to

V̇(x, t) ≤
n

2α0
|w(t)|2∞ −

α1

2
λmin(T )|x(t)|2∞

≤
n

2α0
∥w∥2∞ −

α1

2
λmin(T )|x(t)|2∞. (4.25)

Since (4.25) corresponds to deriving an upper bound of V̇(x, t), the performance index vector γ(t) does
not exceed the∞-norm |x(t)|∞, which makes the right-hand side (RHS) of (4.25) zero. This completes
the proof. □

This paper is in a position to take the RHS of (4.22) as the Lyapunov-based quantitative performance
measure associated with suppressing the maximum amplitude of the trajectory tracking error x, i.e.,
∥x∥∞. Furthermore, it can be concluded from Theorem 2 that the L∞ norm ∥γ∥∞ is decreasing within a
convergence order, which is not slower than 1/

√
α1λmin(T ). This implication is expected to establish

that ∥x∥∞ is also decreasing in a convergence order no smaller than 1/
√
α1λmin(T ). Such an expectation

together with the validity of the Lyapunov-based quantitative performance measure for reducing ∥x∥∞
will be demonstrated through simulation results in Section 5.

AIMS Mathematics Volume 8, Issue 8, 17666–17686.



17676

4.2. Computational approach to taking control parameters

This subsection is concerned with introducing a computational approach to determining the
corresponding control parameters in (4.2). We can see from (4.2) that the parameters KP and KI

could be interpreted as weighting constants of e and ϵ, respectively, while the scalar parameter α > 0
plays the role of a common weighting constant of KPe,KIϵ and ė. Here, it should be remarked from
the proof of Theorem 1 that it is sufficient to take the scalar parameter α larger than 0 as well as the
positive diagonal matrices KP and KI when we are only interested in the disturbance ISS.

With respect to more constructive methods for determining the control parameters rather than the
above arguments, the parameters α,KP and KI could be determined as follows. Based on the fact
that the scalar parameter α is decomposed as α = α0 + α1 where α0 denotes an lower bound of α, a
relatively small α0 > 0 is first selected to guarantee the disturbance ISS for the corresponding closed-
loop system. Once α0 is fixed, the next step is to select a relatively small initial value of α1, for
instance, α1 = 1 or α1 = 2. If the initial value of α1 is also selected, it is required to take KP and KI by
which KI∥ϵ∥∞,KP∥e∥∞ and ∥ė∥∞ have a similar order of accuracy. After KP and KI are also fixed, the
value of α1 would be modulated by using the Lyapunov-based performance measure (4.22) such that
max{∥ϵ∥∞, ∥e∥∞, ∥ė∥∞} = ∥x∥∞ becomes small corresponding to a control specification desired by the
users. This might be achieved by taking larger α1 for fixed α0,KP and KI .

5. Simulation results

This section verifies the validity and effectiveness of the main results in this paper, i.e., the
arguments of Theorems 1 and 2, through a simulation result for the 2-degree-of-freedom (2-DOF)
planar robot manipulator Σ as shown in Figure 1, whose dynamics is one of the most representative
examples of Euler-Lagrange equations.

Figure 1. 2-DOF planar robot manipulator Σ.

Let us assume that the dynamics of Σ is described by

M(q(t))q̈(t) +C(q(t), q̇(t))q̇(t) + g(q(t)) = τ(t) + d(t)

with

M(q(t)) =
[
7.96 + 2.4 cos(q2(t)) 0.96 + 1.2 cos(q2(t))
0.96 + 1.2 cos(q2(t)) 5.96

]
,
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C(q(t), q̇(t)) =
[
−1.2 sin(q2(t))q̇2(t) −1.2 sin(q2(t))(q̇1(t) + q̇2(t))
1.2 sin(q2(t))q̇1(t) 0

]
,

g(q(t)) =
[
11.77 sin(q1(t) + q2(t)) + 19.62 sin(q1(t))

11.77 sin(q1(t) + q2(t))

]
where qi(t) (i = 1, 2) is the ith joint position and the values of model parameters are obtained from [8,
36]. We also assume that the disturbance vector as shown in Figure 2 is applied to this 2-DOF planar
robot manipulator and the reference trajectories are described by the the periodic functions

qd1(t) =


−

1
π2 sin(

π

2
t) +

1
2π

t 0 ≤ t ≤ 4,
1
π2 sin(

π

2
t) −

1
2π

(t − 8) 4 ≤ t ≤ 8,
,

qd2(t) =


−

1
π2 sin(πt) +

1
π

t 0 ≤ t ≤ 2,
1
π2 sin(πt) −

1
π

(t − 4) 2 ≤ t ≤ 4.
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Figure 2. The external disturbance.

To take into account a practical situation relevant to uncertain elements, the velocity measurements
are also assumed to be obtained from tachometers in each link with noise, i.e.,

y(t) =
[
q(t)
q̇(t)

]
+

[
0

n(t)

]
with the normal distribution given by n ∼ N(0, 5 · 10−3).

5.1. Effectiveness and validity of Theorems 1 and 2

This section provides some simulation results to examine the effectiveness of Theorems 1 and 2.
More precisely, the arguments with respect to the disturbance ISS and the arguments with respect to
the convergence rate for ∥x∥∞ are verified through the simulation results.
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Based on the computational approach introduced in Subsection 4.2, we are concerned with the PID
control law given by

τ = (α0 + α1) (ė + KPe + KIϵ) (5.1)

where the corresponding control parameters are determined to be α0 = 2, KP = 15I2 and KI = 15I2

with the initial value of α1 as 4. With these control parameter values, the feedback system obtained by
connecting (4.6) and (4.2) is expected to satisfy the disturbance ISS by the arguments in Theorem 1.
With respect to the arguments in Theorem 2, the L∞ norm ∥x∥∞ is further expected to be smaller as α1

increases because taking α1 larger obviously makes α1λmin(T ) in (4.22) become larger. In this respect,
we also take α1 = 8, α1 = 16 and α1 = 32 to examine the validity of the convergence rate for ∥x∥∞
corresponding to taking larger α1 mentioned above.

The simulation results for the real position vector q(t) ∈ R2 and the reference position vector qd(t) ∈
R2 are shown in Figure 3, while the results for the accumulated position error vector ϵ(t) ∈ R2, the
position error vector e(t) ∈ R2, the velocity error vector ė(t) ∈ R2 and the control input torque vector
τ(t) ∈ R2 are shown in Figures 4–7, respectively. Furthermore, the simulation results for the L∞ norm

∥x∥∞ and
√

1
α1λmin(T ) are shown in Table 1.
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(d) α1 = 32

Figure 3. Results for the real position vector q(t) and the reference position vector qd(t) with
the proposed control law.
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(d) α1 = 32

Figure 4. Results for the accumulated position error ϵ(t) with the proposed control law.
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(d) α1 = 32

Figure 5. Results for the position error e(t) with the proposed control law.
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(c) α1 = 16
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(d) α1 = 32

Figure 6. Results for the velocity error ė(t) with the proposed control law.
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(b) α1 = 8
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(c) α1 = 16
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(d) α1 = 32

Figure 7. Results for the control input torque τ(t) with the proposed control law.
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Table 1. Results for ∥x∥∞ and
√

1
α1λmin(T ) with the proposed control law.

α1 (α0 = 2) 4 8 16 32
∥x∥∞ 0.9483 0.3451 0.1622 0.0702√

1
α1λmin(T ) 0.4359 0.3082 0.2180 0.1541

We can observe from Figure 3 that the arguments in Theorem 1 with respect to the disturbance
ISS are verified for all the taken control parameter values since the corresponding tracking errors
are bounded. More importantly, we can also see from Figure 3 that making α1 larger leads to an
improved accuracy for the considered trajectory tracking problem. Furthermore, it can be observed
from Figures 4–6 that all the peak magnitudes of the accumulated position error ϵ(t), the position
error e(t) and the velocity error ė(t) are reduced by making α1 larger. The aforementioned intuitive
implication of the results in Theorem 2 with respect to the convergence rate for ∥x∥∞ might be verified
through these observations. Regarding a more sophisticated interpretation of the simulation results in a
theoretical side, we note from the results in Table 1 that the L∞ norm ∥x∥∞ decreases within a order no
slower than 1/

√
α1λmin(T ). This clearly demonstrates the effectiveness of the arguments in Theorem 2.

5.2. Comparison to conventional method

This section provides some simulation results to examine the superiority of the proposed method
over the conventional method obtained by combining the PID control and the computed-torque
control (CTC) [37]. This conventional method is called the PID-CDC throughout the paper, and it
is described by

ϵ̇ = e(t), (5.2)

τ = M̂(q)(q̈d + K[c]
D ė + K[c]

P e + K[c]
I ϵ) + Ĉ(q(t), q̇(t))q̇ + ĝ(q(t)) (5.3)

where M̂, Ĉ and ĝ are the estimated (i.e., nominal) values of M,C and g, respectively, and the control
parameters K[c]

d ,K
[c]
p and K[c]

I are diagonal positive definite matrices. Assuming that the accurate
dynamic model cannot be derived due to some model uncertainties, we take the estimated values of
M,C and g respectively as

M̂(q(t)) =
[
9.52 + 2.88 cos(q2(t)) 1.15 + 1.44 cos(q2(t))
1.15 + 1.44 cos(q2(t)) 7.15

]
,

Ĉ(q(t), q̇(t)) =
[
−1.44 sin(q2(t))q̇2(t) −1.44 sin(q2(t))(q̇1(t) + q̇2(t))
1.44 sin(q2(t))q̇1(t) 0

]
,

ĝ(q(t)) =
[
14.12 sin(q1(t) + q2(t)) + 23.54 sin(q1(t))

14.12 sin(q1(t) + q2(t))

]
.

Finally, the control parameters are taken by K[c]
d = 2ωcI2, K[c]

p = ω
2
c I2 and K[c]

I = 2ω3
c I2 with the cut-off

frequency ωc.
We first take the same parameter values for the proposed controller as in the last case of the previous

subsection, i.e., α0 = 2, α1 = 32,KP = 15I2 and KI = 15I2. To make a comparison between the
proposed and conventional controllers fair, we then determine the control parameters for the latter, by

AIMS Mathematics Volume 8, Issue 8, 17666–17686.



17682

which both the tracking performances relevant to the two controllers become similar to each other. In
other words, we take the cut-off frequency ωc in K[c]

d ,K
[c]
p and K[c]

I to make the L∞ norm of the state x
to be close to that of the case of α1 = 32 in Table 1, i.e., ∥x∥∞ = 0.07. The simulation results for the
real position vector q(t) ∈ R2 and the reference position vector qd(t) ∈ R2 are shown in Figure 8(a),
while the control input torque vector τ(t) ∈ R2 are shown in Figure 8(b). In a quantitative comparison
between the proposed and conventional controllers, the simulation results for ∥x∥∞, ∥∆τ∥∞ and ∥τ∥∞
are shown in Table 2, where ∆τ is the input difference in a unit time defined as ∆τ := τ(t + δ) − τ(t)
with the operating period δ in the controllers.
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(a) Reference and real position vector.
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(b) Control input torque.

Figure 8. Results for the conventional control law (PID-CTC).

Table 2. Comparison between the proposed and conventional control laws.

∥x∥∞ ∥∆τ∥∞ ∥τ∥∞
Proposed control law 0.0702 14.00 32.38

Conventional control law 0.0701 26.42 40.52

It could be observed from Figure 7(d) and Figure 8(b) that the torque input from the conventional
controller is more turbulent than that from the proposed controller, although both controllers achieve
similar tracking performances as observed from Figure 3(d) and Figure 8(a) as well as Table 2.

This tendency can be more obviously observed from Table 2 by showing that the peak values of the
input difference and the torque input in the conventional controller are quite larger than those of the
proposed controller; the peak values of the proposed controller are about 53% and 80% of those of the
conventional controller, respectively.

We can conclude from these observations that the proposed controller would lead to more smooth
control actions even for similar tracking performances to the conventional controller. More importantly,
obtaining the exact values of M,C and g becomes more difficult as the dimension of Euler-Lagrange
equations increases, and thus the proposed controller can be expected to be used more effectively
for such large-scale Euler-Lagrange equations than the conventional controller. This superiority of
the proposed controller over the conventional controller in the effectiveness of torque input might be
arising from the fact that the parameter M̂(q)K[c]

D relevant to the derivative term in the latter is usually
much larger than the similar parameter α in the former as seen from (5.3) and (4.2).
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6. Conclusions

This paper was concerned with introducing a new Lyapunov-based quantitative performance
measure associated with suppressing the peak magnitude of trajectory tracking errors for an Euler-
Lagrange equation. We proposed a PID control law readily applicable to the Euler-Lagrange equation
and evaluated the effect of disturbances on the system states by showing that the feedback system
obtained through the connection between the Euler-Lagrange equation and the proposed PID control
law satisfies the disturbance ISS. The main idea was to introduce an adequate Lyapunov function with
respect to the disturbance ISS, and the relevant arguments could be further effectively employed for the
L∞-gain analysis with respect to the corresponding trajectory tracking problem. More precisely, the
relation between the associated control parameters and the L∞-gain was shown to be described in terms
of the minimum eigenvalue of a suitably constructed positive definite matrix. The theoretical validity
and the practical effectiveness of the overall arguments developed in this paper were demonstrated
through some simulation results for a 2-DOF robot manipulator.

On the other hand, we would like to note that the tracking accuracy might be improved through an
additional implementation of a friction compensator. Furthermore, an auto-tuning technique for the
proposed PID controller undoubtedly contributes to wider applications of this paper to practical Euler-
Lagrange equations. In this sense, it is quite meaningful to extend the arguments for deriving (4.22)
tailored to a friction compensator and/or an auto-tuning algorithm for the proposed PID controller, but
this issue seems to be quite difficult and is left as an interesting future work.
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