Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Review Special Issues

Gravimetric inversion based on model exploration with growing source bodies (Growth) in diverse earth science disciplines

  • Received: 27 December 2023 Revised: 05 March 2024 Accepted: 18 March 2024 Published: 26 March 2024
  • MSC : 15A29

  • Gravimetry is a discipline of geophysics that deals with observation and interpretation of the earth gravity field. The acquired gravity data serve the study of the earth interior, be it the deep or the near surface one, by means of the inferred subsurface structural density distribution. The subsurface density structure is resolved by solving the gravimetric inverse problem. Diverse methods and approaches exist for solving this non-unique and ill-posed inverse problem. Here, we focused on those methods that do not pre-constrain the number or geometries of the density sources. We reviewed the historical development and the basic principles of the Growth inversion methodology, which belong to the methods based on the growth of the model density structure throughout an iterative exploration process. The process was based on testing and filling the cells of a subsurface domain partition with density contrasts through an iterative mixed weighted adjustment procedure. The procedure iteratively minimized the data misfit residuals jointly with minimizing the total anomalous mass of the model, which facilitated obtaining compact meaningful source bodies of the solution. The applicability of the Growth inversion approach in structural geophysical studies, in geodynamic studies, and in near surface gravimetric studies was reviewed and illustrated. This work also presented the first application of the Growth inversion tool to near surface microgravimetric data with the goal of seeking very shallow cavities in archeological prospection and environmental geophysics.

    Citation: Peter Vajda, Jozef Bódi, Antonio G. Camacho, José Fernández, Roman Pašteka, Pavol Zahorec, Juraj Papčo. Gravimetric inversion based on model exploration with growing source bodies (Growth) in diverse earth science disciplines[J]. AIMS Mathematics, 2024, 9(5): 11735-11761. doi: 10.3934/math.2024575

    Related Papers:

    [1] Yanyan Gao, Yangjiang Wei . Group codes over symmetric groups. AIMS Mathematics, 2023, 8(9): 19842-19856. doi: 10.3934/math.20231011
    [2] Chunqiang Cui, Jin Chen, Shixun Lin . Metric and strong metric dimension in TI-power graphs of finite groups. AIMS Mathematics, 2025, 10(1): 705-720. doi: 10.3934/math.2025032
    [3] Yunpeng Bai, Yuanlin Li, Jiangtao Peng . Unit groups of finite group algebras of Abelian groups of order 17 to 20. AIMS Mathematics, 2021, 6(7): 7305-7317. doi: 10.3934/math.2021428
    [4] Huani Li, Ruiqin Fu, Xuanlong Ma . Forbidden subgraphs in reduced power graphs of finite groups. AIMS Mathematics, 2021, 6(5): 5410-5420. doi: 10.3934/math.2021319
    [5] Yingyu Luo, Yu Wang . Supercommuting maps on unital algebras with idempotents. AIMS Mathematics, 2024, 9(9): 24636-24653. doi: 10.3934/math.20241200
    [6] Guoqing Wang . A generalization of Kruyswijk-Olson theorem on Davenport constant in commutative semigroups. AIMS Mathematics, 2020, 5(4): 2992-3001. doi: 10.3934/math.2020193
    [7] Yongli Zhang, Jiaxin Shen . Flag-transitive non-symmetric 2-designs with λ prime and exceptional groups of Lie type. AIMS Mathematics, 2024, 9(9): 25636-25645. doi: 10.3934/math.20241252
    [8] Hatice Gülsün Akay . (Co-)fibration of generalized crossed modules. AIMS Mathematics, 2024, 9(11): 32782-32796. doi: 10.3934/math.20241568
    [9] Xiaofei Cao, Yuyue Huang, Xue Hua, Tingyu Zhao, Sanzhang Xu . Matrix inverses along the core parts of three matrix decompositions. AIMS Mathematics, 2023, 8(12): 30194-30208. doi: 10.3934/math.20231543
    [10] Hui Yan, Hongxing Wang, Kezheng Zuo, Yang Chen . Further characterizations of the weak group inverse of matrices and the weak group matrix. AIMS Mathematics, 2021, 6(9): 9322-9341. doi: 10.3934/math.2021542
  • Gravimetry is a discipline of geophysics that deals with observation and interpretation of the earth gravity field. The acquired gravity data serve the study of the earth interior, be it the deep or the near surface one, by means of the inferred subsurface structural density distribution. The subsurface density structure is resolved by solving the gravimetric inverse problem. Diverse methods and approaches exist for solving this non-unique and ill-posed inverse problem. Here, we focused on those methods that do not pre-constrain the number or geometries of the density sources. We reviewed the historical development and the basic principles of the Growth inversion methodology, which belong to the methods based on the growth of the model density structure throughout an iterative exploration process. The process was based on testing and filling the cells of a subsurface domain partition with density contrasts through an iterative mixed weighted adjustment procedure. The procedure iteratively minimized the data misfit residuals jointly with minimizing the total anomalous mass of the model, which facilitated obtaining compact meaningful source bodies of the solution. The applicability of the Growth inversion approach in structural geophysical studies, in geodynamic studies, and in near surface gravimetric studies was reviewed and illustrated. This work also presented the first application of the Growth inversion tool to near surface microgravimetric data with the goal of seeking very shallow cavities in archeological prospection and environmental geophysics.



    This paper considers the following heteroscedastic model:

    Yi=f(Xi)Ui+g(Xi),i{1,,n}. (1.1)

    In this equation, g(x) is a known mean function, and the variance function r(x)(r(x):=f2(x)) is unknown. Both the mean function g(x) and variance function r(x) are defined on [0,1]. The random variables U1,,Un are independent and identically distributed (i.i.d.) with E[Ui]=0 and V[Ui]=1. Furthermore, the random variable Xi is independent of Ui for any i{1,,n}. The purpose of this paper is to estimate the mth derivative functions r(m)(x)(mN) from the observed data (X1,Y1),,(Xn,Yn) by a wavelet method.

    Heteroscedastic models are widely used in economics, engineering, biology, physical sciences and so on; see Box [1], Carroll and Ruppert [2], Härdle and Tsybakov [3], Fan and Yao [4], Quevedo and Vining [5] and Amerise [6]. For the above estimation model (1.1), the most popular method is the kernel method. Many important and interesting results of kernel estimators have been obtained by Wang et al. [7], Kulik and Wichelhaus [8] and Shen et al. [9]. However, the optimal bandwidth parameter of the kernel estimator is not easily obtained in some cases, especially when the function has some sharp spikes. Because of the good local properties in both time and frequency domains, the wavelet method has been widely used in nonparametric estimation problems; see Donoho and Johnstone [10], Cai [11], Nason et al. [12], Cai and Zhou [13], Abry and Didier [14] and Li and Zhang [15]. For the estimation problem (1.1), Kulik and Raimondo [16] studied the adaptive properties of warped wavelet nonlinear approximations over a wide range of Besov scales. Zhou et al. [17] developed wavelet estimators for detecting and estimating jumps and cusps in the mean function. Palanisamy and Ravichandran [18] proposed a data-driven estimator by applying wavelet thresholding along with the technique of sparse representation. The asymptotic normality for wavelet estimators of variance function under αmixing condition was obtained by Ding and Chen [19].

    In this paper, we focus on nonparametric estimation of the derivative function r(m)(x) of the variance function r(x). It is well known that derivative estimation plays an important and useful role in many practical applications (Woltring [20], Zhou and Wolfe, [21], Chacón and Duong [22], Wei et al.[23]). For the estimation model (1.1), a linear wavelet estimator and an adaptive nonlinear wavelet estimator for the derivative function r(m)(x) are constructed. Moreover, the convergence rates over L˜p(1˜p<) risk of two wavelet estimators are proved in Besov space Bsp,q(R) with some mild conditions. Finally, numerical experiments are carried out, where an automatic selection method is used to obtain the best parameters of two wavelet estimators. According to the simulation study, both wavelet estimators can efficiently estimate the derivative function. Furthermore, the nonlinear wavelet estimator shows better performance than the linear estimator.

    This paper considers wavelet estimations of a derivative function in Besov space. Now, we first introduce some basic concepts of wavelets. Let ϕ be an orthonormal scaling function, and the corresponding wavelet function is denoted by ψ. It is well known that {ϕτ,k:=2τ/2ϕ(2τxk),ψj,k:=2j/2ψ(2jxk),jτ,kZ} forms an orthonormal basis of L2(R). This paper uses the Daubechies wavelet, which has a compactly support. Then, for any integer j, a function h(x)L2([0,1]) can be expanded into a wavelet series as

    h(x)=kΛjαj,kϕj,k(x)+j=jkΛjβj,kψj,k(x),x[0,1]. (1.2)

    In this equation, Λj={0,1,,2j1}, αj,k=h,ϕj,k[0,1] and βj,k=h,ψj,k[0,1].

    Lemma 1.1. Let a scaling function ϕ be t-regular (i.e., ϕCt and |Dαϕ(x)|c(1+|x|2)l for each lZ and α=0,1,,t). If {αk}lp and 1p, there exist c2c1>0 such that

    c12j(121p)(αk)pkΛjαk2j2ϕ(2jxk)pc22j(121p)(αk)p.

    Besov spaces contain many classical function spaces, such as the well known Sobolev and Hölder spaces. The following lemma gives an important equivalent definition of a Besov space. More details about wavelets and Besov spaces can be found in Meyer [24] and Härdle et al. [25].

    Lemma 1.2. Let ϕ be t-regular and hLp([0,1]). Then, for p,q[1,) and 0<s<t, the following assertions are equivalent:

    (i) hBsp,q([0,1]);

    (ii) {2jshPjhp}lq;

    (iii) {2j(s1p+12)βj,kp}lq.

    The Besov norm of h can be defined by

    hBsp,q=(ατ,k)p+(2j(s1p+12)βj,kp)jτq,

    where βj,kpp=kΛj|βj,k|p.

    In this section, we will construct our wavelet estimators, and give the main theorem of this paper. The main theorem shows the convergence rates of wavelet estimators under some mild assumptions. Now, we first give the technical assumptions of the estimation model (1.1) in the following.

    A1: The variance function r:[0,1]R is bounded.

    A2: For any i{0,,m1}, variance function r satisfies r(i)(0)=r(i)(1)=0.

    A3: The mean function g:[0,1]R is bounded and known.

    A4: The random variable X satisfies XU([0,1]).

    A5: The random variable U has a moment of order 2˜p(˜p1).

    In the above assumptions, A1 and A3 are conventional conditions for nonparametric estimations. The condition A2 is used to prove the unbiasedness of the following wavelet estimators. In addition, A4 and A5 are technique assumptions, which will be used in Lemmas 4.3 and 4.5.

    According to the model (1.1), our linear wavelet estimator is constructed by

    ˆrlinn(x):=kΛjˆαj,kϕj,k(x). (2.1)

    In this definition, the scale parameter j will be given in the following main theorem, and

    ˆαj,k:=1nni=1Y2i(1)mϕ(m)j,k(Xi)10g2(x)(1)mϕ(m)j,k(x)dx. (2.2)

    More importantly, it should be pointed out that this linear wavelet estimator is an unbiased estimator of the derivative function r(m)(x) by Lemma 4.1 and the properties of wavelets.

    On the other hand, a nonlinear wavelet estimator is defined by

    ˆrnonn(x):=kΛjˆαj,kϕj,k(x)+j1j=jˆβj,kI{|ˆβj,k|κtn}ψj,k(x). (2.3)

    In this equation, IA denotes the indicator function over an event A, tn=2mjlnn/n,

    ˆβj,k:=1nni=1(Y2i(1)mψ(m)j,k(Xi)wj,k)I{|Y2i(1)mψ(m)j,k(Xi)wj,k|ρn}, (2.4)

    ρn=2mjn/lnn, and wj,k=10g2(x)(1)mψ(m)j,k(x)dx. The positive integer j and j1 will also be given in our main theorem, and the constant κ will be chosen in Lemma 4.5. In addition, we adopt the following symbol: x+:=max{x,0}. A denotes A\leq cB for some constant c > 0 ; A\gtrsim B means B\lesssim A ; A\thicksim B stands for both A\lesssim B and B\lesssim A .

    In this position, the convergence rates of two wavelet estimators are given in the following main theorem.

    Main theorem For the estimation model (1.1) with the assumptions A1-A5, r^{(m)}(x)\in B_{p, q}^s({{[0, 1]}}) (p, q \in \left[1, \infty\right) , s > 0) and 1 \le \tilde{p} < \infty , if \{p > \tilde{p} \ge 1, s > 0\} or \{1 \leq p \leq \tilde{p}, s > 1/p\} .

    (a) the linear wavelet estimator \hat r_n^{lin}(x) with s' = s-({\frac{1}{p}-\frac{1}{\tilde{p}}})_+ and {2^{{j_*}}}\sim{n^{\frac{1}{{2s' + 2m+1}}}} satisfies

    \begin{eqnarray} {\rm{E}}\left[\left \| \hat r_n^{lin}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}\right]\lesssim {n^{-\frac{{\tilde{p}s'}}{{2s' + 2m+1}}}}. \end{eqnarray} (2.5)

    (b) the nonlinear wavelet estimator \hat r_n^{non}(x) with {2^{{j_*}}}\sim{n^{\frac{1}{{2t+2m+1}}}} \left(t > s\right) and {2^{{j_1}}}\sim \left(\frac{n}{{\ln n}}\right)^{\frac{1}{2m+1}} satisfies

    \begin{eqnarray} {\rm{E}}\left[\left \| \hat r_n^{non}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}\right]\lesssim (\ln n)^{\tilde{p}-1} \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}, \end{eqnarray} (2.6)

    where

    \begin{eqnarray*} \delta = min\left\lbrace \frac{s}{2s+2m+1}, \frac{s-1/p+1 /\tilde{p}}{2(s-1 /p)+2m+1} \right\rbrace = \begin{cases} \frac{s}{2s+2m+1} & p > \frac{\tilde{p}(2m+1)}{2s+2m+1} \\ \frac{s-1/p+1 /\tilde{p}}{2(s-1 /p)+2m+1} & p \leq \frac{\tilde{p}(2m+1)}{2s+2m+1}. \end{cases} \end{eqnarray*}

    Remark 1. Note that n^{-\frac{s\tilde{p}}{2s+1}} \; (n^{-\frac{(s-1/p+1 /\tilde{p})\tilde{p}}{2(s-1 /p)+1}}) is the optimal convergence rate over L^{\tilde{p}} (1\leq \tilde{p} < +\infty) risk for nonparametric wavelet estimations (Donoho et al. [26]). The linear wavelet estimator can obtain the optimal convergence rate when p > \tilde{p}\ge1 and m = 0 .

    Remark 2. When m = 0 , this derivative estimation problem reduces to the classical variance function estimation. Then, the convergence rates of the nonlinear wavelet estimator are same as the optimal convergence rates of nonparametric wavelet estimation up to a \ln n factor in all cases.

    Remark 3. According to main theorem (a) and the definition of the linear wavelet estimator, it is easy to see that the construction of the linear wavelet estimator depends on the smooth parameter s of the unknown derivative function r^{(m)}(x) , which means that the linear estimator is not adaptive. Compared with the linear estimator, the nonlinear wavelet estimator only depends on the observed data and the sample size. Hence, the nonlinear estimator is adaptive. More importantly, the nonlinear wavelet estimator has a better convergence rate than the linear estimator in the case of p\leq\tilde{p} .

    In order to illustrate the empirical performance of the proposed estimators, we produce a numerical illustration using an adaptive selection method, which is used to obtain the best parameters of the wavelet estimators. For the problem (1.1), we choose three common functions, HeaviSine , Corner and Spikes , as the mean function g(x) ; see Figure 1. Those functions are usually used in wavelet literature. On the other hand, we choose the function f(x) by f_{1}(x) = 3(4x-2)^{2} e^{-(4x-2)^{2}} , f_{2}(x) = sin(2\pi sin\pi x) and f_{3}(x) = -(2x-1)^{2}+1 , respectively. In addition, we assume that the random variable U satisfies U\sim N[0, 1] . The aim of this paper is to estimate the derivative function r^{(m)}(x) of the variance function r(x) (r = f^{2}) by the observed data (X_{1}, Y_{1}), \ldots, (X _{n}, Y_{n}) . In this section, we adopt r_{1}(x) = [f_{1}(x)]^{2} , r_{2}(x) = [f_{2}(x)]^{2} and r_{3}(x) = [f_{3}(x)]^{2} . For the sake of simplicity, our simulation study focuses on the derivative function r'(x)(m = 1) and r(x)(m = 0) by the observed data (X_{1}, Y_{1}), \ldots, (X _{n}, Y_{n}) \; (n = 4096) . Furthermore, we use the mean square error ( MSE\; (\hat r(x), r(x)) = \frac{1}{n}\sum\limits_{i = 1}^{n}(\hat r(X_{i})-r(X_{i}))^{2} ) and the average magnitude of error ( AME\; (\hat r(x), r(x)) = \frac{1}{n}\sum\limits_{i = 1}^{n}|\hat r(X_{i})-r(X_{i})| ) to evaluate the performances of the wavelet estimators separately.

    Figure 1.  Three mean functions. (a) HeaviSine , (b) Corner , (c) Spikes .

    For the linear and nonlinear wavelet estimators, the scale parameter j_{*} and threshold value \lambda\; (\lambda = \kappa t_{n}) play important roles in the function estimation problem. In order to obtain the optimal scale parameter and threshold value of wavelet estimators, this section uses the two-fold cross validation (2FCV) approach (Nason [27], Navarro and Saumard [28]). During the first example of simulation study, we choose HeaviSine as the mean function g(x) , and f_{1}(x) = 3(4x-2)^{2} e^{-(4x-2)^{2}} . The estimation results of two wavelet estimators are presented by Figure 2. For the optimal scale parameter j_{*} of the linear wavelet estimator, we built a collection of j_{*} and j_{*} = 1, \ldots, log2(n)-1 . The best parameter j_{*} is selected by minimizing a 2FCV criterion denoted by 2FCV (j_{*}) ; see Figure 2(a). According to Figure 2(a), it is easy to see that the 2FCV (j_{*}) and MSE both can get the minimum value when j_{*} = 4 . For the nonlinear wavelet estimator, the best threshold value \lambda is also obtained by the 2FCV (\lambda) criterion in Figure 2(b). Meanwhile, the parameter j_{*} is same as the linear estimator, and the parameter j_{1} is chosen as the maximum scale parameter log2(n)-1 . From Figure 2(c) and 2(d), the linear and nonlinear wavelet estimators both can get a good performance with the best scale parameter and threshold value. More importantly, the nonlinear wavelet estimator shows better performance than the linear estimator.

    Figure 2.  The estimation results of wavelet estimators when g(x) is HeaviSine and r(x) = r_{1}(x) . (a) Graphs of the MSE (black line) and 2FCV criterion (red line) of the linear estimator. (b) Graphs of the MSE (black line) and 2FCV criterion (blue line) of the nonlinear estimator. (c) Fluctuating data (X, Y) (gray circles), the true variance r(x) (black line), the linear estimator \hat{r}^{lin} (red line) and the nonlinear estimator \hat{r}^{non} (blue line). (d) The estimation results of the linear (red line) and nonlinear (blue line) for derivative function r'(x) .

    In the following simulation study, more numerical experiments are presented to sufficiently verify the performance of the wavelet method. According to Figures 310, the wavelet estimators both can obtain good performances in different cases. Especially, the nonlinear wavelet estimator gets better estimation results than the linear estimator. Also, the MSE and AME of the wavelet estimators in all examples are provided by Table 1. Meanwhile, it is easy to see from Table 1 that the nonlinear wavelet estimators can have better performance than the linear estimators.

    Figure 3.  The estimation results of wavelet estimators when g(x) is HeaviSine and r(x) = r_{2}(x) .
    Figure 4.  The estimation results of wavelet estimators when g(x) is HeaviSine and r(x) = r_{3}(x) .
    Figure 5.  The estimation results of wavelet estimators when g(x) is Corner and r(x) = r_{1}(x) .
    Figure 6.  The estimation results of wavelet estimators when g(x) is Corner and r(x) = r_{2}(x) .
    Figure 7.  The estimation results of wavelet estimators when g(x) is Corner and r(x) = r_{3}(x) .
    Figure 8.  The estimation results of wavelet estimators when g(x) is Spikes and r(x) = r_{1}(x) .
    Figure 9.  The estimation results of wavelet estimators when g(x) is Spikes and r(x) = r_{2}(x) .
    Figure 10.  The estimation results of wavelet estimators when g(x) is Spikes and r(x) = r_{3}(x) .
    Table 1.  The MSE and AME of the wavelet estimators.
    HeaviSine Corner Spikes
    r_{1} r_{2} r_{3} r_{1} r_{2} r_{3} r_{1} r_{2} r_{3}
    MSE(\hat r^{lin}, r) 0.0184 0.0073 0.0071 0.0189 0.0075 0.0064 0.0189 0.0069 0.0052
    MSE(\hat r^{non}, r) 0.0048 0.0068 0.0064 0.0044 0.0070 0.0057 0.0042 0.0061 0.0046
    MSE(\hat r'^{lin}, r') 0.7755 0.0547 0.0676 0.7767 0.1155 0.0737 0.7360 0.2566 0.0655
    MSE(\hat r'^{non}, r') 0.2319 0.0573 0.0560 0.2204 0.0644 0.0616 0.2406 0.2868 0.0539
    AME(\hat r^{lin}, r) 0.0935 0.0653 0.0652 0.0973 0.0667 0.0615 0.0964 0.0621 0.0550
    AME(\hat r^{non}, r) 0.0506 0.0641 0.0619 0.0486 0.0649 0.0583 0.0430 0.0595 0.0518
    AME(\hat r'^{lin}, r') 0.6911 0.1876 0.2348 0.7021 0.2686 0.2451 0.6605 0.4102 0.2320
    AME(\hat r'^{non}, r') 0.3595 0.1862 0.2125 0.3450 0.2020 0.2229 0.3696 0.4198 0.2095

     | Show Table
    DownLoad: CSV

    Now, we provide some lemmas for the proof of the main Theorem.

    Lemma 4.1. For the model (1.1) with A2 and A4,

    \begin{gather} {\rm{E}}[{{{\hat\alpha}_{j, k}}}] = {\alpha_{j, k}} , \end{gather} (4.1)
    \begin{gather} {\rm{E}}\left[ \frac{1}{n}\sum\limits_{i = 1}^n \left({Y_i^{2}{(-1)^{m}{\psi^{(m)}_{j, k}}(X_i)}}-w_{j, k}\right)\right] = \beta _{j, k} . \end{gather} (4.2)

    Proof. According to the definition of {\hat \alpha _{j, k}} ,

    \begin{align*} {\rm{E}}[{{{\hat\alpha}_{j, k}}}] & = {\rm{E}}\left[{ \frac{1}{n}\sum\limits_{i = 1}^n {Y_i^{2}{(-1)^{m}{\phi^{(m)}_{j, k}}(X_i)}}-\int_{0}^{1} {{g^2}(x){(-1)^{m}{\phi^{(m)} _{j, k}}(x)}dx} }\right]\\ & = \frac{1}{n}\sum\limits_{i = 1}^n{\rm{E}}\left[{Y_i^{2}{(-1)^{m}{\phi^{(m)}_{j, k}}(X_i)}}\right]- \int_{0}^{1} {{g^2}(x){(-1)^{m}{\phi^{(m)} _{j, k}}(x)}dx}\\ & = {\rm{E}}\left[{Y_1^{2}{(-1)^{m}{\phi^{(m)}_{j, k}}(X_1)}}\right] -\int_{0}^{1} {{g^2}(x){(-1)^{m}{\phi^{(m)} _{j, k}}(x)}dx}\\ & = {\rm{E}}\left[{r({{X_1}})U_1^{2}(-1)^{m}{\phi^{(m)}_{j, k}}({{X_1}})}\right] + 2{\rm{E}}[{f({{X_1}}){U_1}g({{X_1}}){(-1)^{m}{\phi^{(m)}_{j, k}}(X_1)}}] \\ &+ {\rm{E}}\left[ {{g^2({{X_1}})}{(-1)^{m}{\phi^{(m)}_{j, k}}(X_1)}}\right]- \int_{0}^{1} {{g^2}(x){(-1)^{m}{\phi^{(m)} _{j, k}}(x)}dx}. \end{align*}

    Then, it follows from A4 that

    {\rm{E}}\left[{{g^2({{X_1}})}{(-1)^{m}{\phi^{(m)}_{j, k}}(X_1)}}\right] = \int_{0}^{1} {{g^2}(x){(-1)^{m}{\phi^{(m)} _{j, k}}(x)}dx}.

    Using the assumption of independence between {U_i} and {X_i} ,

    {\rm{E}}\left[{r({{X_1}})U_1^{2}(-1)^{m}{\phi^{(m)}_{j, k}}({{X_1}})}\right] = {\rm{E}}[{U_1^{2}}]{\rm{E}}\left[{r({{X_1}})(-1)^{m}{\phi^{(m)}_{j, k}}({{X_1}})}\right],
    {\rm{E}}[{f({{X_1}}){U_1}g({{X_1}}){(-1)^{m}{\phi^{(m)}_{j, k}}(X_1)}}] = {\rm{E}}[{U_1}]{\rm{E}}[{f({{X_1}})g({{X_1}}){(-1)^{m}{\phi^{(m)}_{j, k}}(X_1)}}].

    Meanwhile, the conditions {\rm{V}}[{U_1}] = 1 and {\rm{E}}[{U_1}] = 0 imply {\rm{E}}[{U_1^{2}}] = 1 . Hence, one gets

    \begin{align*} {\rm{E}}[{{{\hat\alpha}_{j, k}}}]& = {\rm{E}}\left[{r({{X_1}})(-1)^{m}{\phi^{(m)}_{j, k}}({{X_1}})}\right]\\ & = \int_{0}^{1} {r({x})(-1)^{m}{\phi^{(m)}_{j, k}}(x)dx} = (-1)^{m} \int_{0}^{1} {r({x}){\phi^{(m)}_{j, k}}(x)dx}\\ & = \int_{0}^{1} {r^{(m)}({x}){\phi_{j, k}}(x)dx} = \alpha _{j, k} \end{align*}

    by the assumption A2.

    On the other hand, one takes \psi instead of \phi , and w_{j, k} instead of \int_{0}^{1} {{g^2}(x){(-1)^{m}{\phi^{(m)} _{j, k}}(x)}dx} . The second equation will be proved by the similar mathematical arguments.

    Lemma 4.2. (Rosenthal's inequality) Let X_{1}, \ldots, X_{n} be independent random variables such that {\rm{E}}[X_{i}] = 0 and {\rm{E}}[|X_{i}|^{p}] < \infty . Then,

    \begin{align*} {\rm{E}}\left[{{{\left|\sum\limits_{i = 1}^n X_{i}\right|}^{p}}}\right] \lesssim \begin{cases} \sum\limits_{i = 1}^n {\rm{E}}\left[{{{\left| X_{i}\right|}^{p}}}\right]+\left( \sum\limits_{i = 1}^n {\rm{E}}\left[{{{\left| X_{i}\right|}^{2}}}\right]\right) ^{\frac{p}{2}}, &\mathit{\text{ p > 2 }}, \\ \left(\sum\limits_{i = 1}^n {\rm{E}}\left[{{{\left| X_{i}\right|}^{2}}}\right]\right)^{\frac{p}{2}}, & {{ 1\leq p\leq 2 }}. \end{cases} \end{align*}

    Lemma 4.3. For the model (1.1) with A1–A5, 2^{j}\le n and 1\le\tilde{p} < \infty ,

    \begin{gather} {\rm{E}}\left[{{{\left|{{{\hat \alpha }_{j, k}} - {\alpha _{j, k}}}\right|}^{\tilde{p}}}}\right] \lesssim n^{-\frac{\tilde{p}}{2}}2^{\tilde{p} mj} , \end{gather} (4.3)
    \begin{gather} {\rm{E}}\left[{{{\left|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}\right|}^{\tilde{p}}}}\right] \lesssim \left( \dfrac{\ln n}{n}\right) ^{-\frac{\tilde{p}}{2}}2^{\tilde{p} mj} . \end{gather} (4.4)

    Proof. By (4.1) and the independence of random variables {X_i} and {U_i} , one has

    \begin{align*} \left|{{\hat \alpha }_{j, k}} - {\alpha _{j, k}}\right|& = \left| \frac{1}{n}\sum\limits_{i = 1}^n {Y_i^{2}{(-1)^{m}{\phi^{(m)}_{j, k}}(X_i)}} - \int_{0}^{1} {{g^2}(x){(-1)^{m}{\phi^{(m)} _{j, k}}(x)}dx} -{\rm{E}}\left[\hat \alpha _{j, k}\right]\right|\\ & = \dfrac{1}{n} \left|\sum\limits_{i = 1}^n \left( {Y_i^{2}{(-1)^{m}{\phi^{(m)}_{j, k}}(X_i)}}-{\rm{E}}\left[{Y_i^{2}{(-1)^{m}{\phi^{(m)}_{j, k}}(X_i)}} \right] \right) \right| \\ & = \dfrac{1}{n} \left|\sum\limits_{i = 1}^n A_{i}\right|. \end{align*}

    In this above equation, A_{i}: = {Y_i^{2}{(-1)^{m}{\phi^{(m)}_{j, k}}(X_i)}}-{\rm{E}}\left[{Y_i^{2}{(-1)^{m}{\phi^{(m)}_{j, k}}(X_i)}} \right] .

    According to the definition of A_{i} , one knows that {\rm{E}}\left[A_{i}\right] = 0 and

    \begin{align*} {\rm{E}}\left[\left|A_{i}\right|^{\tilde{p}}\right] & = {\rm{E}}\left[\left|{Y_i^{2}{(-1)^{m}{\phi^{(m)}_{j, k}}(X_i)}}-{\rm{E}}\left[{Y_i^{2}{(-1)^{m}{\phi^{(m)}_{j, k}}(X_i)}} \right]\right|^{\tilde{p}}\right]\\ &\lesssim {\rm{E}}\left[\left|{Y_i^{2}{(-1)^{m}{\phi^{(m)}_{j, k}}(X_i)}}\right|^{\tilde{p}}\right]\\ &\lesssim {\rm{E}}\left[\left|(r({X_1})U_1^{2}+g^{2}(X_1)){(-1)^{m}{\phi^{(m)}_{j, k}}(X_i)}\right|^{\tilde{p}}\right]\\ &\lesssim {\rm{E}}\left[U_{1}^{2\tilde{p}}\right] {\rm{E}}\left[\left|r({X_1}){\phi^{(m)}_{j, k}}(X_i)\right|^{\tilde{p}}\right]+{\rm{E}}\left[\left|g^{2}({X_1}){\phi^{(m)}_{j, k}}(X_i)\right|^{\tilde{p}}\right]. \end{align*}

    The assumption A5 shows {\rm{E}}[{U_1^{2\tilde{p}}}]\lesssim 1 . Furthermore, it follows from A1 and A3 that

    \begin{gather*} {\rm{E}}[{U_1^{2\tilde{p}}}]{\rm{E}}\left[|{r({{X_1}}){{\phi^{(m)}_{j, k}}(X_1)|^{\tilde{p}}}}\right] \lesssim {\rm{E}}\left[{|{\phi^{(m)}_{j, k}}(X_1)|^{\tilde{p}}}\right] , \\ {\rm{E}}\left[{g^{2\tilde{p}}({{X_1}}){|{\phi^{(m)}_{j, k}}(X_1)|^{\tilde{p}}}}\right] \lesssim {\rm{E}}\left[{|{\phi^{(m)}_{j, k}}(X_1)|^{\tilde{p}}}\right]. \end{gather*}

    In addition, and the properties of wavelet functions imply that

    \begin{align*} {\rm{E}}\left[\left|{\phi^{(m)}_{j, k}}(X_i)\right|^{\tilde{p}}\right] = \int_{0}^{1} |{\phi^{(m)}_{j, k}}(x)|^{\tilde{p}}dx& = 2^{j(\tilde{p}/2+m \tilde{p}-1)} \int_{0}^{1} |\phi^{(m)}(2^{j}x-k)|^{\tilde{p}}d(2^{j}x-k)\\ & = 2^{j(\tilde{p}/2+m \tilde{p}-1)} ||\phi^{(m)}||_{\tilde{p}}^{\tilde{p}}\lesssim 2^{j(\tilde{p}/2+m \tilde{p}-1)}. \end{align*}

    Hence,

    {\rm{E}}\left[\left|A_{i}\right|^{\tilde{p}}\right] \lesssim 2^{j(\tilde{p}/2+m \tilde{p}-1)}.

    Especially in \tilde{p} = 2 , {\rm{E}}\left[\left|A_{i}\right|^{2}\right] \lesssim 2^{2mj} .

    Using Rosenthal's inequality and 2^{j}\le n ,

    \begin{align*} \begin{split} {\rm{E}}\left[{{{\left|{{{\hat \alpha }_{j, k}} - {\alpha _{j, k}}}\right|}^{\tilde{p}}}}\right] & = \dfrac{1}{n^{\tilde{p}}} {\rm{E}}\left[{{{\left|\sum\limits_{i = 1}^n A_{i}\right|}^{\tilde{p}}}}\right]\\ &\lesssim \begin{cases} \dfrac{1}{n^{\tilde{p}}} \left(\sum\limits_{i = 1}^n {\rm{E}}\left[{{{\left| A_{i}\right|}^{\tilde{p}}}}\right]+(\sum\limits_{i = 1}^n {\rm{E}}\left[{{{\left| A_{i}\right|}^{2}}}\right])^{\frac{\tilde{p}}{2}} \right), & { \tilde{p} > 2, } \\ \dfrac{1}{n^{\tilde{p}}} \left(\sum\limits_{i = 1}^n {\rm{E}}\left[{{{\left| A_{i}\right|}^{2}}}\right]\right)^{\frac{\tilde{p}}{2}}, & { 1 \leq \tilde{p} \leq 2 , } \end{cases}\\ &\lesssim \begin{cases} \dfrac{1}{n^{\tilde{p}}} \left(n \cdot 2^{j(\frac{\tilde{p}}{2}+m \tilde{p}-1)} + (n \cdot 2^{2mj})^{\frac{\tilde{p}}{2}}\right), & { \tilde{p} > 2, } \\ \dfrac{1}{n^{\tilde{p}}} \left( n \cdot 2^{2mj} \right)^{\frac{\tilde{p}}{2}}, & { 1 \leq \tilde{p} \leq 2, } \end{cases}\\ &\lesssim n^{-\frac{\tilde{p}}{2}}2^{\tilde{p}mj}. \end{split} \end{align*}

    Then, the first inequality is proved.

    For the second inequality, note that

    \begin{align*} \beta _{j, k} & = {\rm{E}}\left[ \frac{1}{n}\sum\limits_{i = 1}^n \left({Y_i^{2}{(-1)^{m}{\psi^{(m)}_{j, k}}(X_i)}}-w_{j, k}\right)\right]\\ & = \frac{1}{n}\sum\limits_{i = 1}^n {\rm{E}}\left[ \left({Y_i^{2}{(-1)^{m}{\psi^{(m)}_{j, k}}(X_i)}}-\int_{0}^{1} {{g^2}(x){(-1)^{m}{\psi^{(m)} _{j, k}}(x)}dx}\right)\right]\\ & = \frac{1}{n}\sum\limits_{i = 1}^n {\rm{E}}\left[ K_{i}\right] \end{align*}

    with (4.2) and K_{i}: = {Y_i^{2}{(-1)^{m}{\psi^{(m)}_{j, k}}(X_i)}}-\int_{0}^{1} {{g^2}(x){(-1)^{m}{\psi^{(m)} _{j, k}}(x)}dx}.

    Let B_{i}: = K_{i}\mathbb{I}_{\left\{|K_{i}| \leq \rho_{n}\right\}}-{\rm{E}}\left[K_{i}\mathbb{I}_{\left\{|K_{i}| \leq \rho_{n}\right\}}\right] . Then, by the definition of {\hat \beta }_{j, k} in (2.4),

    \begin{align} |{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}| = |\frac{1}{n}\sum\limits_{i = 1}^n K_{i}\mathbb{I}_{\left\{|K_{i}| \leq \rho_{n}\right\}}-{\beta _{j, k}}| \leq \frac{1}{n} \left| \sum\limits_{i = 1}^n B_{i}\right| +\frac{1}{n} \sum\limits_{i = 1}^n {\rm{E}}\left[ |K_{i}|\mathbb{I}_{\left\{|K_{i}| > \rho_{n}\right\}}\right]. \end{align} (4.5)

    Similar to the arguments of A_{i} , it is easy to see that {\rm{E}}\left[B_{i}\right] = 0 and

    {\rm{E}}\left[\left|B_{i}\right|^{\tilde{p}}\right] \lesssim {\rm{E}}\left[\left|K_{i}\mathbb{I}_{\left\{|K_{i}| \leq \rho_{n}\right\}}\right|^{\tilde{p}}\right] \lesssim {\rm{E}}\left[\left|K_{i}\right|^{\tilde{p}}\right]\lesssim 2^{j(\frac{\tilde{p}}{2}+m \tilde{p}-1)}.

    Especially in the case of \tilde{p} = 2 , one can obtain {\rm{E}}\left[\left|B_{i}\right|^{2}\right] \lesssim 2^{2mj}. On the other hand,

    \begin{eqnarray} {\rm{E}}\left[ |K_{i}|\mathbb{I}_{\left\{\left|K_{i}\right| > \rho_{n}\right\}}\right] \lesssim {\rm{E}}\left[ |K_{i}|\cdot \dfrac{|K_{i}|}{\rho_{n}}\right] = \dfrac{{\rm{E}}\left[K_{1}^{2}\right]}{\rho_{n}} \lesssim \dfrac{2^{2mj}}{\rho_{n}} = t_n = 2^{mj}\sqrt{\frac{\ln n}{n}}. \end{eqnarray} (4.6)

    According to Rosenthal's inequality and 2^{j}\le n ,

    \begin{align*} \begin{split} {\rm{E}}\left[{{{|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|}^{\tilde{p}}}}\right] &\lesssim \dfrac{1}{n^{\tilde{p}}} {\rm{E}}\left[{{{\left|\sum\limits_{i = 1}^n B_{i}\right|}^{\tilde{p}}}}\right]+(t_{n})^{\tilde{p}}\\ &\lesssim \begin{cases} \dfrac{1}{n^{\tilde{p}}} \left(\sum\limits_{i = 1}^n {\rm{E}}\left[{{{\left| B_{i}\right|}^{\tilde{p}}}}\right]+(\sum\limits_{i = 1}^n {\rm{E}}\left[{{{\left| B_{i}\right|}^{2}}}\right])^{\frac{\tilde{p}}{2}} \right)+(t_{n})^{\tilde{p}}, & { \tilde{p} > 2, } \\ \dfrac{1}{n^{\tilde{p}}} \left(\sum\limits_{i = 1}^n {\rm{E}}\left[{{{\left| B_{i}\right|}^{2}}}\right]\right)^{\frac{\tilde{p}}{2}}+(t_{n})^{\tilde{p}}, & { 1 \leq \tilde{p} \leq 2, } \end{cases}\\ &\lesssim \begin{cases} \dfrac{1}{n^{\tilde{p}}} \left(n \cdot 2^{j(\frac{\tilde{p}}{2}+m \tilde{p}-1)} + (n \cdot 2^{2mj})^{\frac{\tilde{p}}{2}}\right)+\left( \dfrac{\ln n}{n}\right) ^{-\frac{\tilde{p}}{2}}\cdot 2^{\tilde{p} mj}, & { \tilde{p} > 2 , } \\ \dfrac{1}{n^{\tilde{p}}} \left( n \cdot 2^{2mj} \right)^{\frac{\tilde{p}}{2}}+\left( \dfrac{\ln n}{n}\right) ^{-\frac{\tilde{p}}{2}}\cdot 2^{\tilde{p} mj}, & { 1 \leq \tilde{p} \leq 2, } \end{cases}\\ &\lesssim \left( \dfrac{\ln n}{n}\right) ^{-\frac{\tilde{p}}{2}}2^{\tilde{p} mj}. \end{split} \end{align*}

    Then, the second inequality is proved.

    Lemma 4.4. (Bernstein's inequality) Let X_{1}, \ldots, X_{n} be independent random variables such that {\rm{E}}[X_{i}] = 0 , |{{X_i}}| < M and {\rm{E}}[|X_{i}|^{2}] : = \sigma^{2} . Then, for each \nu > 0

    \begin{align*} {\rm{P}}\left({\frac{1}{n}\left|{\sum\limits_{i = 1}^n {{X_i}}}\right| \ge \nu }\right) \le 2 \exp\left\{{ - \frac{n \nu^{2}}{{2({\sigma^{2} +\nu M/{3}})}}}\right\}. \end{align*}

    Lemma 4.5. For the model (1.1) with A1–A5 and 1\leq\tilde{p} < +\infty , there exists a constant \kappa > 1 such that

    \begin{eqnarray} {\rm{P}}\left({{\left|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}\right|}}\ge\kappa{t_n}\right) \lesssim n^{-\tilde{p}}. \end{eqnarray} (4.7)

    Proof. According to (4.5), one gets K_{i} = {Y_i^{2}{(-1)^{m}{\psi^{(m)}_{j, k}}(X_i)}}-\int_{0}^{1} {{g^2}(x){(-1)^{m}{\psi^{(m)} _{j, k}}(x)}dx} , B_{i} = K_{i}\mathbb{I}_{\left\{|K_{i}| \leq \rho_{n}\right\}}-{\rm{E}}\left[K_{i}\mathbb{I}_{\left\{|K_{i}| \leq \rho_{n}\right\}}\right] and

    \begin{align*} |{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}| \leq \frac{1}{n} \left| \sum\limits_{i = 1}^n B_{i}\right| +\frac{1}{n} \sum\limits_{i = 1}^n {\rm{E}}\left[ |K_{i}|\mathbb{I}_{\left\{|K_{i}| > \rho_{n}\right\}}\right]. \end{align*}

    Meanwhile, (4.6) shows that there exists c > 0 such that {\rm{E}}\left[|K_{i}|\mathbb{I}_{\left\{\left|K_{i}\right| > \rho_{n}\right\}}\right] \leq c{t_n} . Furthermore, the following conclusion is true.

    \begin{align*} \left\{{|{{{\hat \beta }_{j, k}}-{\beta _{j, k, u}}}| \ge \kappa {t_n}}\right\} &\subseteq \left\{\Bigg[{\frac{1}{n} \left| \sum\limits_{i = 1}^n B_{i}\right| +\frac{1}{n} \sum\limits_{i = 1}^n {\rm{E}}\left( |K_{i}|\mathbb{I}_{\left\{|K_{i}| > \rho_{n}\right\}}\right)\Bigg] \ge \kappa {t_n}}\right\}\\ &\subseteq \left\{{\frac{1}{n}\left|{\sum\limits_{i = 1}^n {{B_i}}}\right| \ge (\kappa-c ){t_n}}\right\}. \end{align*}

    Note that the definition of B_{i} implies that |{{B_i}}|\lesssim \rho_{n} and {\rm{E}}\left[B_{i} \right] = 0 . Using the arguments of Lemma 4.3, {\rm{E}}[{B_{_i}^2}] : = \sigma^{2} \lesssim 2^{2mj} . Furthermore, by Bernstein's inequality,

    \begin{align*} {\rm{P}}\left({\frac{1}{n}\left|{\sum\limits_{i = 1}^n {{B_i}}}\right| \ge (\kappa-c) {t_n}}\right) &\lesssim \exp\left\{{ - \frac{n (\kappa-c )^{2} {t_n}^2}{{2({\sigma^{2} +{{(\kappa-c ){t_n} \rho_{n}}}/{3}})}}}\right\}\\ &\lesssim \exp\left\{{ - \frac{n (\kappa-c )^{2} 2^{2mj}\cdot\frac{\ln n}{n}}{{2({2^{2mj} +{{(\kappa-c )\cdot 2^{2mj}}}/{3}})}}}\right\}\\ & = \exp\left\{ { -(\ln n) \frac{{{(\kappa-c ) ^2}}}{{2({1 + {(\kappa-c )}/{3}})}}}\right\} \\ & = {n^{ - \frac{{{(\kappa-c ) ^2}}}{2({1 +(\kappa-c)/{3}})}}}. \end{align*}

    Then, one can choose large enough \kappa such that

    \begin{eqnarray*} {\rm{P}}\left({{\left|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}\right|}}\ge\kappa{t_n}\right) \lesssim {n^{ - \frac{{{(\kappa-c ) ^2}}}{2({1 +{(\kappa-c)}/{3}})}}}\lesssim n^{-\tilde{p}}. \end{eqnarray*}

    Proof of (a): Note that

    \begin{align*} \left \| \hat r_n^{lin}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}} \lesssim \left \| \hat r_n^{lin}(x)-{P_{j_{*}}}r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}+\left \| {P_{j_{*}}}r^{(m)}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}} \end{align*}

    Hence,

    \begin{align} {\rm{E}}\left[ \left \| \hat r_n^{lin}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}\right] &\lesssim {\rm{E}}\left[\left \| \hat r_n^{lin}(x)-{P_{j_{*}}}r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}\right] +\left \| {P_{j_{*}}}r^{(m)}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}. \end{align} (4.8)

    \blacksquare The stochastic term {\rm{E}}\left[\left \| \hat r_n^{lin}(x)-{P_{j_{*}}}r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}\right] .

    It follows from Lemma 1.1 that

    \begin{align*} {\rm{E}}\left[\left \| \hat r_n^{lin}(x)-{P_{j_{*}}}r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}\right] & = {\rm{E}}\left[\left\| \sum\limits_{k \in {\mit\Lambda _{{j_*}}}} \left( {\hat \alpha}_{{j_*}, k}-{\alpha}_{{j_*}, k}\right)\phi_{j_*, k}(x)\right\| ^{\tilde{p}}_{\tilde{p}}\right] \\ &\sim 2^{j_*(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _{{j_*}}}} {\rm{E}}\left[\left| {\hat \alpha}_{{j_*}, k}-{\alpha}_{{j_*}, k} \right| ^{\tilde{p}}\right]. \end{align*}

    Then, according to (4.3), |{{\mit\Lambda _{{j_*}}}}|\sim{2^{j_*}} and {2^{{j_*}}} \sim{n^{\frac{1}{{2s' + 2m+1}}}} , one gets

    \begin{align} {\rm{E}}\left[\left \| \hat r_n^{lin}(x)-{P_{j_{*}}}r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}\right] \sim 2^{j_* \frac{\tilde{p}}{2}(2m+1)} \cdot n^{-\frac{\tilde{p}}{2}} \sim {n^{-\frac{{\tilde{p}s'}}{{2s' + 2m+1}}}}. \end{align} (4.9)

    \blacksquare The bias term \left \| {P_{j_{*}}}r^{(m)}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}} .

    When p > \tilde{p} \ge 1 , s' = s-({\frac{1}{p}-\frac{1}{\tilde{p}}})_+ = s . Using Hölder inequality, Lemma 1.2 and r^{(m)} \in B_{p, q}^s({{[0, 1]}}) ,

    \left \| {P_{j_{*}}}r^{(m)}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}\lesssim \left \| {P_{j_{*}}}r^{(m)}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{p} \lesssim 2^{-j_{*} \tilde{p} s} = 2^{-j_{*} \tilde{p} s'}\sim {n^{-\frac{\tilde{p}s'}{{2s' + 2m+1}}}}.

    When 1 \leq p\leq\tilde{p} and s > \dfrac{1}{p} , one knows that B_{p, q}^s({{[0, 1]}}) \subseteq B_{\tilde{p}, \infty}^{s'} ({{[0, 1]}}) and

    \begin{align*} \left \| {P_{j_{*}}}r^{(m)}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}} \lesssim 2^{-j_{*} \tilde{p} s'}\sim {n^{-\frac{\tilde{p} s'}{{2s' + 2m+1}}}}. \end{align*}

    Hence, the following inequality holds in both cases.

    \begin{align} \left \| {P_{j_{*}}}r^{(m)}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}} \lesssim {n^{-\frac{\tilde{p} s'}{{2s' + 2m+1}}}}. \end{align} (4.10)

    Finally, the results (4.8)–(4.10) show

    \begin{eqnarray*} {\rm{E}}\left[\left \| \hat r_n^{lin}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}\right]\lesssim {n^{-\frac{\tilde{p} s'}{{2s' + 2m+1}}}}. \end{eqnarray*}

    Proof of (b): By the definitions of \hat r_n^{lin}(x) and \hat r_n^{non}(x) , one has

    \begin{align*} \left\| {\hat r_n^{non}(x) - r^{(m)}(x)}\right\| ^{\tilde{p}}_{\tilde{p}}&\lesssim \left\| \hat r_n^{lin}(x) - {P_{{j_*}}}r^{(m)}(x)\right\| ^{\tilde{p}}_{\tilde{p}} + \left\| r^{(m)}(x)-{P_{{j_1} + 1}}r^{(m)}(x)\right\| ^{\tilde{p}}_{\tilde{p}}\\ &+\left\| \sum\limits_{j = {j_*}}^{{j_1}} \sum\limits_{k \in {\mit\Lambda _j}} {\left({{{\hat\beta }_{j, k}}{\mathbb{I}_{\{{|{{{\hat \beta }_{j, k}}}| \ge \kappa {t_n}}\}}} - {\beta _{j, k}}}\right)}{\psi _{j, k}}(x)\right\| ^{\tilde{p}}_{\tilde{p}}. \end{align*}

    Furthermore,

    \begin{align} {\rm{E}}\left[\left \| \hat r_n^{non}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}\right] \lesssim T_{1}+T_{2}+Q. \end{align} (4.11)

    In this above inequality,

    \begin{gather*} T_{1}: = {\rm{E}}\left[\left\| \hat r_n^{lin}(x) - {P_{{j_*}}}r^{(m)}(x)\right\| ^{\tilde{p}}_{\tilde{p}} \right], \\ T_{2}: = \left\| r^{(m)}(x)-{P_{{j_1} + 1}}r^{(m)}(x)\right\| ^{\tilde{p}}_{\tilde{p}}, \\ Q: = {\rm{E}}\left[ \left\| \sum\limits_{j = {j_*}}^{{j_1}} \sum\limits_{k \in {\mit\Lambda _j}} {\left({{{\hat\beta }_{j, k}}{\mathbb{I}_{\{{|{{{\hat \beta }_{j, k}}}| \ge \kappa {t_n}}\}}} - {\beta _{j, k}}}\right)}{\psi _{j, k}}(x)\right\| ^{\tilde{p}}_{\tilde{p}}\right]. \end{gather*}

    \blacksquare For T_{1} . According to (4.9) and {2^{{j_*}}}\sim{n^{\frac{1}{{2t + 2m+1}}}} \left(t > s\right) ,

    \begin{align} T_{1} \sim 2^{j_* \frac{\tilde{p}}{2}(2m+1)} \cdot n^{-\frac{\tilde{p}}{2}} \sim n^{-\frac{\tilde{p} t}{2t+2m+1}} < n^{-\frac{\tilde{p} s}{2s+2m+1}} \leq n^{-\tilde{p} \delta}. \end{align} (4.12)

    \blacksquare For T_{2} . Using similar mathematical arguments as (4.10), when p > \tilde{p} \ge 1 , one can obtain T_{2}: = \left\| r^{(m)}(x)-{P_{{j_1} + 1}}r^{(m)}(x)\right\| ^{\tilde{p}}_{\tilde{p}} \lesssim 2^{-j_{1}\tilde{p}s} . This with {2^{{j_1}}}\sim \left(\frac{n}{{\ln n}}\right)^{\frac{1}{2m+1}} leads to

    T_{2}\lesssim 2^{-j_{1} \tilde{p}s} < \left( \frac{\ln n}{{n}}\right)^{\frac{\tilde{p}s}{2m+1}} \le \left( \frac{\ln n}{{ n}}\right)^{\frac{\tilde{p}s}{2s+2m+1}} \le \left( \frac{\ln n}{{ n}}\right)^{\tilde{p} \delta}.

    On the other hand, when 1 \leq p\leq\tilde{p} and s > \dfrac{1}{p} , one has B_{p, q}^s({{[0, 1]}}) \subseteq B_{\tilde{p}, \infty}^{s-{\frac{1}{p}+\frac{1}{\tilde{p}}}} ({{[0, 1]}}) and

    \begin{align*} T_{2} \lesssim 2^{-j_1 \tilde{p} (s-1/p+1/\tilde{p})}\sim \left( \dfrac{\ln n}{n}\right) ^{\frac{\tilde{p}(s-1/p+1/\tilde{p})}{2m+1}} < \left( \dfrac{\ln n}{n}\right) ^{\frac{\tilde{p}(s-1/p+1/\tilde{p})}{2(s-1/p)+2m+1}} \le \left( \frac{\ln n}{{ n}}\right)^{\tilde{p} \delta}. \end{align*}

    Therefore, for each 1 \le \tilde{p} < \infty ,

    \begin{align} T_{2}\lesssim \left( \frac{\ln n}{{ n}}\right)^{\tilde{p} \delta}. \end{align} (4.13)

    \blacksquare For Q . According to Hölder inequality and Lemma 1.1,

    \begin{align*} Q&\lesssim (j_1-j_*+1)^{\tilde{p}-1} \sum\limits_{j = {j_*}}^{{j_1}} {\rm{E}}\left[ \left\| \sum\limits_{k \in {\mit\Lambda _j}} {\left({{{\hat\beta }_{j, k}}{\mathbb{I}_{\{{|{{{\hat \beta }_{j, k}}}| \ge \kappa {t_n}}\}}} - {\beta _{j, k}}}\right)}{\psi _{j, k}}(x)\right\| ^{\tilde{p}}_{\tilde{p}}\right] \\ &\lesssim (j_1-j_*+1)^{\tilde{p}-1} \sum\limits_{j = {j_*}}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _{j}}} {\rm{E}}\left[|{{{\hat \beta }_{j, k}}{\mathbb{I}_{\{{|{{{\hat \beta }_{j, k}}}|\ge \kappa{t_n}}\}}} - {\beta _{j, k}}}|^{\tilde{p}}\right]. \end{align*}

    Note that

    \begin{align*} |{{{\hat \beta }_{j, k}}{\mathbb{I}_{\{{|{{{\hat \beta }_{j, k}}}|\ge \kappa{t_n}}\}}} - {\beta _{j, k}}}|^{\tilde{p}} & = |{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}}{{\mathbb{I}_{\{{|{{{\hat \beta }_{j, k}}}| \ge \kappa {t_n}, | {{\beta _{j, k}}}| < \frac{{\kappa {t_n}}}{2}}\}}} + |{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}}{\mathbb{I}_{\{{|{{{\hat \beta }_{j, k}}}| \ge \kappa {t_n}, |{{\beta _{j, k}}}|\ge \frac{{\kappa {t_n}}}{2}}\}}}}\\ &+ |{{\beta _{j, k}}}|^{\tilde{p}}{{\mathbb{I}_{\{{|{{{\hat \beta }_{j, k}}}| < \kappa {t_n}, | {{\beta _{j, k}}}| > 2\kappa {t_n}}\}}} + |{{\beta _{j, k}}}|^{\tilde{p}}{\mathbb{I}_{\{{|{{{\hat \beta }_{j, k}}}| < \kappa {t_n}, | {{\beta _{j, k}}}| \le 2\kappa {t_n}}\}}}}. \end{align*}

    Meanwhile,

    \begin{gather*} {{\{{|{{{\hat \beta }_{j, k}}}|\ge \kappa{t_n}}, |{{\beta _{j, k}}}| < \frac{{\kappa {t_n}}}{2}\}}} \subseteq{{\{|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}| > \frac{{\kappa{t_n}}}{2}\}}}, \\ {{\{{|{{{\hat \beta }_{j, k}}}| < \kappa{t_n}}, |{{\beta _{j, k}}}| > 2\kappa {t_n}\}}}\subseteq {{\{|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}| > \kappa{t_n}\}}}\subseteq {{\{|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}| > \frac{{\kappa{t_n}}}{2}\}}}. \end{gather*}

    Then, Q can be decomposed as

    \begin{align} Q\lesssim (j_1-j_*+1)^{\tilde{p}-1}\left( Q_{1}+Q_{2}+Q_{3}\right), \end{align} (4.14)

    where

    \begin{gather*} Q_{1}: = \sum\limits_{j = {j_*}}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _{j}}} {\rm{E}}\left[|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}} {\mathbb{I}_{\{|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}| > \frac{{\kappa{t_n}}}{2}\}}}\right], \\ Q_{2}: = \sum\limits_{j = {j_*}}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _{j}}} {\rm{E}}\left[|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\ge \frac{{\kappa {t_n}}}{2}\}}}\right], \\ Q_{3}: = \sum\limits_{j = {j_*}}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _{j}}} | {\beta _{j, k}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\le 2\kappa {t_n}\}}}. \end{gather*}

    \blacksquare For {Q_1} . It follows from the Hölder inequality that

    {\rm{E}}\left[|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}} {\mathbb{I}_{\{|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}| > \frac{{\kappa{t_n}}}{2}\}}}\right] \le {\left( {{\rm{E}}\left[{{{|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|}^{2\tilde{p}}}}\right]}\right)^{\frac{1}{2}}}{\left[{{\rm{P}}\left({|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}| > \frac{{\kappa {t_n}}}{2}}\right)}\right]^{\frac{1}{2}}}.

    By Lemma 4.3, one gets

    {\rm{E}}\left[{{{\left|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}\right|}^{2\tilde{p}}}}\right] \lesssim \left( \dfrac{\ln n}{n}\right) ^{-\tilde{p}} \cdot 2^{2\tilde{p} mj} .

    This with Lemma 4.5, |{{\mit\Lambda _{j}}}|\sim{2^{j}} and {2^{{j_1}}}\sim \left(\frac{n}{{\ln n}}\right)^{\frac{1}{2m+1}} shows that

    \begin{align} Q_{1} \lesssim \sum\limits_{j = {j_*}}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}}2^{j} \cdot \left( \frac{\ln n}{n}\right) ^{\frac{\tilde{p}}{2}} 2^{\tilde{p} mj} \cdot n^{-\frac{\tilde{p}}{2}} \lesssim n^{-\frac{\tilde{p}}{2}} < n^{-\tilde{p} \delta}. \end{align} (4.15)

    \blacksquare For {Q_2} . One defines

    {2^{j'}} \sim \left(\frac{n}{\ln n} \right)^{\frac{1}{{2s + 2m+1}}}.

    Clearly, {2^{{j_*}}}\sim{n^{\frac{1}{{2t+2m + 1}}}} \left(t > s\right) \le {2^{j'}}\sim \left(\frac{n}{\ln n} \right)^{\frac{1}{{2s + 2m+1}}} < {2^{{j_1}}}\sim \left(\frac{n}{\ln n} \right) ^{\frac{1}{2m+1}} . Furthermore, one rewrites

    \begin{align} {Q_2} = \left({\sum\limits_{j = {j_*}}^{j'} { + \sum\limits_{j = j' + 1}^{{j_1}}}}\right) 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}}{\rm{E}}\left[|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\ge \frac{{\kappa {t_n}}}{2}\}}}\right] : = {Q_{21}} + {Q_{22}}. \end{align} (4.16)

    \blacksquare For {Q_{21}} . By Lemma 4.3 and {2^{j'}} \sim \left(\frac{n}{\ln n} \right)^{\frac{1}{{2s + 2m+1}}},

    \begin{align} {Q_{21}}&: = \sum\limits_{j = {j_*}}^{j'} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} {\rm{E}}\left[|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\ge \frac{{\kappa {t_n}}}{2}\}}}\right]\\ &\le \sum\limits_{j = {j_*}}^{j'} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} {\rm{E}}\left[|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}} \right] \lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}}{2}} \sum\limits_{j = {j_*}}^{j'} 2^{j(2m+1) \frac{\tilde{p}}{2}}\\ &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}}{2}} 2^{j'(2m+1) \frac{\tilde{p}}{2}} \sim \left( \frac{\ln n}{n}\right)^{\frac{{\tilde{p}}s}{{2s + 2m+1}}} \le \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align} (4.17)

    \blacksquare For {Q_{22}} . Using Lemma 4.3, one has

    \begin{align*} {Q_{22}}&: = \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} {\rm{E}}\left[|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\ge \frac{{\kappa {t_n}}}{2}\}}}\right]\\ &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}+\tilde{p}mj} \sum\limits_{k \in {\mit\Lambda _j}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\ge \frac{{\kappa {t_n}}}{2}\}}}. \end{align*}

    When p > \tilde{p} \ge 1 , by the Hölder inequality, {t_n} = 2^{mj}\sqrt{{\ln n}/n} , {2^{j'}}\sim\left(\frac{n}{\ln n} \right)^{\frac{1}{{2s + 2m+1}}} and Lemma 1.2, one can obtain that

    \begin{align} {Q_{22}} &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}+\tilde{p}mj} \sum\limits_{k \in {\mit\Lambda _j}} \left( \dfrac{|{{\beta _{j, k}}}|}{\frac{{\kappa {t_n}}}{2}}\right) ^{\tilde{p}}\\ &\lesssim \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} {|\beta _{j, k}|^{\tilde{p}}} = \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \left\| \beta _{j, k} \right\| ^{\tilde{p}}_{\tilde{p}}\\ &\le \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \cdot 2^{j(1-\frac{\tilde{p}}{p})}\left\| \beta _{j, k} \right\| ^{\tilde{p}}_{p}\\ & \lesssim \sum\limits_{j = j' + 1}^{{j_1}} 2^{-j\tilde{p}s} \lesssim 2^{-j'\tilde{p}s} \sim \left( \frac{\ln n}{n}\right)^{\frac{{\tilde{p}}s}{{2s + 2m+1}}} \le \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align} (4.18)

    When 1\leq p\leq\tilde{p} , it follows from Lemma 1.2 that

    \begin{align} {Q_{22}} &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}+\tilde{p}mj} \sum\limits_{k \in {\mit\Lambda _j}} \left( \dfrac{|{{\beta _{j, k}}}|}{\frac{{\kappa {t_n}}}{2}}\right) ^{p}\\ &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}+j(\tilde{p}-p)m} \left\| \beta _{j, k} \right\|^{p}_{p}\\ &\le \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{-j(sp+\frac{p}{2}-\frac{\tilde{p}}{2}-(\tilde{p}-p)m)}. \end{align} (4.19)

    Take

    \epsilon : = sp-\dfrac{\tilde{p}-p}{2} (2m+1).

    Then, (4.19) can be rewritten as

    \begin{align} {Q_{22}} \lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{-j \epsilon}. \end{align} (4.20)

    When \epsilon > 0 holds if and only if p > \frac{\tilde{p}(2m+1)}{2s+2m+1} , \delta = \frac{s}{2s+2m+1} and

    \begin{align} {Q_{22}} \lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} 2^{-j' \epsilon} \sim \left( \frac{\ln n}{n}\right)^{\frac{{\tilde{p}}s}{{2s + 2m+1}}} = \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align} (4.21)

    When \epsilon\le0 holds if and only if p \leq \frac{\tilde{p}(2m+1)}{2s+2m+1} , \delta = \frac{s-1/p+1 / \tilde{p}}{2(s-1 /p)+2m+1} . Define

    2^{j''} \sim \left( \frac{n}{\ln n}\right) ^{\frac{\delta}{s-1/p+1/\tilde{p}}} = \left( \frac{n}{\ln n}\right) ^{\frac{1}{2(s-1/p)+2m+1}} ,

    and obviously, {2^{j'}} \sim \left(\frac{n}{\ln n} \right)^{\frac{1}{{2s + 2m+1}}} < 2^{j''} \sim \left(\frac{n}{\ln n}\right) ^{\frac{\delta}{s-1/p+1/\tilde{p}}} < {2^{{j_1}}}\sim \left(\frac{n}{\ln n} \right) ^{\frac{1}{2m+1}} . Furthermore, one rewrites

    \begin{align} \begin{split} {Q_{22}} & = \left({\sum\limits_{j = {j' + 1}}^{j''} + \sum\limits_{j = j'' + 1}^{{j_1}}}\right) 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} {\rm{E}}\left[|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\ge \frac{{\kappa {t_n}}}{2}\}}}\right]\\ & : = {Q_{221}} + {Q_{222}}. \end{split} \end{align} (4.22)

    For {Q_{221}} . Note that \frac{\tilde{p}-p}{2}+\frac{\delta \epsilon }{s-1/p+1 /\tilde{p}} = \tilde{p} \delta in the case of \epsilon\le0 . Then, by the same arguments of (4.20), one gets

    \begin{align} {Q_{221}} \lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = {j' + 1}}^{j''} 2^{-j\epsilon} \lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} 2^{-{j''}\epsilon} \sim \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align} (4.23)

    For {Q_{222}} . The conditions 1\leq p\leq\tilde{p} and s > 1/p imply B_{p, q}^s({{[0, 1]}}) \subset B_{\tilde{p}, q}^{s-\frac{1}{p}+\frac{1}{\tilde{p}}}({{[0, 1]}}) . Similar to (4.18), one obtains

    \begin{align} {Q_{222}} &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}}{2}} \sum\limits_{j = j'' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}+\tilde{p}mj} \sum\limits_{k \in {\mit\Lambda _j}} \left( \dfrac{|{{\beta _{j, k}}}|}{\frac{{\kappa {t_n}}}{2}}\right) ^{\tilde{p}}\\ &\lesssim \sum\limits_{j = j'' + 1}^{j_1} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \left\|{\beta _{j, k}} \right\| ^{\tilde{p}}_{\tilde{p}} \lesssim \sum\limits_{j = j'' + 1}^{j_1} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \cdot 2^{-j(s-\frac{1}{\tilde{p}}+\frac{1}{2}){\tilde{p}}}\\ &\lesssim 2^{-j'' (s-{\frac{1}{p}+\frac{1}{\tilde{p}}})\tilde{p}} \sim \left( \frac{\ln n}{n}\right)^{\tilde{p}\delta}. \end{align} (4.24)

    Combining (4.18), (4.21), (4.23) and (4.24),

    {Q_{22}}\lesssim \left( \frac{\ln n}{n}\right)^{\tilde{p}\delta}.

    This with (4.16) and (4.17) shows that

    \begin{align} {Q_{2}}\lesssim \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align} (4.25)

    \blacksquare For {Q_3} . According to the definition of {2^{j'}} , one can write

    \begin{align*} {Q_3} = \left({\sum\limits_{j = {j_*}}^{j'} + \sum\limits_{j = j'+1}^{{j_1}}}\right) 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} |{\beta _{j, k}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\le 2\kappa {t_n}\}}}: = {Q_{31}} + {Q_{32}}. \end{align*}

    \blacksquare For {Q_{31}} . It is easy to see that

    \begin{align*} \begin{split} {Q_{31}}&: = \sum\limits_{j = {j_*}}^{j'} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} |{\beta _{j, k}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\le 2\kappa {t_n}\}}} \le \sum\limits_{j = {j_*}}^{j'} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} \left( 2\kappa {t_n}\right) ^{\tilde{p}} \\ &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}}{2}} \cdot 2^{(2m+1)j'\frac{\tilde{p}}{2}} \sim \left( \frac{\ln n}{n}\right)^{\frac{{\tilde{p}}s}{{2s + 2m+1}}} \le \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{split} \end{align*}

    \blacksquare For {Q_{32}} . One rewrites {Q_{32}} = \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} |{\beta _{j, k}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\le 2\kappa {t_n}\}}} . When p > \tilde{p}\ge1 , using the Hölder inequality and Lemma 1.2,

    \begin{align*} {Q_{32}} \le \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} |{\beta _{j, k}}|^{\tilde{p}} \lesssim 2^{-j'\tilde{p}s} \sim \left( \frac{\ln n}{n}\right)^{\frac{{\tilde{p}}s}{{2s + 2m+1}}} \le \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align*}

    When 1\leq p\leq\tilde{p} , one has

    \begin{align*} \begin{split} {Q_{32}} & \le \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} |{\beta _{j, k}}|^{\tilde{p}} \left( \frac{2 \kappa{t_n}}{|\beta _{j, k}|}\right) ^{\tilde{p}-p}\\ &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}+j(\tilde{p}-p)m} \left\| \beta _{j, k} \right\|^{p}_{p}\\ &\le \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{-j(sp+\frac{p}{2}-\frac{\tilde{p}}{2}-(\tilde{p}-p)m)}\\ & = \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{-j\epsilon}. \end{split} \end{align*}

    For the case of \epsilon > 0 , one can easily obtain that \delta = \frac{s}{2s+2m+1} and

    \begin{align*} {Q_{32}} \lesssim \left(\frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} 2^{-j' \epsilon} \sim \left( \frac{\ln n}{n}\right)^{\frac{{\tilde{p}}s}{{2s + 2m+1}}} = \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align*}

    When \epsilon \le 0 , \delta = \frac{s-1/p+1 /\tilde{p}}{2(s-1 /p)+2m+1} . Moreover, by the definition of 2^{j''} , one rewrites

    \begin{align*} {Q_{32}} = \left({\sum\limits_{j = {j' + 1}}^{j''} + \sum\limits_{j = j'' + 1}^{{j_1}}}\right) 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} |{\beta _{j, k}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\le 2\kappa {t_n}\}}} : = {Q_{321}} + {Q_{322}}. \end{align*}

    Note that

    \begin{align*} {Q_{321}} &\lesssim \left(\frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = {j' + 1}}^{j''} 2^{-j\epsilon} \lesssim \left(\frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} 2^{-{j''}\epsilon} \sim \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align*}

    On the other hand, similar to the arguments of (4.24), one has

    \begin{align*} \begin{split} {Q_{322}} &\le \sum\limits_{j = j'' + 1}^{j_1} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} |{\beta _{j, k}}|^{\tilde{p}} = \sum\limits_{j = j'' + 1}^{j_1} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \left\|{\beta _{j, k}} \right\| ^{\tilde{p}}_{\tilde{p}} \lesssim \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{split} \end{align*}

    Therefore, in all of the above cases,

    \begin{align} {Q_{3}}\lesssim \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align} (4.26)

    Finally, combining the above results (4.14), (4.15), (4.25) and (4.26), one gets

    \begin{eqnarray*} Q \lesssim (j_1-j_*+1)^{\tilde{p}-1} \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta} \lesssim (\ln n)^{\tilde{p}-1} \left( \frac{\ln n}{n}\right)^{\tilde{p}\delta}. \end{eqnarray*}

    This with (4.11)–(4.13) shows

    {\rm{E}}\left[\left \| \hat r_n^{non}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}\right]\lesssim (\ln n)^{\tilde{p}-1} \left( \frac{\ln n}{n}\right)^{\tilde{p}\delta}.

    This paper considers wavelet estimations of the derivatives r^{(m)}(x) of the variance function r(x) in a heteroscedastic model. The upper bounds over L^{\tilde{p}} (1\leq \tilde{p} < \infty) risk of the wavelet estimators are discussed under some mild assumptions. The results show that the linear wavelet estimator can obtain the optimal convergence rate in the case of p > \tilde{p}\ge1 . When p\leq\tilde{p} , the nonlinear wavelet estimator has a better convergence rate than the linear estimator. Moreover, the nonlinear wavelet estimator is adaptive. Finally, some numerical experiments are presented to verify the good performances of the wavelet estimators.

    We would like to thank the reviewers for their valuable comments and suggestions, which helped us to improve the quality of the manuscript. This paper is supported by the Guangxi Natural Science Foundation (No. 2022JJA110008), National Natural Science Foundation of China (No. 12001133), Center for Applied Mathematics of Guangxi (GUET), and Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation.

    All authors declare that they have no conflicts of interest.



    [1] B. Alhijawi, A. Awajan, Genetic algorithms: theory, genetic operators, solutions, and applications, Evol. Intel., 2023. https://doi.org/10.1007/s12065-023-00822-6
    [2] V. Araña, A. G. Camacho, A. Garcia, F. G. Montesinos, I. Blanco, R. Vieira, et al., The internal structure of Tenerife (Canary Islands) based on gravity aeromagnetic and volcanological data, J. Volcanol. Geoth. Res., 103 (2000), 43–64. https://doi.org/10.1016/S0377-0273(00)00215-8
    [3] V. C. F. Barbosa, J. B. C. Silva, Generalized compact gravity inversion, Geophysics, 59 (1994), 57–68. https://doi.org/10.1190/1.1443534 doi: 10.1190/1.1443534
    [4] V. C. F. Barbosa, J. B. C. Silva, W. E. Medeiros, Gravity inversion of basements relief using approximate equality constraints on depths, Geophysics, 62 (1997), 1745–1757. https://doi.org/10.1190/1.1444275 doi: 10.1190/1.1444275
    [5] G. Berrino, A. G. Camacho, 3D gravity inversion by growing bodies and shaping layers at Mt. Vesuvius (Southern Italy), Pure Appl. Geophys., 165 (2008), 1095–1115. https://doi.org/10.1007/s00024-008-0348-2 doi: 10.1007/s00024-008-0348-2
    [6] G. Berrino, P. Vajda, P. Zahorec, A. G. Camacho, V. De Novellis, S. Carlino, et al., Interpretation of spatiotemporal gravity changes accompanying the earthquake of 21 August 2017 on Ischia (Italy), Contrib. Geophys. Geod., 51 (2021), 345–371. https://doi.org/10.31577/congeo.2021.51.4.3
    [7] H. Bertete-Aguirre, E. Cherkaev, M. Oristaglio, Non-smooth gravity problem with total variation penalization functional, Geophys. J. Int., 149 (2002), 499–507. https://doi.org/10.1046/j.1365-246X.2002.01664.x doi: 10.1046/j.1365-246X.2002.01664.x
    [8] J. Bódi, Inversion of 3D microgravity data for near surface applications for free geometry sources, Rigorous thesis, Comenius University in Bratislava, Slovakia, 2023.
    [9] J. Bódi, P. Vajda, A. G. Camacho, J. Papčo, J. Fernández, On gravimetric detection of thin elongated sources using the growth inversion approach, Surv. Geophys., 44 (2023), 1811–1835. https://doi.org/10.1007/s10712-023-09790-z doi: 10.1007/s10712-023-09790-z
    [10] O. Boulanger, M. Chouteau, Constraints in 3D gravity inversion, Geophys. Prospect., 49 (2001), 265–280. https://doi.org/10.1046/j.1365-2478.2001.00254.x doi: 10.1046/j.1365-2478.2001.00254.x
    [11] A. G. Camacho, R. Vieira, C. de Toro, Microgravimetric model of the Las Cañadas caldera (Tenerife), J. Volcanol. Geoth. Res., 47 (1991), 75–88. https://doi.org/10.1016/0377-0273(91)90102-6
    [12] A. G. Camacho, R. Vieira, F. G. Montesinos, V. Cuéllar, A gravimetric 3D Global inversion for cavity detection, Geophys. Prospect., 42 (1994), 113–130. https://doi.org/10.1111/j.1365-2478.1994.tb00201.x doi: 10.1111/j.1365-2478.1994.tb00201.x
    [13] A. G. Camacho, F. G. Montesinos, R. Vieira, A three-dimensional gravity inversion applied to Sao Miguel Island (Azores), J. Geophys. Res., 102 (1997), 7705–7715. https://doi.org/10.1029/96JB03667 doi: 10.1029/96JB03667
    [14] A. Camacho, F. Montesinos, R. Vieira, Gravity inversion by means of growing bodies, Geophysics, 65 (2000), 95–101. https://doi.org/10.1190/1.1444729 doi: 10.1190/1.1444729
    [15] A. Camacho, F. Montesinos, R. Vieira, J. Arnoso, Modelling of crustal anomalies of Lanzarote (Canary Islands) in light of gravity data, Geophys. J. Int., 147 (2001), 403–414. https://doi.org/10.1046/j.0956-540x.2001.01546.x doi: 10.1046/j.0956-540x.2001.01546.x
    [16] A. G. Camacho, F. G. Montesinos, R. Vieira, A 3-D gravity inversion tool based on exploration of model possibilities, Comput. Geosci., 28 (2002), 191–204. https://doi.org/10.1016/S0098-3004(01)00039-5 doi: 10.1016/S0098-3004(01)00039-5
    [17] A. G. Camacho, J. C. Nunes, E. Ortíz, Z. Franca, R. Vieira, Gravimetric determination of an intrusive complex under the island of Faial (Azores): some methodological improvements, Geophys. J. Int., 171 (2007), 478–494. https://doi.org/10.1111/j.1365-246X.2007.03539.x doi: 10.1111/j.1365-246X.2007.03539.x
    [18] A. G. Camacho, J. Fernández, P. J. González, J. B. Rundle, J. F. Prieto, A. Arjona, Structural results for La Palma island using 3-D gravity inversion, J. Geophys. Res., 114 (2009), B05411. https://doi.org/10.1029/2008JB005628
    [19] A. Camacho, J. Fernández, J. Gottsmann, The 3-D gravity inversion package GROWTH 2.0 and its application to Tenerife Island, Spain, Comput. Geosci., 37 (2011), 621–633. https://doi.org/10.1016/j.cageo.2010.12.003
    [20] A. G. Camacho, J. Fernández, J. Gottsmann, A new gravity inversion method for multiple subhorizontal discontinuity interfaces and shallow basins, J. Geophys. Res., 116 (2011), B02413. https://doi.org/10.1029/2010JB008023
    [21] A. G. Camacho, P. J. González, J. Fernández, G. Berrino, Simultaneous inversion of surface deformation and gravity changes by means of extended bodies with a free geometry: application to deforming calderas, J. Geophys. Res., 116 (2011), B10. https://doi.org/10.1029/2010JB008165
    [22] A. G. Camacho, E. Carmona, A. García-Jerez, F. Sánchez-Martos, J. F. Prieto, J. Fernández, et al., Structure of alluvial valleys from 3-D gravity inversion: the Low Andarax Valley (Almería, Spain) test case, Pure Appl. Geophys., 172 (2015), 3107–3121. https://doi.org/10.1007/s00024-014-0914-8
    [23] A. G. Camacho, J. Fernández, Modeling 3D free-geometry volumetric sources associated to geological and anthropogenic hazards from space and terrestrial geodetic data, Remote Sens., 11 (2019), 2042. https://doi.org/10.3390/rs11172042 doi: 10.3390/rs11172042
    [24] A. G. Camacho, J. F. Prieto, E. Ancochea, J. Fernández, Deep volcanic morphology below Lanzarote, Canaries, from gravity inversion: new results for Timanfaya and implications, J. Volcanol. Geoth. Res., 369 (2019), 64–79. https://doi.org/10.1016/j.jvolgeores.2018.11.013
    [25] A. G. Camacho, J. Fernández, S. V. Samsonov, K. F. Tiampo, M. Palano, 3D multi-source model of elastic volcanic ground deformation, Earth Planet. Sci. Lett., 547 (2020), 116445. https://doi.org/10.1016/j.epsl.2020.116445 doi: 10.1016/j.epsl.2020.116445
    [26] A. G. Camacho, J. F. A. Aparicio, E. Ancochea, J. Fernández, Upgraded GROWTH 3.0 software for structural gravity inversion and application to El Hierro (Canary Islands), Comput. Geosci., 150 (2021), 104720. https://doi.org/10.1016/j.cageo.2021.104720 doi: 10.1016/j.cageo.2021.104720
    [27] A. G. Camacho, P. Vajda, C. A. Miller, J. Fernández, A free-geometry geodynamic modelling of surface gravity changes using Growth-dg software, Sci. Rep., 11 (2021), 23442. https://doi.org/10.1038/s41598-021-02769-z doi: 10.1038/s41598-021-02769-z
    [28] A. G. Camacho, P. Vajda, J. Fernández, GROWTH-23: an integrated code for inversion of complete Bouguer gravity anomaly or temporal gravity changes, Comput. Geosci., 182 (2024), 105495. https://doi.org/10.1016/j.cageo.2023.105495 doi: 10.1016/j.cageo.2023.105495
    [29] F. Cannavò, A. G. Camacho, P. J. González, M. Mattia, G. Puglisi, J. Fernández, Real time tracking of magmatic intrusions by means of ground deformation modeling during volcanic crises, Sci. Rep., 5 (2015), 10970. https://doi.org/10.1038/srep10970 doi: 10.1038/srep10970
    [30] Z. Chen, X. Meng, L. Guo, G. Liu, GICUDA: a parallel program for 3D correlation imaging of large scale gravity and gravity gradiometry data on graphics processing units with CUDA, Comput. Geosci., 46 (2012), 119–128. https://doi.org/10.1016/j.cageo.2012.04.017 doi: 10.1016/j.cageo.2012.04.017
    [31] Z. Chen, X. Meng, S. Zhang, 3D gravity interface inversion constrained by a few points and its GPU acceleration, Comput. Geosci., 84 (2015), 20–28. https://doi.org/10.1016/j.cageo.2015.08.002 doi: 10.1016/j.cageo.2015.08.002
    [32] C. G. Farquharson, M. R. Ash, H. G Miller, Geologically constrained gravity inversion for the Voisey's Bay Ovoid deposit, Lead. Edge, 27 (2008), 64–69. https://doi.org/10.1190/1.2831681
    [33] J. Fernández, J. F. Prieto, J. Escayo, A. G. Camacho, F. Luzón, K. F. Tiampo, et al., Modeling the two-and three-dimensional displacement field in Lorca, Spain, subsidence and the global implications, Sci. Rep., 8 (2018), 14782. https://doi.org/10.1038/s41598-018-33128-0
    [34] J. Fernández, J. Escayo, Z. Hu, A. G. Camacho, S. V. Samsonov, J. F. Prieto, et al., Detection of volcanic unrest onset in La Palma, Canary Islands, evolution and implications, Sci. Rep., 11 (2021), 2540. https://doi.org/10.1038/s41598-021-82292-3
    [35] J. Fernández, J. Escayo, A. G. Camacho, M. Palano, J. F. Prieto, Z. Hu, et al., Shallow magmatic intrusion evolution below La Palma before and during the 2021 eruption, Sci. Rep., 12 (2022), 20257. https://doi.org/10.1038/s41598-022-23998-w
    [36] J. Fullea, J. C. Afonso, J. A. D. Connolly, M. Fernàndez, D. Garcia-Castellanos, H. Zeyen, LitMod3D: an interactive 3D software to model the thermal, compositional, density, rheological, and seismological structure of the lithosphere and sublithospheric upper mantle, Geochem. Geophys. Geosy., 10 (2009), Q08019. https://doi.org/10.1029/2009GC002391
    [37] M. H. Ghalehnoee, A. Ansari, A. Ghorbani, Improving compact gravity inversion using new weighting functions, Geophys. J. Int., 208 (2017), 546–560. https://doi.org/10.1093/gji/ggw413 doi: 10.1093/gji/ggw413
    [38] D. Gómez-Ortiz, B. N. P. Agarwal, 3DINVER.M: a MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker–Oldenburg's algorithm, Comput. Geosci., 31 (2005), 513–520. https://doi.org/10.1016/j.cageo.2004.11.004 doi: 10.1016/j.cageo.2004.11.004
    [39] J. Gottsmann, L. Wooller, J. Martí, J. Fernández, A. G. Camacho, P. J. Gonzalez, et al., New evidence for the reawakening of Teide volcano, Geophys. Res. Lett., 33 (2006), L20311. https://doi.org/10.1029/2006GL027523
    [40] J. Gottsmann, A. G. Camacho, J. Martí, L. Wooller, J. Fernández, A. García, et al., Shallow structure beneath the Central Volcanic Complex of Tenerife from new gravity data: implications for its evolution and recent reactivation, Phys. Earth Planet. Int., 168 (2008), 212–230. https://doi.org/10.1016/j.pepi.2008.06.020
    [41] A. Guillen, V. Menichetti, Gravity and magnetic inversion with minimization of a specific functional, Geophysics, 49 (1984), 1354–1360. https://doi.org/10.1190/1.1441761 doi: 10.1190/1.1441761
    [42] J. R. Kennedy, J. D. Larsen, Heavy: software for forward modeling gravity change from MODFLOW output, Environ. Modell. Softw., 165 (2023), 105714. https://doi.org/10.1016/j.envsoft.2023.105714 doi: 10.1016/j.envsoft.2023.105714
    [43] C. Klesper, IVIS-3D: a tool for interactive 3D-visualisation of gravity models, Phys. Chem. Earth, 23 (1998), 279–283. https://doi.org/10.1016/S0079-1946(98)00025-1 doi: 10.1016/S0079-1946(98)00025-1
    [44] R. A. Krahenbuhl, Y. Li, Inversion of gravity data using a binary formulation, Geophys. J. Int., 167 (2006), 543–556. https://doi.org/10.1111/j.1365-246X.2006.03179.x doi: 10.1111/j.1365-246X.2006.03179.x
    [45] B. J. Last, K. Kubik, Compact gravity inversion, Geophysics, 48 (1983), 713–721. https://doi.org/10.1190/1.1441501
    [46] P. G. Lelievre, D. W. Oldenburg, A comprehensive study of including structural information in geophysical inversions, Geophys. J. Int., 178 (2009), 623–637. https://doi.org/10.1111/j.1365-246X.2009.04188.x doi: 10.1111/j.1365-246X.2009.04188.x
    [47] P. G. Lelièvre, R. Bijani, C. G. Farquharson, Joint inversion using multi-objective global optimization methods, 78th EAGE Conference and Exhibition, 2016 (2016), 1–5. https://doi.org/10.3997/2214-4609.201601655 doi: 10.3997/2214-4609.201601655
    [48] Y. Li, D. W. Oldenburg, 3-D inversion of gravity data, Geophysics, 63 (1998), 109–119. https://doi.org/10.1190/1.1444302 doi: 10.1190/1.1444302
    [49] S. Mallick, Optimization using genetic algorithms–Methodology with examples from seismic waveform inversion (chapter), In: Y. H. Chemin, Genetic algorithms: theory, design and programming, IntechOpen, 2024. https://doi.org/10.5772/intechopen.113897
    [50] C. M. Martins, W. A. Lima, V. C. F. Barbosa, J. B. C. Silva, Total variation regularization for depth-to-basement estimate: Part 1–Mathematical details and applications, Geophysics, 76 (2011), I1–I12. https://doi.org/10.1190/1.3524286
    [51] C. A. Miller, G. Williams-Jones, D. Fournier, J. Witter, 3D gravity inversion and thermodynamic modelling reveal properties of shallow silicic magma reservoir beneath Laguna del Maule, Chile, Earth Planet. Sci. Lett., 459 (2017), 14–27. https://doi.org/10.1016/j.epsl.2016.11.007
    [52] C. A. Miller, H. Le Mével, G. Currenti, G. Williams-Jones, B. Tikoff, Microgravity changes at the Laguna del Maule volcanic field: Magma-induced stress changes facilitate mass addition, J. Geophys. Res. Solid Earth, 122 (2017), 3179–3196. https://doi.org/10.1002/2017JB014048 doi: 10.1002/2017JB014048
    [53] O. F. Mojica, A. Bassrei, Regularization parameter selection in the 3D gravity inversion of the basement relief using GCV: a parallel approach, Comput. Geosci., 82 (2015), 205–213. https://doi.org/10.1016/j.cageo.2015.06.013 doi: 10.1016/j.cageo.2015.06.013
    [54] F. G. Montesinos, A. G. Camacho, R. Vieira, Analysis of gravimetric anomalies in Furnas caldera (Saô Miguel, Azores), J. Volcanol. Geoth. Res., 92 (1999), 67–81. https://doi.org/10.1016/S0377-0273(99)00068-2
    [55] F. G. Montesinos, A. G. Camacho, J. C. Nunes, C. S. Oliveira, R. Vieira, A 3-D gravity model for a volcanic crater in Terceira Island (Azores), Geophys. J. Int., 154 (2003), 393–406. https://doi.org/10.1046/j.1365-246X.2003.01960.x doi: 10.1046/j.1365-246X.2003.01960.x
    [56] F. G. Montesinos, J. Arnoso, R. Vieira, Using a genetic algorithm for 3-D inversion of gravity data in Fuerteventura (Canary Islands), Int. J. Earth Sci. (Geol. Rundsch.), 94 (2005), 301–316. https://doi.org/10.1007/s00531-005-0471-6
    [57] J. C. Nunes, A. Camacho, Z. França, F. G. Montesinos, M. Alves, R. Vieira, et al., Gravity anomalies and crustal signature of volcano-tectonic structures of Pico Island (Azores), J. Volcanol. Geoth. Res., 156 (2006), 55–70. https://doi.org/10.1016/j.jvolgeores.2006.03.023
    [58] E. Oksum, Grav3CH_inv: A GUI-based MATLAB code for estimating the 3-D basement depth structure of sedimentary basins with vertical and horizontal density variation, Comput. Geosci., 155 (2021), 104856. https://doi.org/10.1016/j.cageo.2021.104856 doi: 10.1016/j.cageo.2021.104856
    [59] V. C. Oliveira, V. C. F. Barbosa, 3-D radial gravity gradient inversion, Geophys. J. Int., 195 (2013), 883–902. https://doi.org/10.1093/gji/ggt307 doi: 10.1093/gji/ggt307
    [60] L. B. Pedersen, Constrained inversion of potential field data, Geophys. Prosp., 27 (1979), 726–748. https://doi.org/10.1111/j.1365-2478.1979.tb00993.x doi: 10.1111/j.1365-2478.1979.tb00993.x
    [61] D. Phillips, A technique for the numerical solution of certain integral equations of the first kind, J. ACM, 9 (1962), 84–97. https://doi.org/10.1145/321105.321114 doi: 10.1145/321105.321114
    [62] R. Pašteka, M. Terray, M. Hajach, M. Pašiaková, Výsledky geofyzikálneho (mikro-gravimetrického) prieskumu interiéru kostola Sv. Mikuláša v Trnave, unpublished work, 2006.
    [63] R. Pašteka, J. Mikuška, M. Hajach, M. Pašiaková, Microgravity measurements and GPR technique in the search for medieval crypts: a case study from the St. Nicholas church in Trnava, SW Slovakia, Proceedings of the Archaeological Prospection 7th Conference in Nitra, 41 (2007), 222–224.
    [64] R. Pašteka, F. P. Richter, R. Karcol, K. Brazda, M. Hajach, Regularized derivatives of potential fields and their role in semiautomated interpretation methods, Geophys. Prospect., 57 (2009), 507–516. https://doi.org/10.1111/j.1365-2478.2008.00780.x doi: 10.1111/j.1365-2478.2008.00780.x
    [65] R. Pašteka, J. Pánisová, P. Zahorec, J. Papčo, J. Mrlina, M. Fraštia, et al., Microgravity method in archaeological prospection: methodical comments on selected case studies from crypt and tomb detection, Archaeol. Prospect., 27 (2020), 415–431. https://doi.org/10.1002/arp.1787
    [66] M. Pick, J. Picha, V. Vyskočil, Theory of the earth's gravity field, Elsevier, 1973.
    [67] I. Prutkin, P. Vajda, M. Bielik, V. Bezák, R. Tenzer, Joint interpretation of gravity and magnetic data in the Kolárovo anomaly region by separation of sources and the inversion method of local corrections, Geol. Carpath., 65 (2014), 163–174. https://doi.org/10.2478/geoca-2014-0011 doi: 10.2478/geoca-2014-0011
    [68] I. Prutkin, P. Vajda, J. Gottsmann, The gravimetric picture of magmatic and hydrothermal sources driving hybrid unrest on Tenerife in 2004/5, J. Volcanol. Geoth. Res., 282 (2014), 9–18. https://doi.org/10.1016/j.jvolgeores.2014.06.003 doi: 10.1016/j.jvolgeores.2014.06.003
    [69] I. Prutkin, P. Vajda, T. Jahr, F. Bleibinhaus, P. Novák, R. Tenzer, Interpretation of gravity and magnetic data with geological constraints for 3D structure of the Thuringian Basin, Germany, J. Appl. Geophys., 136 (2017), 35–41. https://doi.org/10.1016/j.jappgeo.2016.10.039
    [70] A. B. Reid, J. M. Allsop, H. Granser, A. J. Millet, I. W. Somerton, Magnetic interpretation in three dimensions using Euler deconvolution, Geophysics, 55 (1990), 80–91. https://doi.org/10.1190/1.1442774 doi: 10.1190/1.1442774
    [71] R. M. René, Gravity inversion using open, reject, and "shape‐of‐anomaly" fill criteria, Geophysics, 51 (1986), 889–1033. https://doi.org/10.1190/1.1442157
    [72] D. F. Santos, J. B. C. Silva, C. M. Martins, R. C. S. Santos, L. C. Ramos, A. C. M. Araújo, Efficient gravity inversion of discontinuous basement relief, Geophysics, 80 (2015), G95–G106. https://doi.org/10.1190/geo2014-0513.1
    [73] S. V. Samsonov, K. F. Tiampo, A. G. Camacho, J. Fernández, P. J. González, Spatiotemporal analysis and interpretation of 1993–2013 ground deformation at Campi Flegrei, Italy, observed by advanced DInSAR, Geophys. Res. Lett., 41 (2014), 6101–6108. https://doi.org/10.1002/2014GL060595
    [74] P. Shamsipour, D. Marcotte, M. Chouteau, 3D stochastic joint inversion of gravity and magnetic data, J. Appl. Geophys., 79 (2012), 27–37. https://doi.org/10.1016/j.jappgeo.2011.12.012 doi: 10.1016/j.jappgeo.2011.12.012
    [75] K. Snopek, U. Casten, 3GRAINS: 3D Gravity Interpretation Software and its application to density modeling of the Hellenic subduction zone, Comput. Geosci., 32 (2006), 592–603. https://doi.org/10.1016/j.cageo.2005.08.008 doi: 10.1016/j.cageo.2005.08.008
    [76] M. Terray, Správa z georadarového prieskumu Dómu sv. Mikuláša v Trnave, unpublished work, 2006.
    [77] C. Tiede, A. G. Camacho, C. Gerstenecker, J. Fernández, I. Suyanto, Modelling the crust at Merapi volcano area, Indonesia, via the inverse gravimetric problem, Geochem. Geophy. Geosy., 6 (2005), Q09011. https://doi.org/10.1029/2005GC000986
    [78] C. Tiede, J. Fernández, C. Gerstenecker, K. F. Tiampo, A hybrid model for the summit region of merapi volcano, Java, Indonesia, derived from gravity changes and deformation measured between 2000 and 2002, In: D. Wolf, J. Fernández, Deformation and gravity change: indicators of isostasy, tectonics, volcanism, and climate change, Pageoph Topical Volumes, Birkhäuser, (2007), 837–850. https://doi.org/10.1007/978-3-7643-8417-3_12
    [79] A. N. Tikhonov, V. A. Arsenin, Solutions of ill-posed problems, Winston and Sons, Washington, 1977. https://doi.org/10.2307/2006360
    [80] L. Uieda, V. C. F. Barbosa, Robust 3D gravity gradient inversion by planting anomalous densities, Geophysics, 77 (2012), G55–G66. https://doi.org/10.1190/GEO2011-0388.1
    [81] P. Vajda, P. Vaníček, B. Meurers, A new physical foundation for anomalous gravity, Stud. Geophys. Geod., 50 (2006), 189–216. https://doi.org/10.1007/s11200-006-0012-1 doi: 10.1007/s11200-006-0012-1
    [82] P. Vajda, I. Foroughi, P. Vaníček, R. Kingdon, M. Santos, M. Sheng, et al., Topographic gravimetric effects in earth sciences: Review of origin, significance and implications, Earth-Sci. Rev., 211 (2020), 103428. https://doi.org/10.1016/j.earscirev.2020.103428
    [83] P. Vajda, P. Zahorec, C. A. Miller, H. Le Mével, J. Papčo, A. G. Camacho, Novel treatment of the deformation–induced topographic effect for interpretation of spatiotemporal gravity changes: Laguna del Maule (Chile), J. Volcanol. Geoth. Res., 414 (2021), 107230. https://doi.org/10.1016/j.jvolgeores.2021.107230 doi: 10.1016/j.jvolgeores.2021.107230
    [84] P. Vajda, A. G. Camacho, J. Fernández, Benefits and limitations of the growth inversion approach in volcano gravimetry demonstrated on the revisited Tenerife 2004/5 unrest, Surveys Geophys., 44 (2023), 527–554. https://doi.org/10.1007/s10712-022-09738-9 doi: 10.1007/s10712-022-09738-9
    [85] S. Vatankhah, V. E. Ardestani, S. S. Niri, R. S. Renaut, H. Kabirzadeh, IGUG: a MATLAB package for 3D inversion of gravity data using graph theory, Comput. Geosci., 128 (2019), 19–29. https://doi.org/10.1016/j.cageo.2019.03.008 doi: 10.1016/j.cageo.2019.03.008
    [86] E. J. Wahyudi, D. Santoso, W. G. A. Kadir, S. Alawiyah, Designing a genetic algorithm for efficient calculation in time-lapse gravity inversion, J. Eng. Tech. Sci., 46 (2014), 58–77. https://doi.org/10.5614/j.eng.technol.sci.2014.46.1.4 doi: 10.5614/j.eng.technol.sci.2014.46.1.4
    [87] R. A. Wildman, G. A. Gazonas, Gravitational and magnetic anomaly inversion using a tree-based geometry representation, Geophysics, 74 (2009), I23–I35. https://doi.org/10.1190/1.3110042
    [88] Y. Tian, X. Ke, Y. Wang, DenInv3D: a geophysical software for three-dimensional density inversion of gravity field data, J. Geophys. Eng., 15 (2018), 354–365. https://doi.org/10.1088/1742-2140/aa8caf doi: 10.1088/1742-2140/aa8caf
    [89] P. Zahorec, R. Pašteka, J. Papčo, R. Putiška, A. Mojzeš, D. Kušnirák, et al., Mapping hazardous cavities over collapsed coal mines: case study experiences using the microgravity method, Near Surface Geophys., 19 (2021), 353–364. https://doi.org/10.1002/nsg.12139
    [90] D. Zidarov, Inverse gravimetric problem in geoprospecting and geodesy, Elsevier Science Publ. Co., 1990.
  • This article has been cited by:

    1. Junke Kou, Hao Zhang, Partial Derivatives Estimation of Multivariate Variance Function in Heteroscedastic Model via Wavelet Method, 2024, 13, 2075-1680, 69, 10.3390/axioms13010069
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1564) PDF downloads(126) Cited by(0)

Figures and Tables

Figures(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog