In [J. Combin. Theory Ser. B, 99 (2009), 447-454)], Li characterized the classification of vertex-transitive embeddings of complete graphs, and proposed how to enumerate such maps. In this paper, we study the counting problem of orientable vertex-transitive embeddings of $ {{\sf K}}_p $, where $ p\geq 5 $ is a prime. Moreover, we obtain the number of non-isomorphic orientable vertex-transitive complete maps with $ p $ vertices.
Citation: Xue Yu, Qingshan Zhang. Orientable vertex transitive embeddings of $ {{\sf K}}_p $[J]. AIMS Mathematics, 2023, 8(7): 15024-15034. doi: 10.3934/math.2023767
In [J. Combin. Theory Ser. B, 99 (2009), 447-454)], Li characterized the classification of vertex-transitive embeddings of complete graphs, and proposed how to enumerate such maps. In this paper, we study the counting problem of orientable vertex-transitive embeddings of $ {{\sf K}}_p $, where $ p\geq 5 $ is a prime. Moreover, we obtain the number of non-isomorphic orientable vertex-transitive complete maps with $ p $ vertices.
[1] | N. L. Biggs, Cayley maps and symmetrical maps, Proc. Cambridge Philos. Soc., 72 (1972), 381–386. https://doi.org/10.1017/s0305004100047216 doi: 10.1017/s0305004100047216 |
[2] | N. L. Biggs, Classification of complete maps on orientable surfaces, Rend. Mat.(6), 4 (1971), 645–655. |
[3] | N. L. Biggs, A. T. White, Permutation groups and combinatorial structures, vol. 33 of London Mathematical Society Lecture Note Series, Cambridge-New York: Cambridge University Press, 1979. |
[4] | A. Devillers, W. Jin, C. H. Li, C. E. Praeger, On normal 2-geodesic transitive Cayley graphs, J. Algebraic Combin., 39 (2014), 903–918. https://doi.org/10.1007/s10801-013-0472-7 doi: 10.1007/s10801-013-0472-7 |
[5] | J. D. Dixon, B. Mortimer, Permutation groups, vol. 163 of Graduate Texts in Mathematics, New York: Springer-Verlag, 1996. http://dx.doi.org/10.1007/978-1-4612-0731-3 |
[6] | S. F. Du, J. H. Kwak, R. Nedela, Regular embeddings of complete multipartite graphs, Eur. J. Combin., 26 (2005), 505–519. https://doi.org/10.1016/j.ejc.2004.02.010 doi: 10.1016/j.ejc.2004.02.010 |
[7] | W. W. Fan, C. H. Li, The complete bipartite graphs with a unique edge-transitive embedding, J. Graph Theory, 87 (2018), 581–586. https://doi.org/10.1002/jgt.22176 doi: 10.1002/jgt.22176 |
[8] | W. W. Fan, C. H. Li, H. P. Qu, A classification of orientably edge-transitive circular embeddings of ${\rm{K}}_{p^e, p^f}$, Ann. Comb., 22 (2018), 135–146. https://doi.org/10.1007/s00026-018-0373-5 doi: 10.1007/s00026-018-0373-5 |
[9] | W. W. Fan, C. H. Li, N. E. Wang, Edge-transitive uniface embeddings of bipartite multi-graphs, J. Algebr. Comb., 2 (2019), 125–134. https://doi.org/10.1007/s10801-018-0821-7 doi: 10.1007/s10801-018-0821-7 |
[10] | Y. Q. Feng, J. H. Kwak, J. X. Zhou, Enumerating reflexible 2-cell embeddings of connected graphs, Sci. China Math., 56 (2013), 933–950. https://doi.org/10.1007/s11425-012-4544-2 doi: 10.1007/s11425-012-4544-2 |
[11] | R. Jajcay, R. Nedela, Half-regular Cayley maps, Graphs Combin., 31 (2015), 1003–1018. https://doi.org/10.1007/s00373-014-1428-y doi: 10.1007/s00373-014-1428-y |
[12] | L. D. James, Imbeddings of the complete graph, Ars Combin., 16 (1983), 57–72. |
[13] | L. D. James, Edge-symmetric orientable imbeddings of complete graphs, European J. Combin., 11 (1990), 133–144. https://doi.org/10.1016/S0195-6698(13)80067-4 doi: 10.1016/S0195-6698(13)80067-4 |
[14] | L. D. James, G. A. Jones, Regular orientable imbeddings of complete graphs, J. Combin. Theory Ser. B, 39 (1985), 353–367. https://doi.org/10.1016/0095-8956(85)90060-7 doi: 10.1016/0095-8956(85)90060-7 |
[15] | V. P. Korzhik, H. J. Voss, On the number of nonisomorphic orientable regular embeddings of complete graphs, J. Combin. Theory Ser. B, 81 (2001), 58–76. https://doi.org/10.1006/jctb.2000.1993 doi: 10.1006/jctb.2000.1993 |
[16] | V. P. Korzhik, H. J. Voss, Exponential families of non-isomorphic non-triangular orientable genus embeddings of complete graphs, J. Combin. Theory Ser. B, 86 (2002), 186–211. https://doi.org/10.1006/jctb.2002.2122 doi: 10.1006/jctb.2002.2122 |
[17] | C. H. Li, Vertex transitive embeddings of complete graphs, J. Combin. Theory Ser. B, 99 (2009), 447–454. https://doi.org/10.1016/j.jctb.2008.09.002 doi: 10.1016/j.jctb.2008.09.002 |
[18] | B. P. Mull, R. G. Rieper, A. T. White, Enumerating $2$-cell imbeddings of connected graphs, Proc. Amer. Math. Soc., 103 (1988), 321–330. https://doi.org/10.2307/2047573 doi: 10.2307/2047573 |
[19] | R. B. Richter, J. Širáň, R. Jajcay, T. W. Tucker, M. E. Watkins, Cayley maps, J. Combin. Theory Ser. B, 95 (2005), 189–245. https://doi.org/10.1016/j.jctb.2005.04.007 doi: 10.1016/j.jctb.2005.04.007 |
[20] | J. Širáň, T. W. Tucker, Characterization of graphs which admit vertex-transitive embeddings, J. Graph Theory, 55 (2007), 233–248. https://doi.org/10.1002/jgt.20239 doi: 10.1002/jgt.20239 |
[21] | M. Škoviera, J. Širáň, Regular maps from Cayley graphs. Ⅰ. Balanced Cayley maps, Proc. Discrete Math., 109 (1992), 265–276. https://doi.org/ 10.1016/0012-365X(92)90296-R doi: 10.1016/0012-365X(92)90296-R |
[22] | X. Yu, B. G. Lou, The edge-regular complete maps, Open Math., 18 (2020), 1719–1726. https://doi.org/10.1515/math-2020-0115 doi: 10.1515/math-2020-0115 |
[23] | X. Yu, Enumeration of orientable vertex-transitive embeddings of ${{\sf K}}_{p^d}$. Submitted. |
[24] | X. Yu, C. H. Li, B. G. Lou, Orientable vertex primitive complete maps. Submitted. |
[25] | X. Yu, B. G. Lou, W. W. Fan, The complete bipartite graphs which have exactly two orientably edge-transitive embeddings, Ars Math. Contemp., 18 (2020), 371–379. https://doi.org/10.26493/1855-3974.1900.cc1 doi: 10.26493/1855-3974.1900.cc1 |