Research article

On Hilbert-Pachpatte type inequalities within $ \psi $-Hilfer fractional generalized derivatives

  • Received: 27 December 2022 Revised: 30 March 2023 Accepted: 03 April 2023 Published: 14 April 2023
  • MSC : 26A24, 26A33, 26B15

  • In this manuscript, we discussed various new Hilbert-Pachpatte type inequalities implying the left sided $ \psi $-Hilfer fractional derivatives with the general kernel. Our results are a generalization of the inequalities of Pečarić and Vuković [1]. Furthermore, using the specific cases of the $ \psi $-Hilfer fractional derivative, we proceed with wide class of fractional derivatives by selecting $ \psi $, $ a_1 $, $ b_1 $ and considering the limit of the parameters $ \alpha $ and $ \beta $.

    Citation: Yasemin Başcı, Dumitru Baleanu. On Hilbert-Pachpatte type inequalities within $ \psi $-Hilfer fractional generalized derivatives[J]. AIMS Mathematics, 2023, 8(6): 14008-14026. doi: 10.3934/math.2023716

    Related Papers:

  • In this manuscript, we discussed various new Hilbert-Pachpatte type inequalities implying the left sided $ \psi $-Hilfer fractional derivatives with the general kernel. Our results are a generalization of the inequalities of Pečarić and Vuković [1]. Furthermore, using the specific cases of the $ \psi $-Hilfer fractional derivative, we proceed with wide class of fractional derivatives by selecting $ \psi $, $ a_1 $, $ b_1 $ and considering the limit of the parameters $ \alpha $ and $ \beta $.



    加载中


    [1] J. Pečarić, P. Vuković, Hilbert-Pachpatte-type inequality due to fractional differential inequalities, Ann. Univ. Craiova, Math. Comput. Sci. Ser., 41 (2014), 280–291.
    [2] G. W. Leibniz, Letter from Hanover, Germany to G.F.A. L'Hospital, September 30, 1695, In: Mathematische schriften, Olms-Verlag, Hildesheim, Germany, 1849,301–302.
    [3] G. W. Leibniz, Letter from Hanover, Germany to Johann Bernoulli, December 28, 1695, In: Mathematische schriften, Olms-Verlag, Hildesheim, Germany, 1962,226.
    [4] G. W. Leibniz, Letter from Hanover, Germany to John Wallis, May 30, 1697, In: Mathematische schriften, Olms-Verlag, Hildesheim, Germany, 1962, 25.
    [5] O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dyn., 38 (2004), 323–337. http://dx.doi.org/10.1007/S11071-004-3764-6 doi: 10.1007/S11071-004-3764-6
    [6] T. M. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional calculus with applications in mechanics: vibrations and diffusion processes, Wiley, London, Hoboken, 2014. http://dx.doi.org/10.1002/9781118577530
    [7] D. D. Bainov, P. S. Simeonov, Integral inequalities and applications, Springer Dordrecht, 1992. https://doi.org/10.1007/978-94-015-8034-2
    [8] C. Bandle, L. Losonczi, A. Gilányi, Z. Páles, M. Plum, Inequalities and applications, Conference on inequalities and applications, Noszvaj (Hungary), September 2007, Birkhäuser Basel, 2009. https://doi.org/10.1007/978-3-7643-8773-0
    [9] S. Corlay, J. Lebovits, J. L. Véhel, Multifractional stochastic volatility models, Math. Finance, 24 (2014), 364–402. http://dx.doi.org/10.1111/mafi.12024 doi: 10.1111/mafi.12024
    [10] G. S. F. Frederico, D. F. M. Torres, Fractional conservation laws in optimal control theory, Nonlinear Dyn., 53 (2008), 215–222. http://dx.doi.org/10.1007/s11071-007-9309-z doi: 10.1007/s11071-007-9309-z
    [11] R. Herrmann, Fractional calculus: an introduction for physicists, Singapore: World Scientific Publishing Company, 2011.
    [12] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, 1 Ed., North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006.
    [13] R. L. Magin, C. Ingo, L. Colon-Perez, W. Triplett, T. H. Mareci, Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy, Micropor. Mesopor. Mat., 178 (2013), 39–43. http://doi.org/10.1016/j.micromeso.2013.02.054 doi: 10.1016/j.micromeso.2013.02.054
    [14] R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59 (2010), 1586–1593. http://doi.org/10.1016/j.camwa.2009.08.039 doi: 10.1016/j.camwa.2009.08.039
    [15] A. B. Malinowska, D. F. M. Torres, Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative, Comput. Math. Appl., 59 (2010), 3110–3116. https://doi.org/10.1016/j.camwa.2010.02.032 doi: 10.1016/j.camwa.2010.02.032
    [16] F. C. Meral, T. J. oyston, R. Magin, Fractional calculus in viscoelasticity: an experimental study, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 939–945. https://doi.org/10.1016/j.cnsns.2009.05.004 doi: 10.1016/j.cnsns.2009.05.004
    [17] F. S. Costa, J. C. S. Soares, A. R. G. Plata, E. C. de Oliveira, On the fractional Harry Dym equation, Comp. Appl. Math., 37 (2018), 2862–2876. https://doi.org/10.1007/s40314-017-0484-3 doi: 10.1007/s40314-017-0484-3
    [18] F. S. Costa, E. C. Grigoletto, J. Vaz Jr., E. C. de Oliveira, Slowing-down of neutrons: a fractional model, Commun. Appl. Ind. Math., 6 (2015).
    [19] A. K. Anatoly, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191–1204.
    [20] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769.
    [21] A. Atangana, Derivative with a new parameter: theory, methods and applications, San Diego: Academic Press, 2015.
    [22] B. He, Y. Li, On several new inequalities close to Hilbert-Pachpatte's inequality, J. Inequal. Pure Appl. Math., 7 (2006), 154.
    [23] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. https://doi.org/10.1186/1687-1847-2012-142 doi: 10.1186/1687-1847-2012-142
    [24] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062
    [25] U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15.
    [26] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, theory and applications, Translated from the 1987 Russian original, Gordon and Breach, Yverdon, 1993.
    [27] G. Anastassiou, M. R. Hooshmandasl, A. Ghasemi, F. Moftakharzahed, Montgomery identities for fractional integrals and related fractional inequalities, J. Inequal. Pure Appl. Math., 10 (2009), 97.
    [28] Y. Başcı, D. Baleanu, Hardy-type inequalities within fractional derivatives without singular kernel, J. Inequal. Appl., 2018 (2018), 304. https://doi.org/10.1186/s13660-018-1893-6 doi: 10.1186/s13660-018-1893-6
    [29] Y. Başcı, D. Baleanu, New aspects of Opial-type integral inequalities, Adv. Differ. Equ., 2018 (2018), 452. https://doi.org/10.1186/s13662-018-1912-4 doi: 10.1186/s13662-018-1912-4
    [30] S. Iqbal, K. Krulić, J. Pečarić, Weighted Hardy-type inequalities for monotone convex functions with some applications, Fract. Differ. Calc., 3 (2013), 31–53. http://dx.doi.org/10.7153/fdc-03-03 doi: 10.7153/fdc-03-03
    [31] S. Iqbal, K. Krulić, J. Pečarić, On refined-type inequalities with fractional integrals and fractional derivatives, Math. Slovaca, 64 (2014), 879–892. https://doi.org/10.2478/s12175-014-0246-2 doi: 10.2478/s12175-014-0246-2
    [32] S. Iqbal, K. Krulić, J. Pečarić, On a new class of Hardy-type inequalities with fractional integrals and fractional derivatives, Rad Hazu. Math. Znan., 18 (2014), 91–106.
    [33] S. Iqbal, J. Pečarić, M. Samraiz, Z. Tomovski, Hardy-type inequalities for generalized fractional integral operators, Tbilisi Math. J., 10 (2017), 75–90. https://doi.org/10.1515/tmj-2017-0005 doi: 10.1515/tmj-2017-0005
    [34] M. Z. Sarıkaya, H. Budak, New inequalities of Opial type for conformable fractional integrals, Turk. J. Math., 41 (2017), 1164–1173. https://doi.org/10.3906/mat-1606-91 doi: 10.3906/mat-1606-91
    [35] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge: Cambridge University Press, 1934.
    [36] G. A. Anastassiou, Hilbert-Pachpatte type fractional integral inequalities, Math. Comput. Model., 49 (2009), 1539–1550. https://doi.org/10.1016/j.mcm.2008.05.059 doi: 10.1016/j.mcm.2008.05.059
    [37] G. A. Anastassiou, Hilfer-Polya, $\psi$-Hilfer Ostrowski and $\psi$-Hilfer-Hilbert-Pachpatte fractional inequalities, Symmetry, 13 (2021), 463. https://doi.org/10.3390/sym130304 doi: 10.3390/sym130304
    [38] S. S. Dragomir, Y. H. Kim, Hilbert-Pachpatte type integral inequalities and their improvement, J. Inequal. Pure Appl. Math., 4 (2003), 16.
    [39] M. Z. Gao, B. C. Yang, On the extended Hilbert's inequality, Proc. Amer. Math. Soc., 126 (1998), 751–759.
    [40] G. D. Handley, J. J. Koliha, J. E. Pečarić, New Hilbert-Pachpatte type integral inequalities, J. Math. Anal. Appl., 257 (2001), 238–250. https://doi.org/10.1006/jmaa.2000.7350 doi: 10.1006/jmaa.2000.7350
    [41] G. D. Handley, J. J. Koliha, J. E. Pečarić, A Hilbert type inequality, Tamkang J. Math., 31 (2000), 311–315. https://doi.org/10.5556/j.tkjm.31.2000.389 doi: 10.5556/j.tkjm.31.2000.389
    [42] K. Jichang, Note on new extensions of Hilbert's integral inequality, J. Math. Anal. Appl., 235 (1999), 608–614. https://doi.org/10.1006/jmaa.1999.6373 doi: 10.1006/jmaa.1999.6373
    [43] K. Jichang, L. Debnath, On Hilbert type inequalities with non-conjugate parameters, Appl. Math. Lett., 22 (2009), 813–818. https://doi.org/10.1016/j.aml.2008.07.010 doi: 10.1016/j.aml.2008.07.010
    [44] J. Jin, L. Debnath, On a Hilbert-type linear series operator and its applications, J. Math. Anal. Appl., 371 (2010), 691–704. https://doi.org/10.1016/j.jmaa.2010.06.002 doi: 10.1016/j.jmaa.2010.06.002
    [45] M. Krnić, J. Pečarić, General Hilbert's and Hardy's inequalities, Math. Inequal. Appl., 8 (2005), 29–52. https://doi.org/10.7153/mia-08-04 doi: 10.7153/mia-08-04
    [46] Z. Lü, Some new inequalities similar to Hilbert-Pachpatte's type inequalities, J. Inequal. Pure Appl. Math., 4 (2003), 33.
    [47] B. G. Pachpatte, On some new inequalities similar to Hilbert's inequality, J. Math. Anal. Appl., 226 (1998), 166–179.
    [48] B. G. Pachpatte, Inequalities similar to certain extensions of Hilbert's inequality, J. Math. Anal. Appl., 243 (2000), 217–227. https://doi.org/10.1006/jmaa.1999.6646 doi: 10.1006/jmaa.1999.6646
    [49] M. Th. Rassias, B. Yang, On a Hilbert-type integral inequality in the whole plane with the equivalent forms, J. Math. Inequal., 13 (2019), 315–334. https://doi.org/10.7153/jmi-2019-13-23 doi: 10.7153/jmi-2019-13-23
    [50] M. Th. Rassias, B. Yang, A. Raigorodskii, A Hilbert-type integral inequality in the whole plane related to the arc tangent function, Symmetry, 13 (2021), 351. https://doi.org/10.3390/sym13020351 doi: 10.3390/sym13020351
    [51] B. Yang, I. Brnetić, M. Krnić, J. Pečarić, Generalization of Hilbert and Hardy-Hilbert integral inequalities, Math. Inequal. Appl., 8 (2005), 259–272. https://doi.org/10.7153/mia-08-25 doi: 10.7153/mia-08-25
    [52] B. Yang, On new generalizations of Hilbert's inequality, J. Math. Anal. Appl., 248 (2000), 29–40. https://doi.org/10.1006/jmaa.2000.6860 doi: 10.1006/jmaa.2000.6860
    [53] B. Yang, A half-discrete Hilbert-type inequality with a non-homogeneous kernel and two variables, Mediterr. J. Math., 10 (2013), 677–692. https://doi.org/10.1007/s00009-012-0213-5 doi: 10.1007/s00009-012-0213-5
    [54] B. Yang, On a relation between Hilbert's inequality and a Hilbert-type inequality, Appl. Math. Lett., 21 (2008), 483–488. https://doi.org/10.1016/j.aml.2007.06.001 doi: 10.1016/j.aml.2007.06.001
    [55] B. Yang, D. Andrica, O. Bagdasar, M. Th. Rassias, An equivalent property of a Hilbert-type integral inequality and its applications, Appl. Anal. Discrete Math., 16 (2022), 548–563.
    [56] B. Yang, M. Th. Rassias, On Hilbert-type and Hardy-type integral inequalities and applications, Springer Cham, 2019. https://doi.org/10.1007/978-3-030-29268-3
    [57] B. Yang, M. Th. Rassias, On extended Hardy-Hilbert integral inequalities and applications, World Scientific, 2023. https://doi.org/10.1142/13164
    [58] B. C. Yang, D. Andrica, O. Bagdasar, M. Th. Rassias, On a Hilbert-type integral inequality in the whole plane with the equivalent forms, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117 (2023), 57. https://doi.org/10.1007/s13398-023-01388-9 doi: 10.1007/s13398-023-01388-9
    [59] W. Yang, Some new Hilbert-Pachpatte's inequalities, J. Inequal. Pure Appl. Math., 10 (2009), 26.
    [60] C. J. Zhao, Generalizations on two new Hilbert type inequalities, J. Math., 20 (2000), 413–416.
    [61] C. J. Zhao, L. Debnath, Some new inverse type Hilbert integral inequalities, J. Math. Anal. Appl., 262 (2001), 411–418. https://doi.org/10.1006/jmaa.2001.7595 doi: 10.1006/jmaa.2001.7595
    [62] C. J. Zhao, Inequalities similar to Hilbert's inequality, Abstr. Appl. Anal., 2013 (2013), 861948. http://dx.doi.org/10.1155/2013/861948 doi: 10.1155/2013/861948
    [63] C. J. Zhao, L. Y. Chen, W. S. Cheung, On some new Hilbert-type inequalities, Math. Slovaca, 61 (2011), 15–28. https://doi.org/10.2478/s12175-010-0056-0 doi: 10.2478/s12175-010-0056-0
    [64] C. J. Zhao, L. Y. Chen, W. S. Cheung, On Hilbert-Pachpatte multiple integral inequalities, J. Inequal. Appl., 2010 (2010), 820857. https://doi.org/10.1155/2010/820857 doi: 10.1155/2010/820857
    [65] C. J. Zhao, W. J. Cheung, On new Hilbert-Pachpatte type integral inequalities, Taiwan. J. Math., 14 (2010), 1271–1282. https://doi.org/10.11650/twjm/1500405943 doi: 10.11650/twjm/1500405943
    [66] C. J. Zhao, J. Pečarić, G. S. Leng, Inverses of some new inequalities similar to Hilbert's inequalities, Taiwan. J. Math., 10 (2006), 699–712. https://doi.org/10.11650/twjm/1500403856 doi: 10.11650/twjm/1500403856
    [67] M. Krnić, N. Lovričević, J. Pečarić, Jensen's functional, its properties and applications, An. St. Univ. Ovidius Constanta, 20 (2012), 225–248.
    [68] J. V. da C. Sousa, E. C. de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2017), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
    [69] J. V. da C. Sousa, E. C. de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of $\psi$-Hilfer operator, Differ. Equ. Appl., 11 (2019), 87–106. https://doi.org/10.7153/dea-2019-11-02 doi: 10.7153/dea-2019-11-02
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1095) PDF downloads(50) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog