In this manuscript, we discussed various new Hilbert-Pachpatte type inequalities implying the left sided ψ-Hilfer fractional derivatives with the general kernel. Our results are a generalization of the inequalities of Pečarić and Vuković [
Citation: Yasemin Başcı, Dumitru Baleanu. On Hilbert-Pachpatte type inequalities within ψ-Hilfer fractional generalized derivatives[J]. AIMS Mathematics, 2023, 8(6): 14008-14026. doi: 10.3934/math.2023716
[1] | Ishfaq Mallah, Idris Ahmed, Ali Akgul, Fahd Jarad, Subhash Alha . On ψ-Hilfer generalized proportional fractional operators. AIMS Mathematics, 2022, 7(1): 82-103. doi: 10.3934/math.2022005 |
[2] | Qing Yang, Chuanzhi Bai, Dandan Yang . Finite-time stability of nonlinear stochastic ψ-Hilfer fractional systems with time delay. AIMS Mathematics, 2022, 7(10): 18837-18852. doi: 10.3934/math.20221037 |
[3] | Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja . Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel. AIMS Mathematics, 2022, 7(8): 15041-15063. doi: 10.3934/math.2022824 |
[4] | Deepak B. Pachpatte . On some ψ Caputo fractional Čebyšev like inequalities for functions of two and three variables. AIMS Mathematics, 2020, 5(3): 2244-2260. doi: 10.3934/math.2020148 |
[5] | Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Nantapat Jarasthitikulchai, Marisa Kaewsuwan . A generalized Gronwall inequality via ψ-Hilfer proportional fractional operators and its applications to nonlocal Cauchy-type system. AIMS Mathematics, 2024, 9(9): 24443-24479. doi: 10.3934/math.20241191 |
[6] | Ridha Dida, Hamid Boulares, Bahaaeldin Abdalla, Manar A. Alqudah, Thabet Abdeljawad . On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives. AIMS Mathematics, 2023, 8(10): 23032-23045. doi: 10.3934/math.20231172 |
[7] | Marwa M. Ahmed, Wael S. Hassanein, Marwa Sh. Elsayed, Dumitru Baleanu, Ahmed A. El-Deeb . On Hardy-Hilbert-type inequalities with α-fractional derivatives. AIMS Mathematics, 2023, 8(9): 22097-22111. doi: 10.3934/math.20231126 |
[8] | Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112 |
[9] | Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306 |
[10] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
In this manuscript, we discussed various new Hilbert-Pachpatte type inequalities implying the left sided ψ-Hilfer fractional derivatives with the general kernel. Our results are a generalization of the inequalities of Pečarić and Vuković [
Starting from 1695 [2,3,4], non-integer calculus has been applied in various fields of science and engineering [5,6,7,8,9,10,11,12,13,14,15,16,17,18]. Introducing new fractional integrals and derivatives leads to an increasing rate of growth and cleanses its numerous applications [12,19,20,21,22,23,24,25,26]. Various researchers reported integral inequalities involving the different definitions of fractional derivatives [27,28,29,30,31,32,33,34].
We notice that Hilbert [35] presented the following integral inequality:
Theorem 1.1. [35] (Chapter IX, Theorem 316) If g∈Lp(0,∞), h∈Lq(0,∞), g,h≥0, p>1 and q=p(p−1), then
∫∞0∫∞0g(s)h(t)s+tdsdt≤πsin(πp)(∫∞0gp(s)ds)1/p×(∫∞0hq(t)dt)1/q, | (1.1) |
such that π/sin(πp1) is the best value.
We recall (1.1) as Hilbert's inequality. It is a fact that Hilbert's inequalities has an important place in analysis. In recent years, various mathematicians investigated Hilbert's inequalities, Hilbert's type inequalities and their several generalizations, see [1,22,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66] and the references therein.
Pachpatte [47] reported the following integral inequality in a similar way as Hilbert's inequality:
Theorem 1.2. [47] Let 0≤r≤m−1 and m≥1 be integers. Besides, let u1∈Cm([0,x]) and v1∈Cm([0,y]) such that x>0, y>0 and u(i)1(0)=v(i)1(0)=0 for i∈{0,1,...,m−1}. As a results we give
tx0∫y0|u(r)1(s)||v(r)1(t)|s2m−2r−1+t2m−2r−1dsdt≤M(m,r,x,y)×(∫x0(x−s)(u(m)1(s))2ds)1/2(∫y0(y−t)(v(m)1(t))2dt)1/2, | (1.2) |
where
M(m,r,x,y):=√xy2((m−r−1)!)2(2m−2r−1). |
Handly et al.[40] derived new type Hilbert-Pachpatte integral inequalities from the results of Pachpatte in [47,48].
Lü [46] gave some new inequalities related to the Hilbert-Pachpatte inequalities. Same year, Dragomir and Kim [38] extended and proved the results obtained by Handly et al. [40,41]. So, they obtained new inequalities like Hilbert-Pachpatte-type inequalities.
He and Li [22] established new inequalities related to the Hilbert-Pachpatte inequalities. Also, they presented some new generalizations of Hilbert-Pachpatte inequality.
Anastassiou [36] gave very general weighted Hilbert-Pachpatte type integral inequalities involving Caputo and Riemann-Liouville fractional derivatives as well as fractional partial derivatives of the above mentioned types. Also, in 2021, Anastassiou [37] we presented Hilfer-Polya, ψ-Hilfer Ostrowski as well as ψ-Hilfer-Hilbert-Pachpatte types fractional inequalities implying left and right Hilfer and ψ-Hilfer fractional derivatives.
Zhao et al. [64] obtained some multiple integral Hilbert-Pachpatte type inequalities. One year later, Zhao and Cheung [65] established Hilbert-Pachpatte-type integral inequalities.
Pečarić and Vuković [1] studied of some generalizations of Hilbert-Pachpatte type inequality involving the fractional derivative utilizing the Taylor series of function and refinement of Arithmetic-Geometric Inequality (A.G.I.) from [67]. Their results based on the results of Krnić and Pečarić [45].
A new kind of fractional derivative presented by Sousa and Oliveira [68]. They gave ψ-Hilfer fractional derivative with respect to (w.r.t.) another function, having in mind to combine many fractional derivatives into a single fractional operator, and as a result they open a path for new applications. Later, their authors studied Gronwall inequality and the Cauchy-type problem by using of ψ-Hilfer operator in [69].
Our work is organized as given below. In Section 1 and Section 2, we present the introduction and preliminaries, respectively. Motivated by [1], we developed several new Hilbert-Pachpatte type inequalities for the left sided ψ-Hilfer fractional derivatives with the general kernel. Furthermore, using the particular cases of the ψ-Hilfer fractional derivative, we proceed with the wide class of fractional derivatives by taking into account ψ, a1, b1 and taking the limit of the parameters α and β.
In the following some basic tools required in this manuscript are given.
Definition 2.1. [68] Let (a1,b1) (−∞≤a1<x<b1≤∞) be a finite or infinite interval and α>0. Also, let g be an integrable function on [a1,b1], and ψ be positive monotone and an increaasing function on (a1,b1] such that ψ′(x) is a continuous derivative on (a1,b1). The left-sided fractional integral of a function g w.r.t. another function ψ becomes
Iα;ψa+1g(x)=1Γ(α)∫xa1ψ′(t)(ψ(x)−ψ(t))α−1g(t)dt. | (2.1) |
Definition 2.2. [68] Let ψ′(x)≠0 in −∞≤a1<x<b1≤∞, m∈N and α>0. The Riemann-Liouville derivatives of a function g w.r.t. ψ of order α correspondent to the Riemann-Liouville is given by
Dα;ψa+1g(x)=(1ψ′(x)ddx)mIm−α;ψa+1g(x)=1Γ(m−α)(1ψ′(x)ddx)m∫xa1ψ′(t)(ψ(x)−ψ(t))m−α−1g(t)dt, | (2.2) |
such that m=[α]+1.
Definition 2.3. [68] Let m−1<α<m (m∈N), I=[a1,b1] be the interval such that −∞≤a1<b1≤∞ and g,ψ∈Cm([a1,b1],R) two functions such that ψ′(x)>0 and ψ′(x)≠0, for all x∈I. The ψ-Hilfer fractional derivative (left-sided) HDα,β;ψa+1(.) of function of order α and type 0≤β≤1, is defined as
HDα,β;ψa+1g(x)=Iβ(m−α);ψa+1(1ψ′(x)ddx)mI(1−β)(m−α);ψa+1g(x). | (2.3) |
Also, (2.3) becomes
HDα,β;ψa+1g(x)=Iγ−α;ψa+1Dγ;ψa+1g(x)=1Γ(γ−α)∫xa1ψ′(t)(ψ(x)−ψ(t))γ−α−1Dγ;ψa+1g(t)dt | (2.4) |
with γ=α+β(m−α). Here, Iγ;ψa+1(.) and Dγ;ψa+1(.) are defined in (2.1) and (2.2), respectively.
Theorem 2.1. [37] Let ψ,g∈Cm([a1,b1]) such that ψ is increasing and ψ′(x)≠0 over [a1,b1], where m−1<α<m, 0≤β≤1 and γ=α+β(m−α), x∈[a1,b1]. Then,
g(x)=1Γ(α)∫xa1ψ′(t)(ψ(x)−ψ(t))α−1HDα,β;ψa+1g(t)dt+m−1∑k=1(ψ(x)−ψ(a1))γ−kΓ(γ−k+1)g[m−k](I(1−β)(m−α);ψa+1g)(a1). | (2.5) |
Here notice that
I(1−β)(m−α);ψa+1g(a1)=0. |
If
g[m−k](I(1−β)(m−α);ψa+1g)(a1)=0,(k=1,2,...,m−1), |
then (2.5) becomes
g(x)=1Γ(α)∫xa1ψ′(t)(ψ(x)−ψ(t))α−1HDα,β;ψa+1g(t)dt. | (2.6) |
Krnić and Pecarić reported the following inequalities in [45]:
∫Ω×ΩK(x,y)g(x)h(y)dμ1(x)dμ2(y)≤[∫Ωθp(x)G(x)gp(x)dμ1(x)]1/p[∫Ωϕq(y)H(y)hq(y)dμ2(y)]1/q | (2.7) |
and
∫ΩH1−p(y)ϕ−p(y)[∫ΩK(x,y)g(x)dμ1(x)]pdμ2(y)≤∫Ωθp(x)G(x)gp(x)dμ1(x). | (2.8) |
Here p>1, μ1 and μ2 are positive σ-finite measures, K:Ω×Ω→R, g,h,θ,ϕ:Ω→R are measurable nonnegative functions and
G(x)=∫ΩK(x,y)ϕp(y)dμ2(y), | (2.9) |
H(y)=∫ΩK(x,y)θq(x)dμ1(x). | (2.10) |
On the other hand, we give some definitions of Yang et al. [55]. That is, let p1,...,pl>1 be real parameters such that ∑li=11pi=1. Also, let K:Ωl→R and ωij:Ω→R (i,j=1,...,l) be nonnegative measurable functions. If ∏li,j=1ωij(xj)=1, then the following inequality gives for all measurable nonnegative functions g1,...,gl:Ω→R:
∫ΩlK(x1,...,xl)l∏i=1gi(xi)dx1...dxl≤l∏i=1(∫ΩGi(xi)(ωijgi)pi(xi)dxi)1pi, | (2.11) |
where
Gi(xi)=∫Ωl−1K(x1,...,xl)l∏j=1,j≠iωpiij(xi)dx1...dxi−1dxi+1...dxxl, | (2.12) |
for i=1,...,l.
In [67], Krnić et al. showed the following refinements and converses of Young's inequality in quotient and difference form. If x=(x1,x2,...,xm) and p=(p1,p2,...,pm), we denote Pm=∑mi=1pi,
Am(x)=∑mi=1xim,Hm(x)=(m∏i=1xi)1/m, |
and
Mr(x,p)={(1Pm∑mi=1pixri)1/r,r≠0.(∏mi=1xpii)1/Pm,r=0. |
Lemma 2.1. [52] Let x=(x1,x2,...,xm) and p=(p1,p2,...,pm) be positive m-tuples, such that ∑mi=11pi=1, and
xp=(xp11,xp22,...,xpmm),1p=(1p1,1p2,...,1pm). |
Then, the followings hold:
(i)
[Am(xp)Hm(xp)]mmin1≤i≤m{1pi}≤M1(xp,1p)M0(xp,1p)≤[Am(xp)Hm(xp)]mmax1≤i≤m{1pi}, |
(ii)
mmin1≤i≤m{1pi}[Am(xp)−Hm(xp)]≤M1(xp,1p)−M0(xp,1p)≤mmax1≤i≤m{1pi}[Am(xp)−Hm(xp)]. |
Now, define
k(ξ):=∫∞0K(1,u)u−ξds, |
such that K(x,y) represents a nonnegative homogeneous function of degree −s (s>0), that is, K(tx,ty)=t−sK(x,y) is satisfied. Suppose that k(ξ)<∞ for 1−s<ξ<1.
Lemma 2.2. [1] If λ>0, 1−λ<ξ<1 and K:R+×R+→R is a nonnegative homogeneous function of degree −λ, then
∫∞0K(x,y)(xy)ξdy=x1−λk(ξ), |
and
∫∞0K(x,y)(yx)ξdx=y1−λk(2−λ−ξ). |
Below, we will prove various new Hilbert-Pachpatte type inequalities including the left sided ψ-Hilfer fractional derivatives.
Theorem 3.1. Let 1p+1q=1 with p,q>1, −∞≤a1<b1≤∞ and γ≥α+1. Assume that K:[a1,b1]×[a1,b1]→R is nonnegative function, θ(x), ϕ(y) are nonnegative functions on [a1,b1], and g,h,ψ∈Cn([a1,b1],R) are functions such that ψ is an increasing function with ψ′(x)≠0, for all x∈[a1,b1]. Also, let Dγ;ψa+1 for α=γ and HDα,β;ψa+1 be defined by (2.2) and (2.4), respectively. Then, we have
∫b1a1∫b1a1K(x,y)|HDα,β;ψa+1g(x)||HDα,β;ψa+1h(y)|[(x−a1)1q(M1−m1)+(y−b1)1p(M1−m1)]2(M1−m1)dxdy≤14M1−m1∫b1a1∫b1a1K(x,y)|HDα,β;ψa+1g(x)||HDα,β;ψa+1h(y)|(x−a1)1q(y−b1)1pdxdy≤14M1−m1(Γ(γ−α))2(∫b1a1∫xa1(ψ′(t))p(ψ(x)−ψ(t))p(γ−α−1)×θp(x)G(x)|Dγ;ψa+1g(t)|pdtdx)1/p×(∫b1a1∫ya1(ψ′(t))q(ψ(y)−ψ(t))q(γ−α−1)ϕq(y)H(y)|Dγ;ψa+1h(t)|qdtdy)1/q | (3.1) |
and
∫b1a1H1−p(y)ϕ−p(y)(∫b1a1K(x,y)(∫xa1(ψ′(t))p(ψ(x)−ψ(t))p(γ−α−1)|Dγ;ψa+1g(t)|pdt)1/pdx)pdy≤∫b1a1∫xa1(ψ′(t))p(ψ(x)−ψ(t))p(γ−α−1)θp(x)G(x)|Dγ;ψa+1g(t)|pdtdx, | (3.2) |
where m1=min{1p,1q}, M1=max{1p,1q}, and G(x) and H(y) are defined as in (2.9) and (2.10), respectively.
Proof. Applying Hölder's inequality in (2.4) and using an increasing of the function ψ(x), for x∈[a1,b1] and t∈[a1,x] we obtain
|HDα,β;ψa+1g(x)|=1Γ(γ−α)|∫xa1ψ′(t)(ψ(x)−ψ(t))γ−α−1Dγ;ψa+1g(t)dt|≤1Γ(γ−α)∫xa1(ψ′(t))(ψ(x)−ψ(t))γ−α−1|Dγ;ψa+1g(t)|dt≤1Γ(γ−α)(∫xa1(ψ′(t))p(ψ(x)−ψ(t))p(γ−α−1)|Dγ;ψa+1g(t)|pdt)1/p(∫xa11dt)1/q. |
From here, we can write
|HDα,β;ψa+1g(x)|≤(x−a1)1/qΓ(γ−α)(∫xa1(ψ′(t))p(ψ(x)−ψ(t))p(γ−α−1)|Dγ;ψa+1g(t)|pdt)1/p. | (3.3) |
Similarly, for y∈[a1,b1] and t∈[a1,y] we can derive
|HDα,β;ψa+1h(y)|≤(y−a1)1/pΓ(γ−α)(∫ya1(ψ′(t))q(ψ(y)−ψ(t))q(γ−α−1)×|Dγ;ψa+1h(t)|qdt)1/q. | (3.4) |
Multiplying (3.3) by (3.4), we get
|HDα,β;ψa+1g(x)||HDα,β;ψa+1h(y)|≤(x−a1)1/q(y−a1)1/p[Γ(γ−α)]2×(∫xa1(ψ′(t))p(ψ(x)−ψ(t))p(γ−α−1)|Dγ;ψa+1g(t)|pdt)1/p×(∫ya1(ψ′(t))q(ψ(y)−ψ(t))q(γ−α−1)|Dγ;ψa+1h(t)|qdt)1/q. | (3.5) |
Applying Lemma 2.1(ⅰ), we obtain
4M1−m1(xpyq)M1−m1≤(xp+yq)2(M1−m1),x≥0,y≥0, | (3.6) |
where 1p+1q=1 with p,q>1, and m1=min{1p,1q}, M1=max{1p,1q}. Replacing x by x1pq(M1−m1) and y by y1pq(M1−m1) in (3.6), taking it into (3.5), ones has
4M1−m1|HDα,β;ψa+1g(x)||HDα,β;ψa+1h(y)|[(x−a1)1q(M1−m1)+(y−a1)1p(M1−m1)]2(M1−m1)≤|HDα,β;ψa+1g(x)||HDα,β;ψa+1h(y)|(x−a1)1q(y−a1)1p≤1(Γ(γ−α))2(∫xa1(ψ′(t))p(ψ(x)−ψ(t))p(γ−α−1)|Dγ;ψa+1g(t)|pdt)1/p×(∫ya1(ψ′(t))q(ψ(y)−ψ(t))q(γ−α−1)|Dγ;ψa+1h(t)|qdt)1/q. | (3.7) |
Multiplying (3.7) by the kernel K(x,y) and integrating x and y on domain [a1,b1]×[a1,b1], we obtain
4M1−m1∫b1a1∫b1a1K(x,y)|HDα,β;ψa+1g(x)||HDα,β;ψa+1h(y)|[(x−a1)1q(M1−m1)+(y−a1)1p(M1−m1)]2(M1−m1)dxdy≤∫b1a1∫b1a1K(x,y)|HDα,β;ψa+1g(x)||HDα,β;ψa+1h(y)|(x−a1)1q(y−a1)1pdxdy≤1(Γ(γ−α))2∫b1a1∫b1a1K(x,y)(∫xa1(ψ′(t))p(ψ(x)−ψ(t))p(γ−α−1)|Dγ;ψa+1g(t)|pdt)1/p×(∫ya1(ψ′(t))q(ψ(y)−ψ(t))q(γ−α−1)|Dγ;ψa+1h(t)|qdt)1/qdxdy. | (3.8) |
Taking
g1(x)=(∫xa1(ψ′(t))p(ψ(x)−ψ(t))p(γ−α−1)|Dγ;ψa+1g(t)|pdt)1/p |
and
h1(y)=(∫ya1(ψ′(t))q(ψ(y)−ψ(t))q(γ−α−1)|Dγ;ψa+1h(t)|qdt)1/q. |
Replacing g(t) by g1(t) and h(t) by h1(t) in (2.7), we have
∫b1a1∫b1a1K(x,y)g1(x)h1(y)dxdy≤(∫b1a1θp(x)G(x)gp1(x)dx)1/p(∫b1a1ϕq(y)H(y)hq1(y)dy)1/q=(∫b1a1∫xa1(ψ′(t))p(ψ(y)−ψ(t))p(γ−α−1)θp(x)G(x)|Dγ;ψa+1g(t)|pdtdx)1/p×(∫b1a1∫ya1(ψ′(t))q(ψ(y)−ψ(t))q(γ−α−1)ϕq(y)H(y)|Dγ;ψa+1h(t)|qdtdy)1/q. | (3.9) |
Using (3.8) and (3.9), we obtain (3.1). Also, the inequality (3.2) can be proved by applying (2.8).
Corollary 3.1. Let 1p+1q=1 with p,q>1 and γ≥α+1. Assume that K:R+×R+→R is a nonnegative homogeneous function for degree −λ, λ>0, and g,h,ψ∈Cn0([0,∞]) are functions such that ψ is an increasing function with ψ′(x)≠0, for all x∈([0,∞),R). Also, let HDα,β;ψa+1 and Dγ;ψa+1 be defined by (2.2) and (2.4), respectively. Then the inequalities hold:
∫∞0∫∞0K(x,y)|HDα,β;ψa+1g(x)||HDα,β;ψa+1h(y)|[x1q(M1−m1)+y1p(M1−m1)]2(M1−m1)dxdy≤pq4M1−m1∫∞0∫∞0K(x,y)|HDα,β;ψa+1g(x)||HDα,β;ψa+1h(y)|d(x1/p)d(y1/q)≤L4M1−m1(Γ(γ−α))2(∫∞0∫x0(ψ′(t))p(ψ(x)−ψ(t))p(γ−α−1)xp(A1−A2)+1−λ|Dγ;ψa+1g(t)|pdtdx)1/p×(∫∞0∫y0(ψ′(t))q(ψ(y)−ψ(t))q(γ−α−1)yq(A2−A1)+1−λ|Dγ;ψa+1h(t)|qdtdy)1/q, | (3.10) |
and
∫∞0y(p−1)(λ−1)+p(A1−A2)(∫∞0K(x,y)(∫x0(ψ′(t))p(ψ(x)−ψ(t))p(γ−α−1)|Dγ;ψa+1g(t)|pdt)1/pdx)pdy≤Lp∫∞0∫x0(ψ′(t))p(ψ(x))p(γ−α−1)xp(A1−A2)+1−λ|Dγ;ψa+1g(t)|pdtdx, | (3.11) |
where M1 and m1 are defined as Theorem 3.1, and
A1=(1−λq,1q),A2=(1−λp,1p),L=[k(pA2)]1/p[k(2−λ−qA1)]1/q. |
Proof. Let G(x) and H(y) be defined by (2.9) and (2.10), respectively. In (3.9), taking θ(x)=xA1 and ϕ(y)=yA2, and from ψ(x) is an increasing function and γ≥α+1, we write
(ψ(x)−ψ(t))p(γ−α−1)≤ψp(γ−α−1)(x),forx∈[0,∞]andt∈[0,x]. |
By using Lemma 2.2, we obtain
∫∞0∫x0(ψ′(t))p(ψ(x)−ψ(t))p(γ−α−1)θp(x)G(x)|Dγ;ψa+1g(t)|pdtdx≤∫∞0∫x0(ψ′(t))pψp(γ−α−1)(x)xp(A1−A2)(∫∞0K(x,y)(xy)pA2dy)|Dγ;ψa+1g(t)|pdtdx=k(pA2)∫∞0∫x0(ψ′(t))pψp(γ−α−1)(x)xp(A1−A2)+1−λ|Dγ;ψa+1g(t)|pdtdx. | (3.12) |
Similarly, we can derive
∫∞0∫y0(ψ′(t))q(ψ(y)−ψ(t))q(γ−α−1)ϕq(y)H(y)|Dγ;ψa+1h(t)|qdtdy≤k(2−λ−qA1)∫∞0∫y0(ψ′(t))qψq(γ−α−1)(y)yq(A2−A1)+1−λ|Dγ;ψa+1h(t)|qdtdy. | (3.13) |
Therefore, from (3.1), (3.12) and (3.13), we obtain (3.10). Also, the inequality (3.11) can proved applying (3.2). So, we complete the proof of Corollary 3.1.
Let's choose the special homogeneous function K(x,y). Taking K(x,y)=lnyxy−x in Corollary 3.1, then we get the following Corollary 3.2:
Corollary 3.2. Let 1p+1q=1 for p,q>1 and γ≥α+1. Also, let M1, m1, g, h as in Corollary 3.1. Then we have
∫∞0∫∞0lnyx|HDα,β;ψa+1g(x)||HDα,β;ψa+1h(y)|(y−x)[x1q(M1−m1)+y1p(M1−m1)]2(M1−m1)dxdy≤pq4M1−m1∫∞0∫∞0lnyxy−x|HDα,β;ψa+1g(x)||HDα,β;ψa+1h(y)|d(x1/p)d(y1/q)≤L14M1−m1(Γ(γ−α))2(∫∞0∫x0(ψ′(t))p(ψ(x)−ψ(t))p(γ−α−1)xp(A1−A2)|Dγ;ψa+1g(t)|pdtdx)1/p×(∫∞0∫y0(ψ′(t))q(ψ(y)−ψ(t))q(γ−α−1)yq(A2−A1)|Dγ;ψa+1h(t)|qdtdy)1/q, | (3.14) |
and
∫∞0yp(A1−A2)(∫∞0lnyxy−x(∫x0(ψ′(t))p(ψ(x)−ψ(t))p(γ−α−1)|Dγ;ψa+1g(t)|pdt)1/pdx)pdy≤Lp1∫∞0∫x0(ψ′(t))p(ψ(x))p(γ−α−1)xp(A1−A2)|Dγ;ψa+1g(t)|pdtdx, | (3.15) |
where A1=(0,1q), A2=(0,1p) and L1=π2(sin(pA2π))−2/p(sin(qA1π))−2/q.
Furthermore, for the homogeneous function of degree −λ, λ>0, taking K(x,y)=(max{x,y})−λ, A1=A2=2−λpq with the condition λ>2−min{p,q} in Corollary 3.1, we can give the following result:
Corollary 3.3. Let 1p+1q=1 for p,q>1 and γ≥α+1. Also, let M1, m1, g, h as in Corollary 3.1. Then inequalities hold:
∫∞0∫∞0(max{x,y})−λ|HDα,β;ψa+1g(x)||HDα,β;ψa+1h(y)|[x1q(M1−m1)+y1p(M1−m1)]2(M1−m1)dxdy≤pq4M1−m1∫∞0∫∞0|HDα,β;ψa+1g(x)||HDα,β;ψa+1h(y)|(max{x,y})λd(x1/p)d(y1/q)≤L24M1−m1(Γ(γ−α))2(∫∞0∫x0(ψ′(t))p(ψ(x)−ψ(t))p(γ−α−1)×xλ−1|Dγ;ψa+1g(t)|pdtdx)1/p(∫∞0∫y0(ψ′(t))q(ψ(y)−ψ(t))q(γ−α−1)yλ−1|Dγ;ψa+1h(t)|qdtdy)1/q, | (3.16) |
and
∫∞0y(p−1)(λ−1)(∫∞0(max{x,y})−λ(∫x0(ψ′(t))p(ψ(x)−ψ(t))p(γ−α−1)|Dγ;ψa+1g(t)|pdt)1/pdx)pdy≤Lp2∫∞0∫x0(ψ′(t))p(ψ(x))p(γ−α−1)xλ−1|Dγ;ψa+1g(t)|pdtdx, | (3.17) |
where L2=k(2−λq) and k(α)=λ(1−α)(λ+α−1).
If we are applying the second refinement of A.G.I. (see Lemma 2.1 (ⅱ)), then we report the related theorem:
Theorem 3.2. Assume that the conditions of Theorem 3.1 provided. Then, the following inequalities hold:
∫b1a1∫b1a1K(x,y)|HDα,β;ψa+1g(x)||HDα,β;ψa+1h(y)|(12[(x−a1)1q+(y−b1)1p]+1M1−m1)2dxdy≤∫b1a1∫b1a1K(x,y)|HDα,β;ψa+1g(x)||HDα,β;ψa+1h(y)|(x−a1)1q(y−b1)1pdxdy≤1(Γ(γ−α))2(∫b1a1∫xa1(ψ′(t))p(ψ(x)−ψ(t))p(γ−α−1)θp(x)G(x)|Dγ;ψa+1g(t)|pdtdx)1/p×(∫b1a1∫ya1(ψ′(t))q(ψ(y)−ψ(t))q(γ−α−1)ϕq(y)H(y)|Dγ;ψa+1h(t)|qdtdy)1/q. | (3.18) |
Proof. Using Lemma 2.1 (ⅱ), we get
xpyq≤(xp+yq2+1M1−m1)2,x≥0andy≥0, | (3.19) |
where 1p+1q=1 with p>1, and m1=min{1p,1q}, M1=max{1p,1q}. If we take (3.19) and proceed as in the proof of Theorem 3.1, then we obtain (3.18).
Now, we can derive the following theorem, which is the generalization of Theorem 3.1. In the proof of the Theorem 3.3, we used a general Hilbert-type inequality (5) of Yang et al. [51].
Theorem 3.3. Let n,l∈R, l≥2, ∑li=11pi=1 with p1,...,pl>1 and γ≥α+1. Also, let αi (i=1,...,l) be defined by αi=∏lj=1,j≠ipj. Assume that K:[a1,b1]l→R is nonnegative function, ωij(xj) are nonnegative functions on [a1,b1] for i,j=1,...,l such that ∏li,j=1ωij(xj)=1, and gi,ψ∈Cn([a1,b1]) are functions such that ψ is an increasing function with ψ′(x)≠0, for all x∈[a1,b1]. Then we report the following:
∫(a1,b1)lK(x1,...,xl)∏li=1|HDαi,β;ψa+1gi(xi)|(∑li=1(xi−a1)1αi(M1−m1))l(M1−m1)dx1...dxl≤1l(M1−m1)l∫(a1,b1)lK(x1,...,xl)∏li=1|HDαi,β;ψa+1gi(xi)|∏li=1(xi−a1)1αidx1...dxl≤1l(M1−m1)l[Γ(γ−α)]ll∏i=1(∫b1a1∫xia(ψ′(t))pi(ψ(xi)−ψ(t))pi(γ−αi−1)ωpiij(xi)×Gi(xi)|Dγ;ψa+1gi(t)|pidtdxi)1/pi, | (3.20) |
where m1=min1≤i≤l{1pi}, M1=max1≤i≤l{1pi}, and Gi(xi) is defined by (2.12) for i=1,...,l.
Also, using the Taylor series (see Theorem 2.1), we get the following the Hilbert-Pachpatte Type inequalities:
Theorem 3.4. Let 1p+1q=1 with p,q>1, −∞≤a1<b1≤∞ and α≥1. Assume that K:[a1,b1]×[a1,b1]→R is nonnegative function, θ(x), ϕ(y) are nonnegative functions on [a1,b1], and g,h,ψ∈Cn([a1,b1]) are functions such that ψ is an increasing with ψ′(x)≠0, for all x∈[a1,b1]. Also, for k=1,2,...,m−1 suppose that
g[m−k](I(1−β)(m−α);ψa+1g)(a1)=0 |
and
h[m−k](I(1−β)(m−α);ψa+1h)(a1)=0. |
Let HDα,β;ψa+1 be defined by (2.4). As a results we get
∫b1a1∫b1a1K(x,y)|g(x)||h(y)|[(x−a1)1q(M1−m1)+(y−b1)1p(M1−m1)]2(M1−m1)dxdy≤14M1−m1∫b1a1∫b1a1K(x,y)|g(x)||h(y)|(x−a1)1q(y−b1)1pdxdy≤14M1−m1(Γ(α))2(∫b1a1∫xa1(ψ′(t))p(ψ(x)−ψ(t))p(α−1)θp(x)G(x)|HDα,β;ψa+1g(t)|pdtdx)1/p×(∫b1a1∫ya1(ψ′(t))q(ψ(y)−ψ(t))q(α−1)ϕq(y)H(y)|HDα,β;ψa+1h(t)|qdtdy)1/q | (3.21) |
and
∫b1a1H1−p(y)Φ−p(y)(∫b1a1K(x,y)(∫xa1(ψ′(t))p(ψ(x)−ψ(t))p(α−1)|HDα,β;ψa+1g(t)|pdt)1/pdx)pdy≤∫b1a1∫xa1(ψ′(t))p(ψ(x)−ψ(t))p(α−1)θp(x)G(x)|HDα,β;ψa+1g(t)|pdtdx, | (3.22) |
where m1=min{1p,1q}, M1=max{1p,1q}, and G(x) and H(y) are defined as in (2.9) and (2.10) respectively.
Proof. Applying the Hölder's inequality to (2.6), we obtain
|g(x)|=1Γ(α)|∫xa1ψ′(t)(ψ(x)−ψ(t))α−1HDα,β;ψa+1g(t)dt|≤1Γ(α)∫xa1(ψ′(t))(ψ(x)−ψ(t))α−1|HDα,β;ψa+1g(t)|dt≤1Γ(α)(∫xa1(ψ′(t))p(ψ(x)−ψ(t))p(α−1)|HDα,β;ψa+1g(t)|pdt)1/p(∫xa11dt)1/q=(x−a1)1/qΓ(α)(∫xa1(ψ′(t))p(ψ(x)−ψ(t))p(α−1)|HDα,β;ψa+1g(t)|pdt)1/p. | (3.23) |
Similarly, we have
|h(y)|=(y−a1)1/pΓ(α)(∫ya1(ψ′(t))q(ψ(y)−ψ(t))q(α−1)|HDα,β;ψa+1h(t)|qdt)1/q. | (3.24) |
Repeating the same procedure as in the proof of Theorem 3.1, only multiplying (3.23) by (3.24) and using (3.6), one gets Theorem 3.4.
Corollary 3.4. Let 1p+1q=1 with p,q>1 and α≥1. Assume that K:R+×R+→R is a nonnegative homogeneous function for degree −λ, λ>0, and g,h,ψ∈Cn0([0,∞]) are functions such that ψ is an increasing with ψ′(x)≠0, for all x∈[0,∞). Also, for k=1,2,...,m−1 suppose that
g[m−k](I(1−β)(m−α);ψa+1g)(a1)=0 |
and
h[m−k](I(1−β)(m−α);ψa+1h)(a1)=0. |
Let HDα,β;ψa+1 be defined by (2.4). Then the inequalities hold:
∫∞0∫∞0K(x,y)|g(x)||h(y)|[x1q(M1−m1)+y1p(M1−m1)]2(M1−m1)dxdy≤pq4M1−m1∫∞0∫∞0K(x,y)|g(x)||h(y)|d(x1/p)d(y1/q)≤L4M1−m1[Γ(α)]2(∫∞0∫x0(ψ′(t))p(ψ(x)−ψ(t))p(α−1)xp(A1−A2)+1−λ|HDα,β;ψa+1g(t)|pdtdx)1/p×(∫∞0∫y0(ψ′(t))q(ψ(y)−ψ(t))q(α−1)yq(A2−A1)+1−λ|HDα,β;ψa+1h(t)|qdtdy)1/q, | (3.25) |
and
∫∞0y(p−1)(λ−1)+p(A1−A2)(∫∞0K(x,y)(∫x0(ψ′(t))p(ψ(x)−ψ(t))p(α−1)|HDα,β;ψa+1g(t)|pdt)1/pdx)pdy≤Lp∫∞0∫x0(ψ′(t))p(ψ(x))p(α−1)xp(A1−A2)+1−λ|HDα,β;ψa+1g(t)|pdtdx, | (3.26) |
where M1 and m1 are defined as Theorem 3.2. Also,
A1=(1−λq,1q),A2=(1−λp,1p),L=[k(pA2)]1/p[k(2−λ−qA1)]1/q. |
Now, we recall that in some particular cases of the ψ-Hilfer fractional derivative operator Eq (2.3), we proceed with wide class of fractional derivatives by taking some special values of ψ(x), a1, α and β (see [12,26,68]).
(1) Using the limit β→1 on both sides of the Eq (2.3), we obtain the following ψ-Caputo fractional operator w.r.t. another function:
HDα,1;ψa+1g(x)=Im−α;ψa+1(1ψ′(x)ddx)mg(x)=CDα;ψa+1g(x). | (3.27) |
(2) Using the limit β→0 on both sides of the Eq (2.3), we get the following ψ-Riemann-Liouville fractional operator w.r.t. another function, namely:
HDα,0;ψa+1g(x)=(1ψ′(x)ddx)mI(m−α);ψa+1g(x)=Dα;ψa+1g(x). | (3.28) |
(3) For ψ(x)=x, considering the limit β→1 on both sides of the Eq (2.3), we end up with the following Caputo fractional operator:
HDα,1;xa+1g(x)=I(m−α);xa+1(ddx)mg(x)=1Γ(m−α)∫xa1(x−t)m−α−1(ddt)mg(t)dt=CDαa+1g(x). | (3.29) |
(4) For ψ(x)=xρ, considering the limit β→0 on both sides of the Eq (2.3), we obtain the below fractional operator (Katugampola):
ραHDα,0;xρa+1g(x)=ρα(1ρxρ−1ddx)mI(m−α);xρa+1g(x)=ρα−m+1(1ρxρ−1ddx)m1Γ(m−α)∫xa1tρ−1(xρ−tρ)m−α−1g(t)dt=ρDαa+1g(x). | (3.30) |
(5) When ψ(x)=x, considering the limit β→0 on both sides of the Eq (2.3), we obtain the following Riemann-Liouville fractional operator:
HDα,0;xa+1g(x)=(ddx)mI(m−α);xa+1g(x)=(ddx)m1Γ(m−α)∫xa1(x−t)m−α−1g(t)dt=Dαa+1g(x). | (3.31) |
(6) When ψ(x)=lnx, considering the limit β→0 on both sides of the Eq (2.3), we get the below Hadamard fractional operator:
HDα,0;lnxa+1g(x)=(xddx)mI(m−α);lnxa+1g(x)=(xddx)m1Γ(m−α)∫xa1(ln(xt))m−α−1g(t)dtt=HDαa+1g(x). | (3.32) |
(7) When ψ(x)=lnx, considering the limit β→1 on both sides of the Eq (2.3), we obtain the Caputo-Hadamard fractional operator, namely:
HDα,1;lnxa+1g(x)=I(m−α);lnxa+1(xddx)mg(x)=1Γ(m−α)∫xa1(ln(xt))m−α−1(tddt)mg(t)dtt=CHDαa+1g(x). | (3.33) |
(8) For ψ(x)=xρ, considering the limit β→1 on both sides of the Eq (2.3), we get the following fractional operator (Caputo-Katugampola):
ραHDα,1;xρa+1g(x)=ραI(m−α);xρa+1(1ρxρ−1ddx)mg(x)=ρα−m+11Γ(m−α)∫xa1tρ−1(xρ−tρ)m−α−1(1tρ−1ddt)mg(t)dt=CKDα,ρa+1g(x). | (3.34) |
(9) For ψ(x)=x and a1=0, considering the limit β→0 on both sides of the Eq (2.3), we obtain the Riemann fractional operator:
HDα,0;x0+g(x)=(ddx)mI(m−α);x0+g(x)=RDαa+1g(x). | (3.35) |
(10) For ψ(x)=x and a1=c, considering the limit β→0 on both sides of the Eq (2.3), we report the following Chen fractional operator:
HDα,0;xc+g(x)=(ddx)mI(m−α);xc+g(x)=(ddx)m1Γ(m−α)∫xc(x−t)m−α−1g(t)dt=Dαc+g(x). | (3.36) |
Remark 3.1. For the above some particular cases of the ψ-Hilfer fractional derivative operator Eq (2.3), in Theorems 3.1–3.4 and Corollaries 3.1–3.4, we obtain new results for them.
Studies involving Hilbert's inequalities play an important place in analysis and application several. Recently, such inequalities were generalized and developed by mathematics. In this study, by generalizing of the inequalities in [1], we establish several new Hilbert-Pachpatte type for the left sided ψ-Hilfer fractional derivatives. Furthermore, using the particular cases of the ψ-Hilfer fractional derivative, we proceed with wide class of fractional derivatives by selecting ψ, a1, b1 and considering the limit of the parameters α and β.
The authors declare no conflict of interests.
[1] | J. Pečarić, P. Vuković, Hilbert-Pachpatte-type inequality due to fractional differential inequalities, Ann. Univ. Craiova, Math. Comput. Sci. Ser., 41 (2014), 280–291. |
[2] | G. W. Leibniz, Letter from Hanover, Germany to G.F.A. L'Hospital, September 30, 1695, In: Mathematische schriften, Olms-Verlag, Hildesheim, Germany, 1849,301–302. |
[3] | G. W. Leibniz, Letter from Hanover, Germany to Johann Bernoulli, December 28, 1695, In: Mathematische schriften, Olms-Verlag, Hildesheim, Germany, 1962,226. |
[4] | G. W. Leibniz, Letter from Hanover, Germany to John Wallis, May 30, 1697, In: Mathematische schriften, Olms-Verlag, Hildesheim, Germany, 1962, 25. |
[5] |
O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dyn., 38 (2004), 323–337. http://dx.doi.org/10.1007/S11071-004-3764-6 doi: 10.1007/S11071-004-3764-6
![]() |
[6] | T. M. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional calculus with applications in mechanics: vibrations and diffusion processes, Wiley, London, Hoboken, 2014. http://dx.doi.org/10.1002/9781118577530 |
[7] | D. D. Bainov, P. S. Simeonov, Integral inequalities and applications, Springer Dordrecht, 1992. https://doi.org/10.1007/978-94-015-8034-2 |
[8] | C. Bandle, L. Losonczi, A. Gilányi, Z. Páles, M. Plum, Inequalities and applications, Conference on inequalities and applications, Noszvaj (Hungary), September 2007, Birkhäuser Basel, 2009. https://doi.org/10.1007/978-3-7643-8773-0 |
[9] |
S. Corlay, J. Lebovits, J. L. Véhel, Multifractional stochastic volatility models, Math. Finance, 24 (2014), 364–402. http://dx.doi.org/10.1111/mafi.12024 doi: 10.1111/mafi.12024
![]() |
[10] |
G. S. F. Frederico, D. F. M. Torres, Fractional conservation laws in optimal control theory, Nonlinear Dyn., 53 (2008), 215–222. http://dx.doi.org/10.1007/s11071-007-9309-z doi: 10.1007/s11071-007-9309-z
![]() |
[11] | R. Herrmann, Fractional calculus: an introduction for physicists, Singapore: World Scientific Publishing Company, 2011. |
[12] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, 1 Ed., North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006. |
[13] |
R. L. Magin, C. Ingo, L. Colon-Perez, W. Triplett, T. H. Mareci, Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy, Micropor. Mesopor. Mat., 178 (2013), 39–43. http://doi.org/10.1016/j.micromeso.2013.02.054 doi: 10.1016/j.micromeso.2013.02.054
![]() |
[14] |
R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59 (2010), 1586–1593. http://doi.org/10.1016/j.camwa.2009.08.039 doi: 10.1016/j.camwa.2009.08.039
![]() |
[15] |
A. B. Malinowska, D. F. M. Torres, Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative, Comput. Math. Appl., 59 (2010), 3110–3116. https://doi.org/10.1016/j.camwa.2010.02.032 doi: 10.1016/j.camwa.2010.02.032
![]() |
[16] |
F. C. Meral, T. J. oyston, R. Magin, Fractional calculus in viscoelasticity: an experimental study, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 939–945. https://doi.org/10.1016/j.cnsns.2009.05.004 doi: 10.1016/j.cnsns.2009.05.004
![]() |
[17] |
F. S. Costa, J. C. S. Soares, A. R. G. Plata, E. C. de Oliveira, On the fractional Harry Dym equation, Comp. Appl. Math., 37 (2018), 2862–2876. https://doi.org/10.1007/s40314-017-0484-3 doi: 10.1007/s40314-017-0484-3
![]() |
[18] | F. S. Costa, E. C. Grigoletto, J. Vaz Jr., E. C. de Oliveira, Slowing-down of neutrons: a fractional model, Commun. Appl. Ind. Math., 6 (2015). |
[19] | A. K. Anatoly, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191–1204. |
[20] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. |
[21] | A. Atangana, Derivative with a new parameter: theory, methods and applications, San Diego: Academic Press, 2015. |
[22] | B. He, Y. Li, On several new inequalities close to Hilbert-Pachpatte's inequality, J. Inequal. Pure Appl. Math., 7 (2006), 154. |
[23] |
F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. https://doi.org/10.1186/1687-1847-2012-142 doi: 10.1186/1687-1847-2012-142
![]() |
[24] |
U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062
![]() |
[25] | U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15. |
[26] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, theory and applications, Translated from the 1987 Russian original, Gordon and Breach, Yverdon, 1993. |
[27] | G. Anastassiou, M. R. Hooshmandasl, A. Ghasemi, F. Moftakharzahed, Montgomery identities for fractional integrals and related fractional inequalities, J. Inequal. Pure Appl. Math., 10 (2009), 97. |
[28] |
Y. Başcı, D. Baleanu, Hardy-type inequalities within fractional derivatives without singular kernel, J. Inequal. Appl., 2018 (2018), 304. https://doi.org/10.1186/s13660-018-1893-6 doi: 10.1186/s13660-018-1893-6
![]() |
[29] |
Y. Başcı, D. Baleanu, New aspects of Opial-type integral inequalities, Adv. Differ. Equ., 2018 (2018), 452. https://doi.org/10.1186/s13662-018-1912-4 doi: 10.1186/s13662-018-1912-4
![]() |
[30] |
S. Iqbal, K. Krulić, J. Pečarić, Weighted Hardy-type inequalities for monotone convex functions with some applications, Fract. Differ. Calc., 3 (2013), 31–53. http://dx.doi.org/10.7153/fdc-03-03 doi: 10.7153/fdc-03-03
![]() |
[31] |
S. Iqbal, K. Krulić, J. Pečarić, On refined-type inequalities with fractional integrals and fractional derivatives, Math. Slovaca, 64 (2014), 879–892. https://doi.org/10.2478/s12175-014-0246-2 doi: 10.2478/s12175-014-0246-2
![]() |
[32] | S. Iqbal, K. Krulić, J. Pečarić, On a new class of Hardy-type inequalities with fractional integrals and fractional derivatives, Rad Hazu. Math. Znan., 18 (2014), 91–106. |
[33] |
S. Iqbal, J. Pečarić, M. Samraiz, Z. Tomovski, Hardy-type inequalities for generalized fractional integral operators, Tbilisi Math. J., 10 (2017), 75–90. https://doi.org/10.1515/tmj-2017-0005 doi: 10.1515/tmj-2017-0005
![]() |
[34] |
M. Z. Sarıkaya, H. Budak, New inequalities of Opial type for conformable fractional integrals, Turk. J. Math., 41 (2017), 1164–1173. https://doi.org/10.3906/mat-1606-91 doi: 10.3906/mat-1606-91
![]() |
[35] | G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge: Cambridge University Press, 1934. |
[36] |
G. A. Anastassiou, Hilbert-Pachpatte type fractional integral inequalities, Math. Comput. Model., 49 (2009), 1539–1550. https://doi.org/10.1016/j.mcm.2008.05.059 doi: 10.1016/j.mcm.2008.05.059
![]() |
[37] |
G. A. Anastassiou, Hilfer-Polya, ψ-Hilfer Ostrowski and ψ-Hilfer-Hilbert-Pachpatte fractional inequalities, Symmetry, 13 (2021), 463. https://doi.org/10.3390/sym130304 doi: 10.3390/sym130304
![]() |
[38] | S. S. Dragomir, Y. H. Kim, Hilbert-Pachpatte type integral inequalities and their improvement, J. Inequal. Pure Appl. Math., 4 (2003), 16. |
[39] | M. Z. Gao, B. C. Yang, On the extended Hilbert's inequality, Proc. Amer. Math. Soc., 126 (1998), 751–759. |
[40] |
G. D. Handley, J. J. Koliha, J. E. Pečarić, New Hilbert-Pachpatte type integral inequalities, J. Math. Anal. Appl., 257 (2001), 238–250. https://doi.org/10.1006/jmaa.2000.7350 doi: 10.1006/jmaa.2000.7350
![]() |
[41] |
G. D. Handley, J. J. Koliha, J. E. Pečarić, A Hilbert type inequality, Tamkang J. Math., 31 (2000), 311–315. https://doi.org/10.5556/j.tkjm.31.2000.389 doi: 10.5556/j.tkjm.31.2000.389
![]() |
[42] |
K. Jichang, Note on new extensions of Hilbert's integral inequality, J. Math. Anal. Appl., 235 (1999), 608–614. https://doi.org/10.1006/jmaa.1999.6373 doi: 10.1006/jmaa.1999.6373
![]() |
[43] |
K. Jichang, L. Debnath, On Hilbert type inequalities with non-conjugate parameters, Appl. Math. Lett., 22 (2009), 813–818. https://doi.org/10.1016/j.aml.2008.07.010 doi: 10.1016/j.aml.2008.07.010
![]() |
[44] |
J. Jin, L. Debnath, On a Hilbert-type linear series operator and its applications, J. Math. Anal. Appl., 371 (2010), 691–704. https://doi.org/10.1016/j.jmaa.2010.06.002 doi: 10.1016/j.jmaa.2010.06.002
![]() |
[45] |
M. Krnić, J. Pečarić, General Hilbert's and Hardy's inequalities, Math. Inequal. Appl., 8 (2005), 29–52. https://doi.org/10.7153/mia-08-04 doi: 10.7153/mia-08-04
![]() |
[46] | Z. Lü, Some new inequalities similar to Hilbert-Pachpatte's type inequalities, J. Inequal. Pure Appl. Math., 4 (2003), 33. |
[47] | B. G. Pachpatte, On some new inequalities similar to Hilbert's inequality, J. Math. Anal. Appl., 226 (1998), 166–179. |
[48] |
B. G. Pachpatte, Inequalities similar to certain extensions of Hilbert's inequality, J. Math. Anal. Appl., 243 (2000), 217–227. https://doi.org/10.1006/jmaa.1999.6646 doi: 10.1006/jmaa.1999.6646
![]() |
[49] |
M. Th. Rassias, B. Yang, On a Hilbert-type integral inequality in the whole plane with the equivalent forms, J. Math. Inequal., 13 (2019), 315–334. https://doi.org/10.7153/jmi-2019-13-23 doi: 10.7153/jmi-2019-13-23
![]() |
[50] |
M. Th. Rassias, B. Yang, A. Raigorodskii, A Hilbert-type integral inequality in the whole plane related to the arc tangent function, Symmetry, 13 (2021), 351. https://doi.org/10.3390/sym13020351 doi: 10.3390/sym13020351
![]() |
[51] |
B. Yang, I. Brnetić, M. Krnić, J. Pečarić, Generalization of Hilbert and Hardy-Hilbert integral inequalities, Math. Inequal. Appl., 8 (2005), 259–272. https://doi.org/10.7153/mia-08-25 doi: 10.7153/mia-08-25
![]() |
[52] |
B. Yang, On new generalizations of Hilbert's inequality, J. Math. Anal. Appl., 248 (2000), 29–40. https://doi.org/10.1006/jmaa.2000.6860 doi: 10.1006/jmaa.2000.6860
![]() |
[53] |
B. Yang, A half-discrete Hilbert-type inequality with a non-homogeneous kernel and two variables, Mediterr. J. Math., 10 (2013), 677–692. https://doi.org/10.1007/s00009-012-0213-5 doi: 10.1007/s00009-012-0213-5
![]() |
[54] |
B. Yang, On a relation between Hilbert's inequality and a Hilbert-type inequality, Appl. Math. Lett., 21 (2008), 483–488. https://doi.org/10.1016/j.aml.2007.06.001 doi: 10.1016/j.aml.2007.06.001
![]() |
[55] | B. Yang, D. Andrica, O. Bagdasar, M. Th. Rassias, An equivalent property of a Hilbert-type integral inequality and its applications, Appl. Anal. Discrete Math., 16 (2022), 548–563. |
[56] | B. Yang, M. Th. Rassias, On Hilbert-type and Hardy-type integral inequalities and applications, Springer Cham, 2019. https://doi.org/10.1007/978-3-030-29268-3 |
[57] | B. Yang, M. Th. Rassias, On extended Hardy-Hilbert integral inequalities and applications, World Scientific, 2023. https://doi.org/10.1142/13164 |
[58] |
B. C. Yang, D. Andrica, O. Bagdasar, M. Th. Rassias, On a Hilbert-type integral inequality in the whole plane with the equivalent forms, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117 (2023), 57. https://doi.org/10.1007/s13398-023-01388-9 doi: 10.1007/s13398-023-01388-9
![]() |
[59] | W. Yang, Some new Hilbert-Pachpatte's inequalities, J. Inequal. Pure Appl. Math., 10 (2009), 26. |
[60] | C. J. Zhao, Generalizations on two new Hilbert type inequalities, J. Math., 20 (2000), 413–416. |
[61] |
C. J. Zhao, L. Debnath, Some new inverse type Hilbert integral inequalities, J. Math. Anal. Appl., 262 (2001), 411–418. https://doi.org/10.1006/jmaa.2001.7595 doi: 10.1006/jmaa.2001.7595
![]() |
[62] |
C. J. Zhao, Inequalities similar to Hilbert's inequality, Abstr. Appl. Anal., 2013 (2013), 861948. http://dx.doi.org/10.1155/2013/861948 doi: 10.1155/2013/861948
![]() |
[63] |
C. J. Zhao, L. Y. Chen, W. S. Cheung, On some new Hilbert-type inequalities, Math. Slovaca, 61 (2011), 15–28. https://doi.org/10.2478/s12175-010-0056-0 doi: 10.2478/s12175-010-0056-0
![]() |
[64] |
C. J. Zhao, L. Y. Chen, W. S. Cheung, On Hilbert-Pachpatte multiple integral inequalities, J. Inequal. Appl., 2010 (2010), 820857. https://doi.org/10.1155/2010/820857 doi: 10.1155/2010/820857
![]() |
[65] |
C. J. Zhao, W. J. Cheung, On new Hilbert-Pachpatte type integral inequalities, Taiwan. J. Math., 14 (2010), 1271–1282. https://doi.org/10.11650/twjm/1500405943 doi: 10.11650/twjm/1500405943
![]() |
[66] |
C. J. Zhao, J. Pečarić, G. S. Leng, Inverses of some new inequalities similar to Hilbert's inequalities, Taiwan. J. Math., 10 (2006), 699–712. https://doi.org/10.11650/twjm/1500403856 doi: 10.11650/twjm/1500403856
![]() |
[67] | M. Krnić, N. Lovričević, J. Pečarić, Jensen's functional, its properties and applications, An. St. Univ. Ovidius Constanta, 20 (2012), 225–248. |
[68] |
J. V. da C. Sousa, E. C. de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2017), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
![]() |
[69] |
J. V. da C. Sousa, E. C. de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator, Differ. Equ. Appl., 11 (2019), 87–106. https://doi.org/10.7153/dea-2019-11-02 doi: 10.7153/dea-2019-11-02
![]() |