Research article

High-dimensional Lehmer problem on Beatty sequences

  • Received: 25 December 2022 Revised: 18 February 2023 Accepted: 09 March 2023 Published: 07 April 2023
  • MSC : 11B83, 11L05, 11N69

  • Let $ q $ be a positive integer. For each integer $ a $ with $ 1 \leqslant a < q $ and $ (a, q) = 1 $, it is clear that there exists one and only one $ \bar{a} $ with $ 1 \leqslant\bar{a} < q $ such that $ a \bar{a} \equiv 1(q) $. Let $ k $ be any fixed integer with $ k \geq 2, 0 < \delta_{i} \leq 1, i = 1, 2, \cdots, k. $ $ r_{n}\left(\delta_{1}, \delta_{2}, \cdots, \delta_{k}, \alpha, \beta, c; q\right) $ denotes the number of all $ k $-tuples with positive integer coordinates $ \left(x_{1}, x_{2}, \ldots, x_{k}\right) $ such that $ 1 \leq x_{i} \leq \delta_{i}q, \left(x_{i}, q\right) = 1, x_{1} x_{2} \cdots x_{k} \equiv c(q) $, and $ x_{1}, x_{2}, \cdots, x_{k-1} \in B_{\alpha, \beta} $. In this paper, we consider the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals and give an asymptotic formula by the properties of Beatty sequences and the estimates for hyper Kloosterman sums.

    Citation: Xiaoqing Zhao, Yuan Yi. High-dimensional Lehmer problem on Beatty sequences[J]. AIMS Mathematics, 2023, 8(6): 13492-13502. doi: 10.3934/math.2023684

    Related Papers:

  • Let $ q $ be a positive integer. For each integer $ a $ with $ 1 \leqslant a < q $ and $ (a, q) = 1 $, it is clear that there exists one and only one $ \bar{a} $ with $ 1 \leqslant\bar{a} < q $ such that $ a \bar{a} \equiv 1(q) $. Let $ k $ be any fixed integer with $ k \geq 2, 0 < \delta_{i} \leq 1, i = 1, 2, \cdots, k. $ $ r_{n}\left(\delta_{1}, \delta_{2}, \cdots, \delta_{k}, \alpha, \beta, c; q\right) $ denotes the number of all $ k $-tuples with positive integer coordinates $ \left(x_{1}, x_{2}, \ldots, x_{k}\right) $ such that $ 1 \leq x_{i} \leq \delta_{i}q, \left(x_{i}, q\right) = 1, x_{1} x_{2} \cdots x_{k} \equiv c(q) $, and $ x_{1}, x_{2}, \cdots, x_{k-1} \in B_{\alpha, \beta} $. In this paper, we consider the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals and give an asymptotic formula by the properties of Beatty sequences and the estimates for hyper Kloosterman sums.



    加载中


    [1] R. K. Guy, Unsolved problems in number theory, 3 Eds., New York: Springer-Verlag, 2004. https://doi.org/10.1007/978-0-387-26677-0
    [2] W. Zhang, A problem of D. H. Lehmer and its generalization. Ⅱ, Compositio Math., 91 (1994), 47–56.
    [3] W. Zhang, On a problem of D. H. Lehmer and its generalization, Compositio Math., 86 (1993), 307–316.
    [4] W. Zhang, On D. H. Lehmer problem, Chin. Sci. Bull., 37 (1992), 1351–1354.
    [5] Y. Lu, Y. Yi, On the generalization of the D. H. Lehmer problem, Acta Math. Sin.-Engl. Ser., 25 (2009), 1269–1274. https://doi.org/10.1007/s10114-009-7652-3 doi: 10.1007/s10114-009-7652-3
    [6] H. Liu, W. Zhang, Two generalizations of a problem of Lehme, Acta Math. Sin. (Chin. Ser.), 49 (2006), 95–104.
    [7] Z. Guo, Y. Yi, The Lehmer problem and Beatty sequences, submitted for publication, 2022.
    [8] I. Vinogradov, A new estimate of a certain sum containing primes, Rec. Math., 2 (1937), 783–792.
    [9] L. Weinstein, The hyper-Kloosterman sum, Enseign. Math., 27 (1981), 29–40.
    [10] C. Pan, Goldbach conjecture, Beijing: Science Press, 1981.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1043) PDF downloads(71) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog