Let $ q $ be a positive integer. For each integer $ a $ with $ 1 \leqslant a < q $ and $ (a, q) = 1 $, it is clear that there exists one and only one $ \bar{a} $ with $ 1 \leqslant\bar{a} < q $ such that $ a \bar{a} \equiv 1(q) $. Let $ k $ be any fixed integer with $ k \geq 2, 0 < \delta_{i} \leq 1, i = 1, 2, \cdots, k. $ $ r_{n}\left(\delta_{1}, \delta_{2}, \cdots, \delta_{k}, \alpha, \beta, c; q\right) $ denotes the number of all $ k $-tuples with positive integer coordinates $ \left(x_{1}, x_{2}, \ldots, x_{k}\right) $ such that $ 1 \leq x_{i} \leq \delta_{i}q, \left(x_{i}, q\right) = 1, x_{1} x_{2} \cdots x_{k} \equiv c(q) $, and $ x_{1}, x_{2}, \cdots, x_{k-1} \in B_{\alpha, \beta} $. In this paper, we consider the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals and give an asymptotic formula by the properties of Beatty sequences and the estimates for hyper Kloosterman sums.
Citation: Xiaoqing Zhao, Yuan Yi. High-dimensional Lehmer problem on Beatty sequences[J]. AIMS Mathematics, 2023, 8(6): 13492-13502. doi: 10.3934/math.2023684
Let $ q $ be a positive integer. For each integer $ a $ with $ 1 \leqslant a < q $ and $ (a, q) = 1 $, it is clear that there exists one and only one $ \bar{a} $ with $ 1 \leqslant\bar{a} < q $ such that $ a \bar{a} \equiv 1(q) $. Let $ k $ be any fixed integer with $ k \geq 2, 0 < \delta_{i} \leq 1, i = 1, 2, \cdots, k. $ $ r_{n}\left(\delta_{1}, \delta_{2}, \cdots, \delta_{k}, \alpha, \beta, c; q\right) $ denotes the number of all $ k $-tuples with positive integer coordinates $ \left(x_{1}, x_{2}, \ldots, x_{k}\right) $ such that $ 1 \leq x_{i} \leq \delta_{i}q, \left(x_{i}, q\right) = 1, x_{1} x_{2} \cdots x_{k} \equiv c(q) $, and $ x_{1}, x_{2}, \cdots, x_{k-1} \in B_{\alpha, \beta} $. In this paper, we consider the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals and give an asymptotic formula by the properties of Beatty sequences and the estimates for hyper Kloosterman sums.
[1] | R. K. Guy, Unsolved problems in number theory, 3 Eds., New York: Springer-Verlag, 2004. https://doi.org/10.1007/978-0-387-26677-0 |
[2] | W. Zhang, A problem of D. H. Lehmer and its generalization. Ⅱ, Compositio Math., 91 (1994), 47–56. |
[3] | W. Zhang, On a problem of D. H. Lehmer and its generalization, Compositio Math., 86 (1993), 307–316. |
[4] | W. Zhang, On D. H. Lehmer problem, Chin. Sci. Bull., 37 (1992), 1351–1354. |
[5] | Y. Lu, Y. Yi, On the generalization of the D. H. Lehmer problem, Acta Math. Sin.-Engl. Ser., 25 (2009), 1269–1274. https://doi.org/10.1007/s10114-009-7652-3 doi: 10.1007/s10114-009-7652-3 |
[6] | H. Liu, W. Zhang, Two generalizations of a problem of Lehme, Acta Math. Sin. (Chin. Ser.), 49 (2006), 95–104. |
[7] | Z. Guo, Y. Yi, The Lehmer problem and Beatty sequences, submitted for publication, 2022. |
[8] | I. Vinogradov, A new estimate of a certain sum containing primes, Rec. Math., 2 (1937), 783–792. |
[9] | L. Weinstein, The hyper-Kloosterman sum, Enseign. Math., 27 (1981), 29–40. |
[10] | C. Pan, Goldbach conjecture, Beijing: Science Press, 1981. |