Research article

Stability analysis and design of cooperative control for linear delta operator system

  • Received: 18 January 2023 Revised: 18 March 2023 Accepted: 20 March 2023 Published: 29 March 2023
  • MSC : 93A15

  • This paper investigates the cooperative state feedback control problem for delta operator-based large-scale systems with independent subsystems. First, the state feedback controller is introduced to interconnect the adjacent subsystems into a closed-loop system. Second, the Lyapunov function in delta domain is constructed, and the linear matrix inequality method is used to design the cooperative state feedback stability controller for the whole large-scale interconnected system. Third, a performance index is introduced for the design of the optimal cooperative state feedback controller. Finally, stability of the closed-loop system is proved on the basis of stability theory, and simulation examples are given for showing the effectiveness of the design method.

    Citation: Yanmei Xue, Jinke Han, Ziqiang Tu, Xiangyong Chen. Stability analysis and design of cooperative control for linear delta operator system[J]. AIMS Mathematics, 2023, 8(6): 12671-12693. doi: 10.3934/math.2023637

    Related Papers:

  • This paper investigates the cooperative state feedback control problem for delta operator-based large-scale systems with independent subsystems. First, the state feedback controller is introduced to interconnect the adjacent subsystems into a closed-loop system. Second, the Lyapunov function in delta domain is constructed, and the linear matrix inequality method is used to design the cooperative state feedback stability controller for the whole large-scale interconnected system. Third, a performance index is introduced for the design of the optimal cooperative state feedback controller. Finally, stability of the closed-loop system is proved on the basis of stability theory, and simulation examples are given for showing the effectiveness of the design method.



    加载中


    [1] J. Chen, Y. W. Mao, M. Gan, F. Ding, Adaptive regularised kernel-based identification method for large-scale systems with unknown order, Automatica, 143 (2022), 110437. https://doi.org/10.1016/j.automatica.2022.110437 doi: 10.1016/j.automatica.2022.110437
    [2] M. A. Chitsazan, M. S. Fadali, A. M. Trzynadlowski, State estimation for large-scale power systems and facts devices based on spanning tree maximum exponential absolute value, IEEE T. Power Syst., 35 (2020), 238–248. https://doi.org/10.1109/TPWRS.2019.2934705 doi: 10.1109/TPWRS.2019.2934705
    [3] J. J. Li, X. Tian, G. L. Wei, Asynchronous partially mode-dependent control for switched larger-scale nonlinear systems with bounded sojourn time, Appl. Math. Comput., 418 (2022), 126809. https://doi.org/10.1016/j.amc.2021.126809 doi: 10.1016/j.amc.2021.126809
    [4] Z. L. Ma, X. J. Li, Data-driven fault detection for large-scale network systems: a mixed optimization approach, Appl. Math. Comput., 426 (2022), 127134. https://doi.org/10.1016/j.amc.2022.127134 doi: 10.1016/j.amc.2022.127134
    [5] C. Latrach, A. Chaibet, M. Boukhnifer, S. Glaser, Integrated longitudinal and lateral networked control system design for vehicle platooning, Sensors, 18 (2018), 3085. https://doi.org/10.3390/s18093085 doi: 10.3390/s18093085
    [6] Y. M. Shao, X. L. Jia, X. X. Ju, X. C. Shi, Global decentralized control for uncertain large-scale feedforward nonlinear time-delay systems via output feedback, IMA J. Math. Control Inform., 39 (2022), 155–170. https://doi.org/10.1093/imamci/dnab035 doi: 10.1093/imamci/dnab035
    [7] Y. Zhu, E. Fridman, Observer-based decentralized predictor control for large-scale interconnected systems with large delays, IEEE T. Automat. Contr., 66 (2021), 2897–2904. https://doi.org/10.1109/TAC.2020.3011396 doi: 10.1109/TAC.2020.3011396
    [8] Y. Zhu, E. Fridman, Predictor methods for decentralized control of large-scale systems with input delays, Automatica, 116 (2020), 108903. https://doi.org/10.1016/j.automatica.2020.108903 doi: 10.1016/j.automatica.2020.108903
    [9] C. Latrach, M. Kchaou, H. Guéguen, $H_\infty$ observer-based decentralised fuzzy control design for nonlinear interconnected systems: an application to vehicle dynamics, Int. J. Syst. Sci., 48 (2017), 1485–1495. https://doi.org/10.1080/00207721.2016.1266527 doi: 10.1080/00207721.2016.1266527
    [10] Y. Yang, X. H. Li, X. P. Liu, Decentralized finite-time connective tracking control with prescribed settling time for p-normal form stochastic large-scale systems, Appl. Math. Comput., 412 (2022), 126581. https://doi.org/10.1016/j.amc.2021.126581 doi: 10.1016/j.amc.2021.126581
    [11] T. Wang, Y. P. Li, W. M. Xiang, Design of interval observer for continuous linear large-scale systems with disturbance attenuation, J. Franklin I., 359 (2022), 3910–3929. https://doi.org/10.1016/j.jfranklin.2022.03.014 doi: 10.1016/j.jfranklin.2022.03.014
    [12] T. Yu, J. L. Xiong, Distributed L2-gain control of large-scale systems: a space construction approach, ISA T., 116 (2021), 58–70. https://doi.org/10.1016/j.isatra.2021.01.025 doi: 10.1016/j.isatra.2021.01.025
    [13] H. Y. Yue, Z. Wei, Q. J. Chen, X. Y. Zhang, Dynamic surface control for a class of nonlinearly parameterized systems with input time delay using neural network, J. Franklin I., 357 (2020), 1961–1986. https://doi.org/10.1016/j.jfranklin.2019.10.034 doi: 10.1016/j.jfranklin.2019.10.034
    [14] H. Y. Yue, W. Yang, S. B. Li, S. Y. Jiang, Fuzzy adaptive tracking control for a class of nonlinearly parameterized systems with unknown control directions, Iran. J. Fuzzy Syst., 16 (2019), 97–112. https://doi.org/10.22111/IJFS.2019.4554 doi: 10.22111/IJFS.2019.4554
    [15] H. Y. Yue, J. R. Shi, L. Y. Du, X. J. Li, Adaptive fuzzy tracking control for a class of perturbed nonlinearly parameterized systems using minimal learning parameters algorithm, Iran. J. Fuzzy Syst., 15 (2018), 99–116. https://doi.org/10.22111/ijfs.2018.3952 doi: 10.22111/ijfs.2018.3952
    [16] H. Y. Yue, C. M. Gong, Adaptive tracking control for a class of stochastic nonlinearly parameterized systems with time-varying input delay using fuzzy logic systems, J. Low Freq. Noise, 41 (2022), 1192–1213. https://doi.org/10.1177/14613484211045761 doi: 10.1177/14613484211045761
    [17] Z. S. Duan, J. Z. Wang, L. Huang, Special decentralized control problems in discrete-time interconnected systems composed of two subsystems, Syst. Control Lett., 56 (2007), 206–214. https://doi.org/10.1016/j.sysconle.2006.09.002 doi: 10.1016/j.sysconle.2006.09.002
    [18] X. H. Nian, L. Cao, BMI approach to the interconnected stability and cooperative control of linear systems, Acta Mathematica Scientia, 34 (2008), 438–444. https://doi.org/10.3724/SP.J.1004.2008.00438 doi: 10.3724/SP.J.1004.2008.00438
    [19] Z. S. Duan, L. Huang, J. Z. Wang, L. Wang, Harmonic control between two systems, Acta Automatica Sinica, 2003 (2003), 14–29. https://doi.org/10.16383/j.aas.2003.01.003 doi: 10.16383/j.aas.2003.01.003
    [20] H. Zhao, D. Y. Chen, J. Hu, The interconnected stability and cooperative control for a class of uncertain time-delay systems, Electric Machines and Control, 14 (2010), 89–97. https://doi.org/10.15938/j.emc.2010.06.014 doi: 10.15938/j.emc.2010.06.014
    [21] T. Tran, Q. P. Ha, Perturbed cooperative-state feedback strategy for model predictive networked control of interconnected systems, ISA T., 72 (2018), 110–121. https://doi.org/10.1016/j.isatra.2017.09.017 doi: 10.1016/j.isatra.2017.09.017
    [22] V. Rezaei, M. Stefanovic, Event-triggered cooperative stabilization of multiagent systems with partially unknown interconnected dynamics, Automatica, 130 (2021), 109657. https://doi.org/10.1016/j.automatica.2021.109657 doi: 10.1016/j.automatica.2021.109657
    [23] V. Rezaei, M. Stefanovic, Event-triggered robust cooperative stabilization in nonlinearly interconnected multiagent systems, Eur. J. Control, 48 (2019), 9–20. https://doi.org/10.1016/j.ejcon.2019.01.004 doi: 10.1016/j.ejcon.2019.01.004
    [24] Z. R. Zhang, C. Y. Wen, K. Zhao, Y. D. Song, Decentralized adaptive control of uncertain interconnected systems with triggering state signals, Automatica, 141 (2022), 110283. https://doi.org/10.1016/j.automatica.2022.110283 doi: 10.1016/j.automatica.2022.110283
    [25] A. Mirzaei, A. Ramezani, Cooperative optimization-based distributed model predictive control for constrained nonlinear large-scale systems with stability and feasibility guarantees, ISA T., 116 (2021), 81–96. https://doi.org/10.1016/j.isatra.2021.01.022 doi: 10.1016/j.isatra.2021.01.022
    [26] H. J. Yang, Y. Q. Xia, P. Shi, L. Zhao, Analysis and synthesis of delta operator systems, Heidelberg: Springer, 2012. https://doi.org/10.1007/978-3-642-28774-9
    [27] H. Hu, Y. Li, J. L. Liu, E. G. Tian, X. P. Xie, Fault estimation for delta operator switched systems with mode-dependent average dwell-time, J. Franklin I., 358 (2021), 5971–5984. https://doi.org/10.1016/j.jfranklin.2021.04.047 doi: 10.1016/j.jfranklin.2021.04.047
    [28] D. H. Zheng, H. B. Zhang, A. D. Zhang, G. Wang, Consensus of multi-agent systems with faults and mismatches under switched topologies using a delta operator method, Neurocomputing, 315 (2018), 198–209. https://doi.org/10.1016/j.neucom.2018.07.017 doi: 10.1016/j.neucom.2018.07.017
    [29] K. Kumari, B. Bandyopadhyay, K. S. Kim, H. Shim, Output feedback based event-triggered sliding mode control for delta operator systems, Automatica, 103 (2019), 1–10. https://doi.org/10.1016/j.automatica.2019.01.015 doi: 10.1016/j.automatica.2019.01.015
    [30] Y. K. Cui, J. Shen, G. Z. Cao, Estimation and synthesis of reachable set for delta operator systems, Nonlinear Anal. Hybri., 32 (2019), 267–275. https://doi.org/10.1016/j.nahs.2019.01.001 doi: 10.1016/j.nahs.2019.01.001
    [31] X. C. Pu, L. Ren, Y. Liu, R. Pu, Couple-group consensus for heterogeneous MASs under switched topologies in cooperative-competitive systems: a hybrid pinning and delta operator skills, Neurocomputing, 441 (2021), 335–349. https://doi.org/10.1016/j.neucom.2020.11.013 doi: 10.1016/j.neucom.2020.11.013
    [32] W. Q. Ji, M. Ma, J. B. Qiu, A new fuzzy sliding mode controller design for delta operator time-delay nonlinear systems, Int. J. Syst. Sci., 50 (2019), 1580–1594. https://doi.org/10.1080/00207721.2019.1617368 doi: 10.1080/00207721.2019.1617368
    [33] D. Y. Zhao, Y. Liu, M. Liu, J. Y. Yu, Adaptive fault-tolerant sliding mode control for Markovian jump systems via delta operator method, IMA J. Math. Control I., 36 (2019), 659–679. https://doi.org/10.1093/imamci/dny002 doi: 10.1093/imamci/dny002
    [34] B. C. Zheng, X. H. Yu, Y. M. Xue, Quantized sliding mode control in delta operator framework, Int. J. Robust Nonlin., 28 (2018), 519–535. https://doi.org/10.1002/rnc.3882 doi: 10.1002/rnc.3882
    [35] X. You, H. B. Li, H. J. Yang, Z. X. Liu, Cooperative control for a class of large-scale linear system via delta operator approach, 2013 10th IEEE International Conference on Control and Automation (ICCA), Hangzhou, China, 2013, 1945–1949. https://doi.org/10.1109/ICCA.2013.6564955
    [36] B. C. Zheng, Y. W. Wu, H. Li, Z. P. Chen, Adaptive sliding mode attitude control of quadrotor UAVs based on the delta operator framework, Symmetry, 14 (2022), 498. https://doi.org/10.3390/sym14030498 doi: 10.3390/sym14030498
    [37] Q. X. Zheng, H. L. Chen, S. Y. Xu, Robust guaranteed cost control for uncertain discrete-time systems with state and input quantizations, Inform. Sciences, 546 (2021), 288–305. https://doi.org/10.1016/j.ins.2021.02.057 doi: 10.1016/j.ins.2021.02.057
    [38] H. L. Xu, K. L. Teo, X. Z. Liu, Robust stability analysis of guaranteed cost control for impulsive switched systems, IEEE T. Syst. Man Cy-S., 38 (2008), 1419–1422. https://doi.org/10.1109/TSMCB.2008.925747 doi: 10.1109/TSMCB.2008.925747
    [39] L. Yu, Robust control-linear matrix inequality processing method, Beijing: Tsinghua University Press, 2002.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1235) PDF downloads(83) Cited by(22)

Article outline

Figures and Tables

Figures(16)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog