Research article Special Issues

Kinematic-geometry of lines with special trajectories in spatial kinematics

  • Received: 09 December 2022 Revised: 15 February 2023 Accepted: 27 February 2023 Published: 07 March 2023
  • MSC : 53A04, 53A05, 53A17

  • This paper derives the expressions for kinematic-geometry of lines with special trajectories in spatial kinematics by means of the E. Study map. A particular assurance goes to the 2nd order movement characteristics for extracting a new proof of the Disteli formulae of the axodes. Meanwhile, a new height dual function is defined and utilized to investigate the geometrical properties of the Disteli-axis. Consequently, as an implementation, the spatial equivalent of the cubic of stationary curvature is established and researched. Finally, Disteli formulae of a line-trajectory are extracted and inspected in detail.

    Citation: Nadia Alluhaibi, Rashad A. Abdel-Baky. Kinematic-geometry of lines with special trajectories in spatial kinematics[J]. AIMS Mathematics, 2023, 8(5): 10887-10904. doi: 10.3934/math.2023552

    Related Papers:

  • This paper derives the expressions for kinematic-geometry of lines with special trajectories in spatial kinematics by means of the E. Study map. A particular assurance goes to the 2nd order movement characteristics for extracting a new proof of the Disteli formulae of the axodes. Meanwhile, a new height dual function is defined and utilized to investigate the geometrical properties of the Disteli-axis. Consequently, as an implementation, the spatial equivalent of the cubic of stationary curvature is established and researched. Finally, Disteli formulae of a line-trajectory are extracted and inspected in detail.



    加载中


    [1] O. Bottema, B. Roth, Theoretical kinematics, New York: North-Holland Press, 1979.
    [2] A. Karger, J. Novak, Space kinematics and Lie groups, New York: Gordon and Breach Science Publishers, 1985.
    [3] J. Schaaf, Curvature theory of line trajectories in spatial kinematics, Ph. D Thesis, University of California, 1988.
    [4] H. Stachel, Instantaneous Spatial kinematics and the invariants of the axodes, Proceedings of A Symposion Commemorating the Legacy, Works, and Life of Sir Robert Stawell Ball Upon the 100th Anniversary of A Treatise on the Theory of Screws, 2000, 1–14.
    [5] H. Pottman, J. Wallner, Computational line geometry, Berlin: Springer-Verlag, 2001. http://dx.doi.org/10.1007/978-3-642-04018-4
    [6] R. Garnier, Cours de cinématique, Tome II: Roulement et vibration-la formule de Savary et son extension a l'espace, Paris: Gauthier-Villars, 1941.
    [7] J. Phillips, On the theorem of three axes in the spatial motion of three bodies, Aust. J. Appl. Sci., 15 (1964), 267.
    [8] M. Skreiner, A study of the geometry and the kinematics of Instantaneous spatial motion, J. Mech., 1 (1966), 115–143. http://dx.doi.org/10.1016/0022-2569(66)90017-6 doi: 10.1016/0022-2569(66)90017-6
    [9] B. Dizioglu, Einfacbe herleitung der Euler-Savaryschen konstruktion der riiumlichen bewegung, Mech. Mach. Theory, 9 (1974), 247–254. http://dx.doi.org/10.1016/0094-114X(74)90042-1 doi: 10.1016/0094-114X(74)90042-1
    [10] R. Abdel-Baky, F. Al-Solamy, A new geometrical approach to one-parameter spatial motion, J. Eng. Math., 60 (2008), 149–172. http://dx.doi.org/10.1007/s10665-007-9139-5 doi: 10.1007/s10665-007-9139-5
    [11] G. Figlioini, H. Stachel, J. Angeles, The computational fundamentals of spatial cycloidal gearing, In: Computational kinematics, Berlin: Springer, 2009,375–384. http://dx.doi.org/10.1007/978-3-642-01947-0_46
    [12] R. Abdel-Baky, R. Al-Ghefari, On the one-parameter spherical dual motions, Comput. Aided Geom. D., 28 (2011), 23–37. http://dx.doi.org/10.1016/j.cagd.2010.09.007 doi: 10.1016/j.cagd.2010.09.007
    [13] R. Al-Ghefari, R. Abdel-Baky, Kinematic geometry of a line trajectory in spatial motion, J. Mech. Sci. Technol., 29 (2015), 3597–3608. http://dx.doi.org/10.1007/s12206-015-0803-9 doi: 10.1007/s12206-015-0803-9
    [14] R. Abdel-Baky, On the curvature theory of a line trajectory in spatial kinematics, Commun. Korean Math. S., 34 (2019), 333–349. http://dx.doi.org/10.4134/CKMS.c180087 doi: 10.4134/CKMS.c180087
    [15] M. Aslan, G. Sekerci, Dual curves associated with the Bonnet ruled surfaces, Int. J. Geom. Methods M., 17 (2020), 2050204. http://dx.doi.org/10.1142/S0219887820502047 doi: 10.1142/S0219887820502047
    [16] N. Alluhaibi, Ruled surfaces with constant Disteli-axis, AIMS Mathematics, 5 (2020), 7678–7694. http://dx.doi.org/10.3934/math.2020491 doi: 10.3934/math.2020491
    [17] R. Abdel-Baky, F. Tas, W-Line congruences, Commun. Fac. Sci. Univ., 69 (2020), 450–460. http://dx.doi.org/10.31801/cfsuasmas.550369
    [18] R. Abdel-Baky, M. Naghi, A study on a line congruence as surface in the space of lines, AIMS Mathematics, 6 (2021), 11109–11123. http://dx.doi.org/10.3934/math.2021645 doi: 10.3934/math.2021645
    [19] J. Bruce, P. Giblin, Curves and singularities, 2 Eds., Cambridge: Cambridge University Press, 1992. http://dx.doi.org/10.1017/CBO9781139172615
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1220) PDF downloads(64) Cited by(0)

Article outline

Figures and Tables

Figures(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog