Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

Kinematic-geometry of lines with special trajectories in spatial kinematics

  • This paper derives the expressions for kinematic-geometry of lines with special trajectories in spatial kinematics by means of the E. Study map. A particular assurance goes to the 2nd order movement characteristics for extracting a new proof of the Disteli formulae of the axodes. Meanwhile, a new height dual function is defined and utilized to investigate the geometrical properties of the Disteli-axis. Consequently, as an implementation, the spatial equivalent of the cubic of stationary curvature is established and researched. Finally, Disteli formulae of a line-trajectory are extracted and inspected in detail.

    Citation: Nadia Alluhaibi, Rashad A. Abdel-Baky. Kinematic-geometry of lines with special trajectories in spatial kinematics[J]. AIMS Mathematics, 2023, 8(5): 10887-10904. doi: 10.3934/math.2023552

    Related Papers:

    [1] Awatif Al-Jedani, Rashad A. Abdel-Baky . One-parameter Lorentzian spatial kinematics and Disteli's formulae. AIMS Mathematics, 2023, 8(9): 20187-20200. doi: 10.3934/math.20231029
    [2] Rashad A. Abdel-Baky, Monia F. Naghi . A study on a line congruence as surface in the space of lines. AIMS Mathematics, 2021, 6(10): 11109-11123. doi: 10.3934/math.2021645
    [3] Nadia Alluhaibi . Ruled surfaces with constant Disteli-axis. AIMS Mathematics, 2020, 5(6): 7678-7694. doi: 10.3934/math.2020491
    [4] Fatemah Mofarreh, Rashad A. Abdel-Baky . Spacelike ruled surfaces with stationary Disteli-axis. AIMS Mathematics, 2023, 8(4): 7840-7855. doi: 10.3934/math.2023394
    [5] Areej A. Almoneef, Rashad A. Abdel-Baky . On the axodes of one-parameter spatial movements. AIMS Mathematics, 2024, 9(4): 9867-9883. doi: 10.3934/math.2024483
    [6] Melek Erdoğdu, Ayșe Yavuz . On differential analysis of spacelike flows on normal congruence of surfaces. AIMS Mathematics, 2022, 7(8): 13664-13680. doi: 10.3934/math.2022753
    [7] Faik Babadağ . A new approach to Jacobsthal, Jacobsthal-Lucas numbers and dual vectors. AIMS Mathematics, 2023, 8(8): 18596-18606. doi: 10.3934/math.2023946
    [8] Rawya A. Hussein, Ali A. Ali . Geometry of the line space associated to a given dual ruled surface. AIMS Mathematics, 2022, 7(5): 8542-8557. doi: 10.3934/math.2022476
    [9] Hatoon Shoaib . Double circulant complementary dual codes over F4. AIMS Mathematics, 2023, 8(9): 21636-21643. doi: 10.3934/math.20231103
    [10] Chun Ge Hu, Xiao Guang Li, Xiao Long Xin . Dual ideal theory on L-algebras. AIMS Mathematics, 2024, 9(1): 122-139. doi: 10.3934/math.2024008
  • This paper derives the expressions for kinematic-geometry of lines with special trajectories in spatial kinematics by means of the E. Study map. A particular assurance goes to the 2nd order movement characteristics for extracting a new proof of the Disteli formulae of the axodes. Meanwhile, a new height dual function is defined and utilized to investigate the geometrical properties of the Disteli-axis. Consequently, as an implementation, the spatial equivalent of the cubic of stationary curvature is established and researched. Finally, Disteli formulae of a line-trajectory are extracted and inspected in detail.



    Line geometry possesses a close relationship to spatial kinematics and has thence found implementations in robot kinematics and mechanisms [1,2,3,4]. Spatial kinematics considers the intrinsic properties of the line trajectory from the notions of ruled surfaces in differential line geometry. As we know, in spatial kinematics, the instantaneous screw axis (ISA) of a moveable body forms a pair of ruled surfaces, i.e., the moveable and stationary axodes, with ISA as their generating line in the moveable space and in the stationary space, respectively. In the movement the axodes roll and slide relative to each other in a private way such that the tangential contact between the axodes is constantly maintained over the entire length of the two matting rulings (one being in each axode), which together define the ISA at any instant. It is considerable that not only does a private movement give rise to a unique set of axodes, but the converse also applies. This means that, should the axodes of any movement be known, the particular movement can be created without knowledge of the physical members of the mechanism, their configuration, specific dimensions, or the means by which they are fastened. The use of axodes in the process of synthesis becomes apparent when the axodes are intermediary between the physical mechanism and the actual movement of its members[5,6,7,8,9].

    Rather unexpectedly, dual numbers have been utilized to consider the movement of a line space; they appear even to be the more convenient tools for this end. In dual number and screw algebra, the E. Study map concludes that the family of the dual points on the dual unit sphere in the dual 3-space D3 is in one-to-one correspondence with the family of all oriented lines in Euclidean 3-space E3. According to this map, a one parameter family of points (a dual curve) on the dual unit sphere matches to a one-parameter family of oriented lines (ruled surface) in E3. Additional features of the E. Study's map can be found in [10,11,12,13,14,15,16,17,18,19].

    In this work, based on the axodes, the invariants and the features of a line trajectory in spatial kinematics are investigated. Meanwhile, a new height dual function is defined and utilized to extend the planar and spherical results to spatial kinematics. The classical results of spatial kinematics are obtained in this way, as well as new loci of lines which instantaneously generate special trajectories. The torsion line congruence is established and researched in detail, and the invariants of the axodes are utilized for establishing a new proof of the Disteli formulae.

    In this section, we give a brief outline of the theory of dual numbers and dual vectors [1,2,3,4,5,10,11,12,13,14,15,16,17,18]. If x,and x are real numbers, the number ˆx=x+εx is named a dual number. Here, ε is a dual unit subject to ε0,ε2=0,ε.1=1.ε=ε. The set of dual numbers, D, creates a commutative ring having the numbers εx(xR) as divisors of zero, not a field. No number εx has inverse in the algebra. However, the other laws of the algebra of dual numbers are the same as of the complex numbers. The set

    D3={ˆx:=x+εx=(^x1,ˆx2,ˆx3)}, (2.1)

    together with the Euclidean scalar product

    <ˆx,ˆy>=ˆx1ˆy1+ˆx2ˆy2+ˆx3ˆy3, (2.2)

    forms the so named dual 3-space D3. This yields

    <ˆf1,ˆf1>=<ˆf2,ˆf2>=<ˆf3,ˆf3>=1,ˆf1׈f2=ˆf3ˆf2׈f3=ˆf1ˆf3׈f1=ˆf2, (2.3)

    where ˆf1, ˆf2, and ˆf3, are the dual base at the origin point ˆ0(0,0,0) of the dual 3-space D3. Then, a dual vector ˆx=(ˆx1,ˆx2,ˆx3)t has coordinates ˆxi=(xi+εxi)D. If x0, the norm ˆx of ˆx is defined by

    ˆx=|<ˆx,ˆx>|=x(1+ε<x,x>x2).

    Then, the vector ˆx is named a dual unit vector if ˆx2=1. It is evident that

    ˆx2=1x2=1,<x,x>=0. (2.4)

    The six components xi,xi(i=1,2,3) of xand x are named the normed Plücker coordinates of ˆx. The dual unit sphere is:

    K={ˆxD3ˆx21+ˆx22+ˆx23=1}.

    Via this we have the E. Study map[1,2,3,4,5]: The set of points on dual unit sphere K in the dual 3-space D3 are in one-to-one correspondence with the set of oriented lines in the Euclidean 3-space E3.

    The representation of oriented lines in E3 by dual unit vectors brings sundry advantages, and from now on we do not distinguish between oriented lines and their corresponding dual unit vectors.

    Let Km and Kf be two dual unit spheres with ˆ0 as a mutual center in D3. Let {ˆe}={ˆ0;  ˆe1,ˆe2,ˆe3} and {ˆf}={ˆ0; ˆf1, ˆf2, ˆf3} be two orthonormal dual frames rigidly related with Km and Kf, respectively. If we set {ˆf} as stationary, whereas the elements of set {ˆe} are functions of a real parameter tR (say, the time), then we may say that Km moves with respect to Kf. This movement is named a one-parameter dual spherical movement and will be denoted by Km/Kf. According to the E. Study map, if Km and Kf represent to the line spaces Lm and Lf, respectively, then Km/Kf represents the one-parameter spatial movement Lm/Lf. Therefore, Lm is the moveable space with respect to the fixed space Lf in E3.

    Let us now introduce a further dual unit sphere Kr addressed by the orthonormal dual frame {ˆζ}={ˆ0;ˆζ1,ˆζ2,ˆζ3}, which is considered by the 1st order instantaneous properties of the movement as follows: ˆζ1(t)=ζ1(t)+εζ1(t) as the ISA of the movement Lm/Lf, and ˆζ2(t):=ζ2(t)+εζ2(t)=dˆζ1dtdˆζ1dt1 as the mutual central normal of two detached screw axes. A third dual unit vector is ˆζ3(t)=ˆζ1׈ζ2. {ˆζ} is named the relative Blaschke frame, and the lines ˆζ1,ˆζ2, and ˆζ3 intersect at the mutual striction (central) point s of πi(i=m,f) [5,6,7,8,9]. We have dˆsi=dsi+εdsi=dˆζ1dtdt=ˆp(t)dt as the dual arc length of ˆζ1(t). Since ˆp(t)=p+εp contains only first derivatives of ˆζ1(t), it is a first order estimate of the movement Km/Kf, in specific, its dual speed. We let dˆs=ds+εds to designate dˆsi, since they are equal to each other. The tangent vector of the striction curve s(s) is given by [10,11,12,13,14,15,16]:

    dsds=Γi(s)ζ1(s)+μ(s)ζ3(s). (2.5)

    The distribution parameter of πi is

    μ(s):=pp=dsds. (2.6)

    Proposition 1. In the movement Lm/Lf the axodes have the ISA of the position in common, that is, the moveable axode is fastened to the stationary axode over the ISA in the 1st order at any instant t (see Figure 1).

    Figure 1.  Typical portions of axodes.

    Furthermore, the dual arc-length derivative of Kr/Ki is governed by [11,12,13,14,15]:

    Kr/Ki:ddˆs(ˆζ1ˆζ2ˆζ3)=(01010ˆγi0ˆγi0)(ˆζ1ˆζ2ˆζ3), (2.7)

    where

    ˆγi(ˆs)=γi+ε(Γiμγi)=det (2.8)

    is the dual spherical curvature of \pi _{i} . Via Eq (2.7), the Disteli-axis (evolute or curvature axis) of \pi _{i} is given by

    \begin{equation} \widehat{\mathbf{b}}_{i}(\widehat{s}) = \mathbf{b}_{i}+\varepsilon \mathbf{b} _{i}^{\ast } = \frac{\frac{d\widehat{\boldsymbol{\zeta }}_{1}}{d\widehat{s}}\times \frac{d^{2}\widehat{\boldsymbol{\zeta }}_{1}}{d\widehat{s}^{2}}}{\left \Vert \frac{d\widehat{\boldsymbol{\zeta }}_{1}}{d\widehat{s}}\times \frac{d^{2} \widehat{\boldsymbol{\zeta }}_{1}}{d\widehat{s}^{2}}\right \Vert } = \frac{ \widehat{\gamma }_{i}\widehat{\boldsymbol{\zeta }}_{1}+\widehat{\boldsymbol{\zeta }} _{3}}{\sqrt{\widehat{\gamma }_{i}^{2}+1}}. \end{equation} (2.9)

    Let \widehat{\phi }_{i}(\widehat{s}) = \phi _{i}+\varepsilon \phi _{i}^{\ast } be the radius of curvature between \widehat{\boldsymbol{\zeta }}_{1} and \widehat{\mathbf{b}}_{i} . Then,

    \begin{equation} \widehat{\mathbf{b}}_{i}(\widehat{s}) = \frac{\widehat{\gamma }_{i}}{\sqrt{ \widehat{\gamma }_{i}^{2}+1}}\widehat{\boldsymbol{\zeta }}_{1}+\frac{1}{\sqrt{ \widehat{\gamma }_{i}^{2}+1}}\widehat{\boldsymbol{\zeta }}_{3} = \cos \widehat{ \phi }_{i}\widehat{\boldsymbol{\zeta }}_{1}+\sin \widehat{\phi }_{i}\widehat{ \boldsymbol{\zeta }}_{3}, \end{equation} (2.10)

    where

    \begin{equation} \widehat{\gamma }_{i}(\widehat{s}) = \gamma _{i}+\varepsilon (\Gamma _{i}-\mu \gamma _{i}) = \cot \widehat{\phi }_{i}. \end{equation} (2.11)

    Thus, we obtain

    \begin{equation} \widehat{\gamma }_{f}(\widehat{s})\mathbf{-}\widehat{\gamma }_{m}(\widehat{s} ) = \cot \widehat{\phi }_{f}\mathbf{-}\cot \widehat{\phi }_{m}. \end{equation} (2.12)

    This is the dual equivalent of a well-known formula of the Euler-Savary equation from ordinary spherical kinematics[1,2,3,4,5,6]. This dual form is a relationship between the two axodes of the movement \mathbb{L}_{m}/\mathbb{L}_{f} . From the real and the dual parts of Eq (2.8), respectively, we get

    \begin{equation} \cot \phi _{f}-\cot \phi _{m} = \gamma _{f}\mathbf{-}\gamma _{m}, \end{equation} (2.13)

    and

    \begin{equation} \frac{\phi _{m}^{\ast }}{\sin ^{2}\phi _{m}}-\frac{\phi _{f}^{\ast }}{\sin ^{2}\phi _{f}} = \Gamma _{m}-\Gamma _{f}-\mu \left( \gamma _{f}\mathbf{-} \gamma _{m}\right). \end{equation} (2.14)

    Equation (2.13) together with (2.14) are new Disteli formulae for the axodes of the movement \mathbb{L}_{m}/\mathbb{L}_{f} .

    Now, let us assume that the relative Blaschke frame is fixed in \mathbb{K} _{m} . Then,

    \begin{equation} \mathbb{K}_{m}/\mathbb{K}_{f}:\frac{d}{d\widehat{s}}\left( \begin{array}{l} \widehat{\boldsymbol{\zeta }}_{1} \\ \widehat{\boldsymbol{\zeta }}_{2} \\ \widehat{\boldsymbol{\zeta }}_{3} \end{array} \right) = \widehat{\boldsymbol{\omega }}\times \left( \begin{array}{l} \widehat{\boldsymbol{\zeta }}_{1} \\ \widehat{\boldsymbol{\zeta }}_{2} \\ \widehat{\boldsymbol{\zeta }}_{3} \end{array} \right) , \end{equation} (2.15)

    where \widehat{\boldsymbol{\omega }}\mathbf{: = }\widehat{\boldsymbol{\omega }}_{f} \mathbf{-}\widehat{\boldsymbol{\omega }}_{m} = \widehat{\omega }\widehat{\boldsymbol{ \zeta }}_{1} is the relative angular vector. \left \Vert \widehat{\boldsymbol{ \omega }}\right \Vert = \widehat{\omega } = \widehat{\omega }+\varepsilon \widehat{\omega }^{\ast } = \gamma _{r}+\varepsilon \left(\Gamma _{r}-\mu \gamma _{r}\right) is the relative dual spherical curvature. It follows that \omega = \gamma _{f}-\gamma _{m} and \omega ^{\ast } = \Gamma _{f}-\Gamma _{m}-\mu \left(\gamma _{f}-\gamma _{m}\right) are the rotational angular speed and translational angular speed of the movement \mathbb{L}_{m}/\mathbb{L}_{f} , as well as being both invariants in kinematics, respectively.

    Proposition 2. In the movement \mathbb{L}_{m}/\mathbb{L}_{f} , at any instant t\in \mathbb{R} , the pitch h(s) is given by

    \begin{equation} h(s): = \frac{ < \boldsymbol{\omega }^{\ast },\boldsymbol{\omega > }}{\left \Vert \boldsymbol{ \omega }\right \Vert } = \frac{\Gamma _{f}-\Gamma _{m}}{\gamma _{f}-\gamma _{m} }-\mu . \end{equation} (2.16)

    In this study, we disregard the pure translational movements, that is, \omega ^{\ast }\neq 0 . Also, we omit zero divisors \omega = 0 . Therefore, we shall think about only non-torsional movements, so that the axodes are skew ruled surfaces ( \mu \neq 0 ).

    For one-parameter spatial movement \mathbb{L}_{m}/\mathbb{L}_{f} , each stationary line \widehat{\mathbf{x}} linked with the movable axode, in general, will describe a ruled surface (\widehat{x}) in the stationary space \mathbb{L}_{f} . In kinematics, this ruled surface is referred to as line trajectory. Since all kinematic-geometric characteristics can then be derived with the invariants of the axodes of the movement \mathbb{L}_{m}/ \mathbb{L}_{f} . Then, the line trajectory can be obtained in terms of these invariants. Therefore, we consider a dual unit vector \widehat{ \mathbf{x}} such that its coordinates are

    \begin{equation} \widehat{\mathbf{x}}(\widehat{s})\mathbf{ = }\widehat{x}^{t}\widehat{\boldsymbol{ \zeta }}(\widehat{s})\mathbf{,\; \;}\widehat{x} = \left( \begin{array}{l} \widehat{x}_{1} \\ \widehat{x}_{2} \\ \widehat{x}_{3} \end{array} \right) = \left( \begin{array}{l} x_{1}+\varepsilon x_{1}^{\ast } \\ x_{2}+\varepsilon x_{2}^{\ast } \\ x_{3}+\varepsilon x_{3}^{\ast } \end{array} \right) ,\; \widehat{\boldsymbol{\zeta }} = \left( \begin{array}{l} \widehat{\boldsymbol{\zeta }}_{1} \\ \widehat{\boldsymbol{\zeta }}_{2} \\ \widehat{\boldsymbol{\zeta }}_{3} \end{array} \right) , \end{equation} (3.1)

    where

    \begin{equation} \begin{array}{c} x_{1}^{2}+x_{2}^{2}+x_{3}^{2} = 1, \\ x_{1}x_{1}^{\ast }+x_{2}x_{2}^{\ast }+x_{3}x_{3}^{\ast } = 0. \end{array} \end{equation} (3.2)

    The velocity \widehat{\mathbf{x}}^{^{\prime }} and the acceleration \widehat{\mathbf{x}}^{^{\prime \prime }} of \widehat{\mathbf{x}} stationary in \mathbb{L}_{m} , respectively, are

    \begin{equation} \frac{d\widehat{\mathbf{x}}}{d\widehat{s}} = \widehat{\omega }\mathbf{\times } \widehat{\mathbf{x}} = \widehat{\omega }\left( -x_{3}\widehat{\boldsymbol{\zeta }} _{2}+x_{2}\widehat{\boldsymbol{\zeta }}_{3}\right) \end{equation} (3.3)

    and

    \begin{equation} \frac{d^{2}\widehat{\mathbf{x}}}{d\widehat{s}^{2}} = \widehat{x}_{3}\widehat{ \omega }\widehat{\boldsymbol{\zeta }}_{1}+(\widehat{x}_{2}\widehat{\omega } ^{2}-x_{3}\frac{d\widehat{\omega }}{d\widehat{s}})\widehat{\boldsymbol{\zeta }} _{2}+(\widehat{x}_{2}\frac{d\widehat{\omega }}{d\widehat{s}}-\widehat{x}_{1} \widehat{\omega }+\widehat{x}_{3}\widehat{\omega }^{2})\widehat{\boldsymbol{ \zeta }}_{3}. \end{equation} (3.4)

    Then,

    \begin{equation} \frac{d\widehat{\mathbf{x}}}{d\widehat{s}}\times \frac{d^{2}\widehat{\mathbf{ x}}}{d\widehat{s}^{2}} = \widehat{\omega }^{2}\left[ (1-\widehat{x}_{1}^{2}) \widehat{\omega }\widehat{\boldsymbol{\zeta }}_{1}+\widehat{x}_{3}\widehat{ \mathbf{x}}\right] \mathbf{.} \end{equation} (3.5)

    The dual arc length d\widehat{u} = du+\varepsilon du^{\ast } of \widehat{ \mathbf{x}}(\widehat{s}) is

    \begin{equation} d\widehat{u} = \left \Vert \frac{d\widehat{\mathbf{x}}}{d\widehat{s}}\right \Vert d\widehat{s} = \widehat{\omega }\sqrt{1-\widehat{x}_{1}^{2}}d\widehat{s}. \end{equation} (3.6)

    The distribution parameter of (\widehat{x}) is

    \begin{equation} \lambda (u): = \frac{du^{\ast }}{du} = h-\frac{x_{1}x_{1}^{\ast }}{1-x_{1}^{2}}. \end{equation} (3.7)

    In order to consider the features of (\widehat{x}) , the Blaschke frame is determined as:

    \begin{equation} \widehat{\mathbf{x}}\mathbf{ = }\widehat{\mathbf{x}}(\widehat{u}),\; \widehat{ \mathbf{t}}(\widehat{u}) = \widehat{\mathbf{x}}^{^{\prime }}\left \Vert \widehat{\mathbf{x}}^{^{\prime }}\right \Vert ^{-1},\; \widehat{\mathbf{g}}( \widehat{s}) = \widehat{\mathbf{x}}\times \widehat{\mathbf{t}},\text{ }(\prime = \frac{d}{d\widehat{u}}). \end{equation} (3.8)

    The dual unit vectors \widehat{\mathbf{x}} , \widehat{\mathbf{t}} and \widehat{\mathbf{g}} match to three concurrent mutually orthogonal lines in \mathbb{E}^{3} . Their mutual point is the central point \mathbf{c} on the ruling \widehat{\mathbf{x}} . \widehat{\mathbf{g}}(\widehat{u}) is the mutual perpendicular to \widehat{\mathbf{x}}(\widehat{u}) and \widehat{\mathbf{x}}(\widehat{u}+d\widehat{u}) , and it is considered the central tangent of (\widehat{x}) at the central point. The trajectory of the central point is the striction curve. The line \widehat{\mathbf{t}} is the central normal of (\widehat{x}) at the central point. The Blaschke formulae are

    \begin{equation} \left( \begin{array}{l} \widehat{\mathbf{x}}^{^{\prime }} \\ \widehat{\mathbf{t}}^{^{\prime }} \\ \widehat{\mathbf{g}}^{^{\prime }} \end{array} \right) = \left( \begin{array}{lll} 0 & 1 & 0 \\ -1 & 0 & \widehat{\gamma } \\ 0 & -\widehat{\gamma } & 0 \end{array} \right) \left( \begin{array}{l} \widehat{\mathbf{x}} \\ \widehat{\mathbf{t}} \\ \widehat{\mathbf{g}} \end{array} \right) , \end{equation} (3.9)

    where

    \begin{equation} \widehat{\gamma }(\widehat{u}) = \gamma +\varepsilon (\Gamma -\lambda \gamma ) = \det (\widehat{\mathbf{x}}\mathbf{,}\widehat{\mathbf{x}}^{^{\prime }}, \widehat{\mathbf{x}}^{^{^{\prime \prime }}}) = \frac{\widehat{x}_{1}\widehat{ \omega }(1-\widehat{x}_{1}^{2})+\widehat{x}_{3}}{\widehat{\omega }(1- \widehat{x}_{1}^{2})^{\frac{3}{2}}}, \end{equation} (3.10)

    is the dual spherical curvature of \widehat{\mathbf{x}}(\widehat{u}) . The tangent of the striction curve is given by:

    \begin{equation} \frac{d\mathbf{c}(u)}{du} = \Gamma (u)\mathbf{x(}u)+ λ (u\mathbf{ )g}(u). \end{equation} (3.11)

    The Serret-Frenet frame of \widehat{\mathbf{x}}(\widehat{u}) is established through a rotation of ( \widehat{\mathbf{x}} , \widehat{\mathbf{g }} ) according to

    \begin{equation} \left( \begin{array}{l} \widehat{\mathbf{t}} \\ \widehat{\mathbf{n}} \\ \widehat{\mathbf{b}} \end{array} \right) = \left( \begin{array}{lll} \ \ \ \ \ 0 & 1 & \ \ \ 0 \\ -\sin \widehat{\phi } & 0 & \cos \widehat{\phi } \\ \cos \widehat{\phi } & 0 & \sin \widehat{\phi } \end{array} \right) \left( \begin{array}{l} \widehat{\mathbf{x}} \\ \widehat{\mathbf{t}} \\ \widehat{\mathbf{g}} \end{array} \right) , \end{equation} (3.12)

    with a certain dual angle \widehat{\phi } = \phi +\varepsilon \phi ^{\ast } , where \widehat{\mathbf{b}} is the binormal, and \widehat{\mathbf{n}} is the principal normal. It is clear that \widehat{\mathbf{b}} is the Disteli-axis (striction axis or curvature axis) of the ruled surface (\widehat{x}) . Thereby, the dual Serret-Frenet formulae are

    \begin{equation*} \left( \begin{array}{l} \widehat{\mathbf{t}}^{^{\prime }} \\ \widehat{\mathbf{n}}^{^{\prime }} \\ \widehat{\mathbf{b}}^{^{\prime }} \end{array} \right) = \left( \begin{array}{lll} \ \ 0 & \widehat{\kappa } & 0 \\ -\widehat{\kappa } & \ 0 & \widehat{\tau } \\ \ \ 0 & -\widehat{\tau } & 0 \end{array} \right) \left( \begin{array}{l} \widehat{\mathbf{t}} \\ \widehat{\mathbf{n}} \\ \widehat{\mathbf{b}} \end{array} \right) , \end{equation*}

    where \widehat{\kappa }(\widehat{u}) is the dual curvature, and \widehat{ \tau }(\widehat{u}) is the dual torsion of the dual curve \widehat{\mathbf{ x}}(\widehat{u})\in \mathbb{K}_{f} . Also, we may write the following relationships:

    \begin{equation} \left. \begin{array}{l} \cot \widehat{\phi }: = \cot \phi -\varepsilon \phi ^{\ast }\left( 1+\cot ^{2}\phi \right) = \widehat{\gamma }(\widehat{u}), \\ \\ \widehat{\kappa }(\widehat{u}) = \kappa +\varepsilon \kappa ^{\ast } = \sqrt{1+ \widehat{\gamma }^{2}} = \frac{1}{\sin \widehat{\phi }}\text{,} \\ \\ \widehat{\tau }(\widehat{u}) = \tau +\varepsilon \tau ^{\ast } = \pm \widehat{ \phi }^{^{\prime }} = \pm \frac{1}{1+\widehat{\gamma }^{2}}\widehat{\gamma } ^{^{\prime }}. \end{array} \right \} \end{equation} (3.13)

    In analogy with [18,19], a dual point \widehat{\mathbf{b}}_{0} of \mathbb{K}_{f} will be said to be a \widehat{\mathbf{b}}_{k} evolute of the dual curve \ \widehat{\mathbf{x}}(\widehat{u})\in \mathbb{K}_{f} ; for all i such that 1\leq i\leq k , < \widehat{\mathbf{b}}_{0}, \widehat{ \mathbf{x}}^{i}(\widehat{u}) > = 0 , but < \widehat{\mathbf{b}}_{0}, \widehat{ \mathbf{x}}^{k+1}(\widehat{u}) > \neq 0 . Here, \widehat{\mathbf{x}}^{i} indicates the i-th derivatives of \widehat{\mathbf{x}} with respect to the dual arc length of \mathbf{\ }\widehat{\mathbf{x}}(\widehat{u})\in \mathbb{K} _{f} . For the first evolute \widehat{\mathbf{b}} of \ \widehat{\mathbf{x}} (\widehat{u}) , we have < \widehat{\mathbf{b}}, \widehat{\mathbf{x}} ^{^{\prime }} > = \pm < \widehat{\mathbf{b}}, \widehat{\mathbf{t}} > = 0 , and < \widehat{\mathbf{b}}, \widehat{\mathbf{x}}^{^{\prime \prime }} > = \pm < \widehat{ \mathbf{b}}, \widehat{\mathbf{x}}\mathbf{+}\widehat{\gamma }\widehat{\mathbf{g }} > \neq 0 . So, \widehat{\mathbf{b}} is at least a \widehat{\mathbf{b}} _{2} evolute of \widehat{\mathbf{x}}(\widehat{u})\in \mathbb{K}_{f} .

    We now address a differentiable dual function \widehat{h}:I\times \mathbb{K} _{f}\rightarrow \mathbb{D} , by \widehat{h}(\widehat{u}, \widehat{\mathbf{b}} _{0}) = < \widehat{\mathbf{b}}_{0}, \widehat{\mathbf{x}} > . We call \widehat{h} a height dual function on \widehat{\mathbf{x}}(\widehat{u})\in \mathbb{K} _{f} . We use the notation \widehat{h}(\widehat{u}) = \widehat{h}(\widehat{u}, \widehat{\mathbf{b}}_{0}) for any stationary point \widehat{\mathbf{b}} _{0}\in \mathbb{K}_{f} .

    Proposition 3. Under the above notations, the following holds:

    (1) \widehat{h} will be stationary in the 1st approximation if and only if \widehat{\mathbf{b}}_{0}\in Sp\{ \widehat{\mathbf{x}} , \widehat{\mathbf{g}} \mathbf{\}} , that is,

    \begin{equation} \widehat{h} = 0\Leftrightarrow < \widehat{\mathbf{x}}^{^{\prime }},\widehat{ \mathbf{b}}_{0}\mathbf{ > = }0\Leftrightarrow < \widehat{\mathbf{t}},\widehat{ \mathbf{b}}_{0}\mathbf{ > = }0\Leftrightarrow \widehat{\mathbf{b}}_{0}\mathbf{ = } \widehat{a}_{1}\widehat{\mathbf{x}}\mathbf{+}\widehat{a}_{2}\widehat{\mathbf{ g}}, \end{equation} (3.14)

    for some dual numbers \widehat{a}_{1}, \widehat{a}_{2}\in \mathbb{D}, and \widehat{a}_{1}^{2}+\widehat{a}_{2}^{2} = 1 .

    (2) \widehat{h} will be stationary in the 2nd approximation if and only if \widehat{\mathbf{b}}_{0} is \widehat{\mathbf{b}}_{2} evolute of \widehat{ \mathbf{x}}(\widehat{u})\in \mathbb{K}_{f} , that is,

    \begin{equation} \widehat{h} = \widehat{h} = 0\Leftrightarrow \widehat{\mathbf{b}}_{0}\mathbf{ = } \pm \widehat{\mathbf{b}}. \end{equation} (3.15)

    (3) \widehat{h} will be invariant in the 3rd approximation if and only if \widehat{\mathbf{b}}_{0} is \widehat{\mathbf{b}}_{3} evolute of \widehat{ \mathbf{x}}(\widehat{u})\in \mathbb{K}_{f} , that is,

    \begin{equation} \widehat{h} = \widehat{h} = \widehat{h} = 0\Leftrightarrow \widehat{\mathbf{b}}_{0} \mathbf{ = \pm }\widehat{\mathbf{b}}\mathit{\text{, and}}\widehat{\gamma }^{^{\prime }}\neq 0. \end{equation} (3.16)

    (4) \widehat{h} will be stationary in the 4th approximation if and only if \widehat{\mathbf{b}}_{0} is \widehat{\mathbf{b}}_{4} evolute of \widehat{ \mathbf{x}}(\widehat{u})\in \mathbb{K}_{f} , that is,

    \begin{equation} \widehat{h} = \widehat{h} = \widehat{h} = \widehat{h} = 0\Leftrightarrow \widehat{ \mathbf{b}}_{0}\mathbf{ = \pm }\widehat{\mathbf{b}}\mathit{\text{,}}\widehat{\gamma } ^{^{\prime }} = 0\mathit{\text{, and}}\widehat{\gamma }^{^{\prime \prime }}\neq 0. \end{equation} (3.17)

    Proof. For the 1st derivative of \widehat{h} we get:

    \begin{equation} \widehat{h}^{^{\prime }} = < \widehat{\mathbf{x}}^{^{\prime }},\widehat{\mathbf{ b}}_{0}\mathbf{ > }. \end{equation} (3.18)

    So, we get

    \begin{equation} \widehat{h}^{^{\prime }} = 0\Leftrightarrow < \widehat{\mathbf{t}},\widehat{ \mathbf{b}}_{0}\mathbf{ > = }0\Leftrightarrow \widehat{\mathbf{b}}_{0}\mathbf{ = } \widehat{a}_{1}\widehat{\mathbf{x}}\mathbf{+}\widehat{a}_{2}\widehat{\mathbf{ g}}; \end{equation} (3.19)

    for some dual numbers \widehat{a}_{1}, \; \widehat{a}_{2}\in \mathbb{D}, and \widehat{a}_{1}^{2}+\widehat{a}_{2}^{2} = 1 , the result is clear.

    (2) Derivative of Eq (3.18) leads to

    \begin{equation} \widehat{h}^{^{\prime \prime }} = < \widehat{\mathbf{x}}^{^{^{\prime \prime }}}, \widehat{\mathbf{b}}_{0}\mathbf{ > = } < \widehat{\mathbf{x}}+\widehat{\gamma } \widehat{\mathbf{g}},\widehat{\mathbf{b}}_{0}\mathbf{ > .} \end{equation} (3.20)

    By using Eq (3.19), we have

    \begin{equation} \widehat{h}^{^{\prime }} = \widehat{h}^{^{\prime \prime }} = 0\Leftrightarrow < \widehat{\mathbf{x}}^{^{\prime }},\widehat{\mathbf{b}}_{0}\mathbf{ > = } < \widehat{\mathbf{x}}^{^{^{\prime \prime }}},\widehat{\mathbf{b}}_{0}\mathbf{ > = }0\Leftrightarrow \widehat{\mathbf{b}}_{0}\mathbf{ = \pm }\frac{\widehat{ \mathbf{x}}^{^{\prime }}\times \widehat{\mathbf{x}}^{^{^{\prime \prime }}}}{ \left \Vert \widehat{\mathbf{x}}^{^{\prime }}\times \widehat{\mathbf{x}} ^{^{^{\prime \prime }}}\right \Vert } = \pm \widehat{\mathbf{b}}. \end{equation} (3.21)

    (3) Derivative of Eq (3.20) leads to

    \begin{equation} \widehat{h}^{^{\prime \prime \prime }} = < \widehat{\mathbf{x}}^{^{\prime \prime \prime }}\mathbf{,\widehat{\mathbf{b}}_{0} > = }\left( 1+\widehat{\gamma }^{2}\right) < \widehat{\mathbf{t}},\widehat{\mathbf{b}}_{0}\mathbf{ > }+ \widehat{\gamma }^{^{\prime }} < \widehat{\mathbf{g}},\widehat{\mathbf{b}}_{0} \mathbf{ > }. \end{equation} (3.22)

    Hence, we have

    \begin{equation} \widehat{h}^{^{\prime }} = \widehat{h}^{^{\prime \prime }} = \widehat{h} ^{^{\prime \prime \prime }} = 0\Leftrightarrow \widehat{\mathbf{b}}_{0}\mathbf{ = \pm }\widehat{\mathbf{b}}\text{, and }\widehat{\gamma }^{^{\prime }}\neq 0. \end{equation} (3.23)

    (4) By similar arguments, we can also have

    \begin{equation} \widehat{h}^{^{\prime }} = \widehat{h}^{^{\prime \prime }} = \widehat{h} ^{^{\prime \prime \prime }} = \widehat{h}^{^{\prime \prime \prime \prime }} = 0\Leftrightarrow \widehat{\mathbf{b}}_{0}\mathbf{ = \pm }\widehat{\mathbf{b} }\text{, }\widehat{\gamma }^{^{\prime }} = 0\text{, and }\widehat{\gamma } ^{^{\prime \prime }}\neq 0. \end{equation} (3.24)

    The proof is completed.

    Via the above proposition, we have the following:

    (a) The osculating circle \mathbb{S} of \widehat{\mathbf{x}}(\widehat{u})\in \mathbb{K}_{f} is determined by the equations

    \begin{equation} < \widehat{\mathbf{b}}_{0}\mathbf{,}\widehat{\mathbf{x}}\mathbf{ > = }\cos \widehat{\phi },\ \mathbf{ < }\widehat{\mathbf{x}}^{\prime },\widehat{\mathbf{b }}_{0} > = 0,\mathbf{ < }\widehat{\mathbf{x}}^{^{^{\prime \prime }}},\widehat{ \mathbf{b}}_{0} > = 0, \end{equation} (3.25)

    which are obtained from the status that the osculating circle should have contact of at least 3rd order at \widehat{\mathbf{x}}(\widehat{u}_{0}) if and only if \widehat{\gamma }^{^{\prime }}\neq 0 .

    (b) The osculating circle \mathbb{S} and the curve \widehat{\mathbf{x}}(\widehat{u})\in \mathbb{K}_{f} have at least 4th order at \widehat{\mathbf{ x}}(\widehat{u}_{0}) if and only if \widehat{\gamma }^{^{\prime }} = 0 , and \widehat{\gamma }^{^{\prime \prime }}\neq 0 .

    In this way, by considering the evolutes of \widehat{\mathbf{x}}(\widehat{u})\in \mathbb{K}_{f} we can get a sequence of evolutes \widehat{\mathbf{b}} _{2} , \widehat{\mathbf{b}}_{3} , ..., \widehat{\mathbf{b}}_{n} . The properties and the relationships among these evolutes and their involute are very interesting problems. For example, it is easy to see that when \widehat{\mathbf{b}}_{0}\mathbf{ = }\pm \widehat{\mathbf{b}} , and \widehat{ \tau }(\widehat{u}) = 0 ( \widehat{\gamma }^{^{\prime }} = \widehat{\phi } ^{^{\prime }} = 0 ), \widehat{\mathbf{x}}(\widehat{u})\in \mathbb{K}_{f} is located at \widehat{\phi } = dual \; const . relative to \widehat{\mathbf{b}} _{0} .

    We now examine the line trajectories which are the spatial equivalent of the cubic of stationary curvature[1,2,3,4,5]. It is obvious that for all points with \widehat{\tau }(\widehat{u}) = 0 , their trajectories lie on a dual great circle up to third order. Then,

    \begin{equation} \widehat{\tau }(\widehat{u}) = \tau +\varepsilon \tau ^{\ast } = 0\Leftrightarrow \widehat{\gamma } = const. \end{equation} (3.26)

    Therefore, the spatial equivalent of the cubic of stationary curvature is defined by (a) the line complex defined by the torsion cone C: \; \tau (u) = 0 , and (b) the line complex defined by the related plane of lines \pi : \; \tau ^{\ast }(u) = 0 . All the family of lines \widehat{\mathbf{x}} of the movable space \mathbb{L}_{m} and also in the plane satisfy \pi : \; \tau ^{\ast }(u) = 0 initiating the torsion line congruence. Therefore, the torsion line congruence consists of a family of planes \pi , each of which is related with a direction of the inflection cone C . Hence, we have proved the following theorem:

    Theorem 1. In one-parameter spatial movement \mathbb{L}_{m}/ \mathbb{L}_{f} , consider a family of related lines of the movable axode, such that each one of these lines has analog of a cubic of stationary curvature. Then, this family of lines forms a torsion line congruence which is common lines of the two line complexes \tau (u) = 0 , and \tau ^{\ast }(u) = 0 .

    However, from Eq (3.13), we have

    \begin{equation} \widehat{\tau }(\widehat{u}) = \tau +\varepsilon \tau ^{\ast } = 0\Leftrightarrow \widehat{\phi }(\widehat{u}) = \phi +\varepsilon \phi ^{\ast } = \widehat{c}(dual\;const.). \end{equation} (3.27)

    This means that \phi = c(real\; const.) , and \; \phi ^{\ast } = c^{\ast }(real\; const.) . Hence, each ruled surface in the torsion line congruence is a stationary Disteli-axis ruled surface. Furthermore, from Eq (3.9) we have the ordinary differential equation; ODE, \widehat{\mathbf{t}}^{^{^{^{\prime \prime }}}}+ \widehat{\kappa }^{2}\widehat{\mathbf{t}} = \mathbf{0} . Without loss of generality, we may take \widehat{\mathbf{t}}(0) = (0, 0, 1) , and the general solution of the ODE becomes

    \begin{equation*} \widehat{\mathbf{t}}(\widehat{u}) = \left( a_{1}\sin \left( \widehat{\kappa } \widehat{u}\right) ,-a_{2}\sin \left( \widehat{\kappa }\widehat{u}\right) ,\cos \left( \widehat{\kappa }\widehat{u}\right) +a_{3}\sin \left( \widehat{ \kappa }\widehat{u}\right) \right) , \end{equation*}

    for dual constants \widehat{a}_{1} , \widehat{a}_{2} and \widehat{a} _{3} . Since \left \Vert \widehat{\mathbf{t}}\right \Vert ^{2} = 1 , we get \widehat{a}_{3} = 0 , and \widehat{a}_{1}^{2}+\widehat{a}_{2}^{2} = 1 . It follows that \mathbf{x}(\widehat{u}) is given by

    \begin{equation*} \widehat{\mathbf{x}}(\widehat{u}) = \left( -\frac{a_{1}}{\widehat{\kappa }} \cos \left( \widehat{\kappa }\widehat{u}\right) +\widehat{b}_{1},\frac{ \widehat{a}_{2}}{\widehat{\kappa }}\cos \left( \widehat{\kappa }\widehat{u} \right) +\widehat{b}_{2},\frac{1}{\widehat{\kappa }}\sin \left( \widehat{ \kappa }\widehat{u}\right) \right) , \end{equation*}

    where \widehat{b}_{1} and \widehat{b}_{3} are dual constants satisfying \widehat{a}_{1}\widehat{b}_{2}+\widehat{a}_{2}\widehat{b}_{2} = 0 . We can change the coordinates by

    \begin{equation*} \left( \begin{array}{l} \widehat{\widetilde{x}}_{1} \\ \widehat{\widetilde{x}}_{2} \\ \widehat{\widetilde{x}}_{3} \end{array} \right) = \left( \begin{array}{lll} \widehat{a}_{2} & \widehat{a}_{1} & 0 \\ -\widehat{a}_{1} & \widehat{a}_{2} & 0 \\ 0 & 0 & 1 \end{array} \right) \left( \begin{array}{l} \widehat{x}_{1} \\ \widehat{x}_{2} \\ \widehat{x}_{3} \end{array} \right) . \end{equation*}

    Then \widehat{\mathbf{x}}(\widehat{u}) turns into

    \begin{equation} \widehat{\mathbf{x}}(\widehat{\varphi })\mathbf{ = }\cos \widehat{\vartheta } \widehat{\boldsymbol{\zeta }}_{1}+\sin \widehat{\vartheta }\cos \widehat{\varphi }\widehat{\boldsymbol{\zeta }}_{2}+\sin \widehat{\vartheta }\sin \widehat{ \varphi }\widehat{\boldsymbol{\zeta }}_{3},\text{ }\widehat{\varphi } = \widehat{ \kappa }\widehat{u}, \end{equation} (3.28)

    for a dual constant \widehat{a}_{2}\widehat{b}_{1}+\widehat{a}_{1}\widehat{b }_{2} = \cos \widehat{\vartheta } . This means that \vartheta = c_{1}(real\; const.) , and \; \vartheta ^{\ast } = c_{1}^{\ast }(real\; const.) . Here, \widehat{\varphi } = \varphi +\varepsilon \varphi ^{\ast } is the dual angle among the projection of \widehat{\mathbf{x}} on the plane Sp\{ \widehat{\boldsymbol{\zeta }}_{2}, \widehat{\boldsymbol{\zeta }}_{3}\} . This shows that a helical movement of angle \varphi on the \mathbb{ISA} and distance \varphi ^{\ast } over it turns \widehat{\boldsymbol{\zeta }}_{3} to be the central normal \widehat{\mathbf{t}} of \widehat{\mathbf{x}} (Figure 2). According to Eqs (3.11) and (3.28) we instantly find that:

    \begin{equation} \left( \begin{array}{l} \widehat{\mathbf{x}} \\ \widehat{\mathbf{t}} \\ \widehat{\mathbf{g}} \end{array} \right) = \left( \begin{array}{lll} \cos \widehat{\vartheta } & \sin \widehat{\vartheta }\cos \widehat{\varphi } & \sin \widehat{\vartheta }\sin \widehat{\varphi } \\ \ \ \ 0 & \ \ \ -\sin \widehat{\varphi } & \ \ \ \cos \widehat{\varphi } \\ \sin \widehat{\vartheta } & -\cos \widehat{\vartheta }\cos \widehat{\varphi } & -\cos \widehat{\vartheta }\sin \widehat{\varphi } \end{array} \right) \left( \begin{array}{l} \widehat{\boldsymbol{\zeta }}_{1} \\ \widehat{\boldsymbol{\zeta }}_{2} \\ \widehat{\boldsymbol{\zeta }}_{3} \end{array} \right) . \end{equation} (3.29)
    Figure 2.  The line \widehat{\mathbf{x}} and its Disteli-axis \widehat{\mathbf{b}} .

    Consequently, from Eqs (3.11) and (3.29) we get

    \begin{equation} \widehat{\mathbf{b}}\mathbf{ = }\cos \widehat{\alpha }\widehat{\boldsymbol{\zeta }} _{1}+\sin \widehat{\alpha }\widehat{\mathbf{m}},\text{ }\widehat{\mathbf{m}} = \cos \widehat{\varphi }\widehat{\boldsymbol{\zeta }}_{2}+\sin \widehat{\varphi } \widehat{\boldsymbol{\zeta }}_{3}, \end{equation} (3.30)

    where

    \begin{equation} \widehat{\alpha } = \alpha +\varepsilon \alpha ^{\ast } = \widehat{\vartheta }- \widehat{\varphi }. \end{equation} (3.31)

    For more analysis of the torsion line congruence, from Eq (3.28), the Plücker coordinates of \widehat{\mathbf{x}} are:

    \begin{equation} \left. \begin{array}{l} x_{1} = \cos \vartheta \text{, }x_{1}^{\ast } = -\vartheta ^{\ast }\sin \vartheta , \\ x_{2} = \sin \vartheta \cos \varphi \text{,} \ x_{2}^{\ast } = \vartheta ^{\ast }\cos \vartheta \cos \varphi -\varphi ^{\ast }\sin \varphi \sin \vartheta , \\ x_{3} = \sin \vartheta \sin \varphi \text{,} \ x_{3}^{\ast } = \varphi ^{\ast }\cos \vartheta \sin \varphi +\varphi ^{\ast }\cos \varphi \sin \vartheta . \end{array} \right \} \end{equation} (4.1)

    Let \eta (\eta _{1}, \eta _{2}, \eta _{3}) indicate a point on \widehat{\mathbf{x}} . Since \mathbf{x}^{\ast } = \eta \mathbf{ \times x} we have the system of linear equations in \eta _{i} for i = 1, 2, 3 ( \eta _{is} are the coordinates of \eta ):

    \begin{equation} \left. \begin{array}{l} \eta _{2}\sin \vartheta \sin \varphi -\eta _{3}\sin \vartheta \cos \varphi = x_{1}^{\ast }, \\ -\eta _{1}\sin \vartheta \sin \varphi +\eta _{3}\cos \vartheta = x_{2}^{\ast } , \\ \eta _{1}\sin \vartheta \cos \varphi -\eta _{2}\cos \vartheta = x_{3}^{\ast }. \end{array} \right \} \end{equation} (4.2)

    The matrix of coefficients of unknowns \eta _{i} is the skew symmetric matrix

    \begin{equation*} \left( \begin{array}{lll} \ \ \ \ 0 & \sin \vartheta \sin \varphi & -\sin \vartheta \cos \varphi \\ -\sin \vartheta \sin \varphi & \ \ \ \ \ \ 0 & \cos \vartheta \\ \sin \vartheta \cos \varphi & -\cos \vartheta & \ \ \ \ \ \ \ 0 \end{array} \right) , \end{equation*}

    and thus its rank is 2 with \vartheta \neq 2\pi k ( k is an integer). The rank of the augmented matrix

    \begin{equation*} \left( \begin{array}{lllc} \ \ \ \ 0 & \sin \vartheta \sin \varphi & -\sin \vartheta \cos \varphi & x_{1}^{\ast } \\ -\sin \vartheta \sin \varphi & \ \ \ \ \ \ 0 & \cos \vartheta & x_{2}^{\ast } \\ \sin \vartheta \cos \varphi & -\cos \vartheta & \ \ \ \ \ \ \ 0 & x_{2}^{\ast } \end{array} \right) \end{equation*}

    is also 2. Thereby, this system has infinite solutions given by

    \begin{equation} \begin{array}{l} \eta _{2}\sin \varphi -\eta _{3}\cos \varphi = -\vartheta ^{\ast }, \\ \eta _{2} = (\eta _{1}-\varphi ^{\ast })\tan \vartheta \cos \varphi -\vartheta ^{\ast }\sin \varphi , \\ \eta _{3} = (\eta _{1}-\varphi ^{\ast })\tan \vartheta \sin \varphi +\vartheta ^{\ast }\cos \varphi . \end{array} \end{equation} (4.3)

    Since \eta _{1} can be set arbitrarily, we may set \eta _{1} = \varphi ^{\ast } . In this case, Eq (4.3) reduces to

    \begin{equation} \eta _{1} = \varphi ^{\ast },\text{ }\eta _{2} = -\vartheta ^{\ast }\sin \varphi ,\text{ }\eta _{3} = \vartheta ^{\ast }\cos \varphi . \end{equation} (4.4)

    If we set \varphi ^{\ast } = h\varphi and \varphi as the movement parameter, then (\widehat{x}) is a ruled in \mathbb{L}_{f} -space. We now simply find the base curve as

    \begin{equation} η(\varphi ) = h\varphi \boldsymbol{\zeta }_{1}-\vartheta ^{\ast }\sin \varphi \boldsymbol{\zeta }_{2}+\vartheta ^{\ast }\cos \varphi \boldsymbol{\zeta } _{3}. \end{equation} (4.5)

    It can be shown that < η^{^{\prime }}, \mathbf{x}^{^{\prime }} > = 0 , ( ^{\prime } = \frac{d}{d\varphi } ), so the base curve η (\varphi) of ( \widehat{x} ) is its striction curve \mathbf{c} . The curvature \kappa _{c}(\varphi) and torsion \tau _{c}(\varphi) of \mathbf{c}(\varphi) can be given by

    \begin{equation*} \kappa _{c}(\varphi ) = \frac{\vartheta ^{\ast }}{\vartheta ^{\ast 2}+h^{2}} \text{, }\tau _{c}(\varphi ) = \frac{h}{\vartheta ^{\ast 2}+h^{2}}, \end{equation*}

    which means that \mathbf{c}(\varphi) is a circular helix. From Eqs (3.11), (3.29) and (4.5) it can be found that

    \begin{equation*} \left( \begin{array}{c} \Gamma \\ \lambda \end{array} \right) = \left( \begin{array}{cc} \cos \vartheta & -\sin \vartheta \\ \sin \vartheta & \cos \vartheta \end{array} \right) \left( \begin{array}{c} h \\ \vartheta ^{\ast } \end{array} \right) . \end{equation*}

    Let y (y_{1}, y_{2}, y_{3}) be a point on the oriented line \widehat{\mathbf{x}} . Then,

    \begin{equation} (\widehat{x}):\mathbf{y}(\varphi ,v) = \left( \begin{array}{c} h\varphi +v\cos \vartheta \\ -\vartheta ^{\ast }\sin \varphi +v\sin \vartheta \cos \varphi \\ \vartheta ^{\ast }\cos \varphi +v\sin \vartheta \sin \varphi \end{array} \right) ,\text{ }v\in \mathbb{R} . \end{equation} (4.6)

    The constants h , \vartheta and \vartheta ^{\ast } can control the shape of the surface (\widehat{x}) . Hence, the major geometrical characteristics of (\widehat{x}) can be described as follows: (\widehat{x}) is a stationary Disteli-axis ruled surface, < \mathbf{c}^{^{\prime }}, \mathbf{x} > = \Gamma is constant, < \mathbf{c}^{^{\prime }}, \mathbf{g} > = \lambda is constant, and \mathbf{c}(\varphi) is a circular helix.

    Theorem 2. Let (\widehat{x}) be any non-developable ruled surface in Euclidean 3-space \mathbb{E}^{3} . Then, (\widehat{x}) is a ruled Weingarten surface if and only if (\widehat{x}) is contained in a torsion line congruence.

    However, via Eq (4.6), the ruled surface can be classified into four types according to the forms of their striction curves.

    (1) Archimedes helicoid when its striction curve is a circular helix; for h = 1, \vartheta ^{\ast } = 1, \vartheta = \frac{\pi }{4} , -2.5\leq v\leq 2.5 , and 0\leq \varphi \leq 2\pi (see Figure 3).

    Figure 3.  General helicoid.

    (2) One-sheeted hyperboloid when its striction curve is a circle; for h = 0, \vartheta^{\ast } = 1, \vartheta = \frac{\pi }{4}, -2.5\leq \; v\leq 2.5 , and 0\leq \varphi \leq 2\pi (see Figure 4).

    Figure 4.  One-sheeted hyperboloid.

    (3) Right helicoid when its striction curve is a line; for h = 1 , \vartheta ^{\ast } = 0 , \vartheta = \frac{\pi }{2} , -2.5\leq v\leq 2.5 , and 0\leq \varphi \leq 2\pi (see Figure 5).

    Figure 5.  Right helicoid.

    (4) Circular cone when its striction curve is a fixed point; for h = \vartheta ^{\ast } = 0 , \vartheta = \frac{\pi }{4} , -2.5\leq v\leq 2.5 , and 0\leq \varphi \leq 2\pi (see Figure 6).

    Figure 6.  Circular cone.

    In order to have a straightforward equation of the torsion line congruence, from Eqs (3.10), (3.13) and (3.28) we can write the equation

    \begin{equation*} \widehat{\tau }(\widehat{u}) = \pm \frac{\widehat{\omega }\left[ 3\cos \widehat{\vartheta }\sin \widehat{\varphi }+(\widehat{\omega }-\widehat{ \gamma })\sin \widehat{\vartheta }\right] \cos \widehat{\varphi }-\widehat{ \omega }^{^{\prime }}\sin \widehat{\vartheta }\sin \widehat{\varphi }}{ \widehat{\omega }^{2}\widehat{\kappa }^{2}\sin ^{3}\widehat{\vartheta }}. \end{equation*}

    Hence, at any instant, it is apparent that

    \begin{equation} \widehat{\tau }(\widehat{u}) = 0\Leftrightarrow \cot \widehat{\vartheta } = \widehat{a}\csc \widehat{\varphi }+\widehat{b}\sec \widehat{\varphi }, \end{equation} (5.1)

    where

    \begin{equation} \widehat{a} = a+\varepsilon a^{\ast } = \frac{\widehat{\gamma }-\widehat{\omega } }{3},\text{ }\widehat{b}(u) = b+\varepsilon b^{\ast } = \frac{\widehat{\omega } ^{^{\prime }}}{3\widehat{\omega }}. \end{equation} (5.2)

    The real part of Eq (5.1) characterizes the torsion cone for the spherical part of the movement \mathbb{L}_{m}/\mathbb{L}_{f} and is given by

    \begin{equation} \left. \begin{array}{l} \cot \vartheta = a\csc \varphi +b\sec \varphi , \\ a(u) = \frac{\gamma -\omega }{3},\text{ and }b(u) = b+\varepsilon b^{\ast } = \frac{\omega ^{^{\prime }}}{3\omega }. \end{array} \right \} \end{equation} (5.3)

    The intersection of the torsion cone with a unit sphere fastened at the cone's apex gives a spherical curve. Linked with the direction of a line L on the torsion cone, there is a plane \pi defined by the dual part of Eq (5.1). This plane is

    \begin{equation} a^{\ast }\csc \varphi +b^{\ast }\sec \varphi +\varphi ^{\ast }\left( b\sec \varphi \tan \varphi -a\csc \varphi \cot \varphi \right) +\vartheta ^{\ast }c\sec ^{2}\vartheta = 0. \end{equation} (5.4)

    So, for each direction of a line L of the torsion cone, there is an associated plane of lines parallel to L . The torsion cone and plane of lines defines the torsion line congruence. Hence, if Eq (5.3) is solved with respect to the angle \vartheta , then we obtain

    \begin{equation} \vartheta = \cot ^{-1}\left( a\csc \varphi +b\sec \varphi \right) . \end{equation} (5.5)

    Then, from Eqs (4.1) and (5.5) it follows that

    \begin{equation} \mathbf{x}(\varphi )\mathbf{ = }\frac{1}{\sqrt{1+(a\csc \varphi +b\sec \varphi )^{2}}}\left( a\csc \varphi +b\sec \varphi ,\cos \varphi ,\sin \varphi \right) \end{equation} (5.6)

    From Eqs (4.6) and (5.5), we can also obtain that

    \begin{equation} (\widehat{x}):\mathbf{y}(\varphi ,v) = \left( \begin{array}{c} h\varphi +\frac{v\left( a\csc \varphi +b\sec \varphi \right) }{\sqrt{(a\csc \varphi +b\sec \varphi )^{2}+1}} \\ -\vartheta ^{\ast }\sin \varphi +\frac{v\cos \varphi }{\sqrt{(a\csc \varphi +b\sec \varphi )^{2}+1}} \\ \vartheta ^{\ast }\cos \varphi +\frac{v\sin \varphi }{\sqrt{(a\csc \varphi +b\sec \varphi )^{2}+1}} \end{array} \right) ,\text{ }v\in \mathbb{R} . \end{equation} (5.7)

    In the case of 0\leq \varphi \leq 2\pi , and \vartheta ^{\ast }\neq 0 , we get:

    \begin{equation} (\widehat{x}):-\frac{Y_{1}^{2}}{\Lambda ^{2}}+\frac{y_{2}^{2}}{\vartheta ^{\ast 2}}+\frac{y_{3}^{2}}{\vartheta ^{\ast 2}} = 1, \end{equation} (5.8)

    where \Lambda = \vartheta ^{\ast }\left(a\csc \varphi +b\sec \varphi \right) , and Y_{1} = y_{1}-h\varphi . Then, (\widehat{x}) is a one-parameter family of one-sheeted hyperboloids. The intersection of each hyperboloid and the corresponding plane y_{1} = \varphi ^{\ast } is one-parameter family of circular cylinders (c) : y_{2}^{2}+y_{3}^{2} = \vartheta ^{\ast 2} which is the envelope of (\widehat{x}) . According to Eqs (5.6) and (5.7) we have the following:

    (1) Spherical torsion curve with its torsion ruled surface: for a = 1, b = 0.5, \vartheta ^{\ast } = 3, h = 1, 0\leq \; \varphi \leq 2\pi, 0\leq v\leq 4 (Figures 7 and 8).

    Figure 7.  Torsion curve.
    Figure 8.  Ruled surface.

    (2) Spherical torsion curve with its torsion ruled surface: for a = 1 , b = -0.5 , \vartheta ^{\ast } = 3 , h = 1, 0\leq \; \varphi \leq 2\pi, 0\leq v\leq 4 (Figures 9 and 10).

    Figure 9.  Torsion curve.
    Figure 10.  Ruled surface.

    In 1914 Disteli[9] created a curvature axis for a ruled surface and generalized the planar Euler-Savary equation to line trajectories. There are several papers which deal with Euler-Savary formulae and classical geometric invariants of ruled surfaces for several kinds of geometry[4,5,6,7]. The Disteli formula may be given immediately as follows. From Eqs (3.10), (3.13) and (3.28), we obtain

    \begin{equation} \cot \widehat{\phi }-\cot \widehat{\vartheta } = \frac{\sin \widehat{\varphi } }{\widehat{\omega }\sin ^{2}\widehat{\vartheta }}. \end{equation} (5.9)

    Equation (5.9) shows the correlations between \widehat{\mathbf{x}}(\widehat{u})\in \mathbb{K}_{f\text{, }} which corresponds to the ruled surface ( \widehat{x} ), and its osculating dual cone, which is corresponding to the Disteli-axis, at any instant. It is comparable to the Euler-Savary equation of a point trajectory in planar and spherical movements in form[1,2,3,4,5]. By separating the real and the dual parts, we get

    \begin{equation} \cot \phi = \cot \vartheta +\frac{\sin \varphi }{\omega \sin ^{2}\vartheta }, \end{equation} (5.10)

    and

    \begin{equation} \phi ^{\ast } = \frac{\sin ^{2}\phi }{\omega }[(h+2\vartheta ^{\ast }\cot \vartheta )\sin \varphi -\varphi ^{\ast }\cos \phi ]+\frac{\vartheta ^{\ast }\sin ^{2}\varphi }{\sin ^{2}\vartheta }. \end{equation} (5.11)

    Equation (5.10) detects the correlations among the locations of the ruling \widehat{\mathbf{x}} in the movable space \mathbb{L}_{m} and the Disteli-axis \widehat{\mathbf{b}} . Equation (5.11) depicts the distance from \widehat{\mathbf{x}} to the Disteli-axis \widehat{\mathbf{b}} . Their geometrical explanations are shown in Figure 2. The sign of \phi ^{\ast } (- or +) indicates that the location of the Disteli-axis \widehat{\mathbf{b}} is on the negative or positive orientation of the central normal \widehat{\mathbf{t}} of (\widehat{x}) . Equations (5.10) and (5.11) are new Disteli formulae of a line trajectory in the movement \mathbb{L}_{m}/ \mathbb{L}_{f} . Since the central points of the ruled surfaces are on the normal plane, when the direction of their rulings is defined by the dual unit vector \widehat{\mathbf{x}} with (\widehat{\varphi }, \widehat{ \vartheta }) according to Eq (3.28), the Disteli fomulae (5.10) and (5.11) can be displayed in the plane \pi :Sp\{ \boldsymbol{\zeta }_{1}, \widehat{\mathbf{t}} \} . Hence, any arbitrary point \mathbf{c}(\varphi ^{\ast }, \vartheta ^{\ast }) on the plane \pi is defined as central point of (\widehat{x}) whose ruling is the oriented line \widehat{\mathbf{x}} , and the radius \vartheta ^{\ast } is the line segment from the point \mathbf{q} to the point \mathbf{c} on the plane \pi . Also, the vector from \mathbf{q} to \mathbf{c} is in the positive (resp. negative) orientation of \widehat{ \mathbf{t}} if \vartheta ^{\ast } > 0 (resp. \vartheta ^{\ast } < 0 ). The central point \mathbf{c}(\varphi ^{\ast }, \vartheta ^{\ast }) can be on the \mathbb{ISA} if \vartheta ^{\ast } = 0 ( \alpha ^{\ast } = -\varphi ^{\ast }) and on the Disteli-axis \widehat{\mathbf{b}} if \ \phi ^{\ast } = 0\Leftrightarrow \alpha ^{\ast } = \vartheta ^{\ast } . In the latter case the central point \mathbf{c}(\varphi ^{\ast }, \vartheta ^{\ast }) can be determined by setting \phi ^{\ast } = 0 in Eq (5.11) which is clarified as

    \begin{equation} L:\varphi ^{\ast } = \frac{1}{\cos \varphi }\left( \frac{\sin ^{2}\varphi }{ \sin ^{2}\vartheta }+2\cot \vartheta \right) \vartheta ^{\ast }+h\tan \varphi . \end{equation} (5.12)

    Equation (5.12) is linear in the position coordinates \varphi ^{\ast } and \vartheta ^{\ast } of \widehat{\mathbf{x}} . Hence, in one-parameter spatial movement \mathbb{L}_{m}/\mathbb{L}_{f} the fixed lines in \mathbb{ L}_{m} lie on a plane. The line L will change its location if the parameter \vartheta ^{\ast } is defined as a varying value, but \varphi ^{\ast } = constant. However, a set of lines envelops a curve on the plane \pi . Meanwhile, the \pi has several positions if the parameter \varphi ^{\ast } of a line has several values, but \vartheta ^{\ast } = constant. Therefore, the set of all lines L defined by Eq (5.12) is a line congruence for all values of (\varphi ^{\ast }, \vartheta ^{\ast }) .

    On the other hand, we can derive other dual version of the Euler-Savary equation as follows: Substituting Eq (3.5) into Eq (3.21), we have

    \begin{equation} \widehat{\mathbf{b}} = \frac{\widehat{\omega }^{2}\left[ (1-\widehat{x} _{1}^{2})\widehat{\omega }\widehat{\boldsymbol{\zeta }}_{1}+\widehat{x}_{3} \widehat{\mathbf{x}}\right] }{\left \Vert \widehat{\mathbf{x}}^{^{\prime }}\times \widehat{\mathbf{x}}^{^{^{\prime \prime }}}\right \Vert }. \end{equation} (5.13)

    Thus, from Eqs (3.1), (3.30) and (5.13), one finds that:

    \begin{equation} \frac{(1-\widehat{x}_{1}^{2})\widehat{\omega }+\widehat{x}_{1}\widehat{x}_{3} }{\cos \widehat{\alpha }} = \frac{\widehat{x}_{2}\widehat{x}_{3}}{\sin \widehat{\alpha }\cos \widehat{\varphi }} = \frac{\widehat{x}_{3}^{2}}{\sin \widehat{\alpha }\sin \widehat{\varphi }}. \end{equation} (5.14)

    Substituting Eq (3.28) into Eq (5.14), we obtain

    \begin{equation} \cot \widehat{\alpha }-\cot \widehat{\vartheta } = \frac{\widehat{\omega }}{ \sin \widehat{\varphi }}. \end{equation} (5.15)

    This is exactly a second dual extension of the Euler-Savary equation. From the real and the dual parts, respectively, we get:

    \begin{equation} \cot \alpha -\cot \vartheta = \frac{\omega }{\sin \varphi }, \end{equation} (5.16)

    and

    \begin{equation} \varphi ^{\ast }(\cot \alpha -\cot \vartheta )\cos \varphi -(\frac{\alpha ^{\ast }}{\sin ^{2}\alpha }-\frac{\vartheta ^{\ast }}{\sin ^{2}\vartheta } )\sin \varphi = \frac{\omega }{\sin \varphi }\left( h-\mu \right) . \end{equation} (5.17)

    Once the angles \alpha and \vartheta are known, Eq (5.17) gives the correspondence between \alpha ^{\ast } and \vartheta ^{\ast } in terms of ( \varphi , \varphi ^{\ast } ) and the 2nd order invariant \frac{\omega }{ \sin \varphi }\left(h-\mu \right) . The spherical Euler-Savary Eq (5.16) and (5.17) are new Disteli formulae of spatial kinematics.

    For one-parameter spatial movement \mathbb{L}_{m}/\mathbb{L}_{f} , based on E. Study, expressions of the axodes and their invariants were derived, and then the geometric–kinematic meanings were revealed. By employing the Blaschke frames, the properties of a line trajectory and its Disteli axis were researched. Interestingly, the results slightly explain the analogies between point geometry of spherical curves in Euclidean 3-space \mathbb{E}^{3} and point geometry of dual spherical curves in dual 3-space \mathbb{D}^{3} . Hence, the invariants of the axodes were utilized for obtaining new proof of the Disteli-formulae for a line trajectory in spatial kinematics.

    The study of spatial kinematics in Euclidean 3-space \mathbb{E}^{3} via the geometry of lines may be adopted to research some problems and conclude new applications. For future research, we will attract with the design of ruled surfaces as tooth flanks for gears with skew axes, as offered in [7].

    The authors declare that there is no conflict of interests regarding the publication of this paper.



    [1] O. Bottema, B. Roth, Theoretical kinematics, New York: North-Holland Press, 1979.
    [2] A. Karger, J. Novak, Space kinematics and Lie groups, New York: Gordon and Breach Science Publishers, 1985.
    [3] J. Schaaf, Curvature theory of line trajectories in spatial kinematics, Ph. D Thesis, University of California, 1988.
    [4] H. Stachel, Instantaneous Spatial kinematics and the invariants of the axodes, Proceedings of A Symposion Commemorating the Legacy, Works, and Life of Sir Robert Stawell Ball Upon the 100th Anniversary of A Treatise on the Theory of Screws, 2000, 1–14.
    [5] H. Pottman, J. Wallner, Computational line geometry, Berlin: Springer-Verlag, 2001. http://dx.doi.org/10.1007/978-3-642-04018-4
    [6] R. Garnier, Cours de cinématique, Tome II: Roulement et vibration-la formule de Savary et son extension a l'espace, Paris: Gauthier-Villars, 1941.
    [7] J. Phillips, On the theorem of three axes in the spatial motion of three bodies, Aust. J. Appl. Sci., 15 (1964), 267.
    [8] M. Skreiner, A study of the geometry and the kinematics of Instantaneous spatial motion, J. Mech., 1 (1966), 115–143. http://dx.doi.org/10.1016/0022-2569(66)90017-6 doi: 10.1016/0022-2569(66)90017-6
    [9] B. Dizioglu, Einfacbe herleitung der Euler-Savaryschen konstruktion der riiumlichen bewegung, Mech. Mach. Theory, 9 (1974), 247–254. http://dx.doi.org/10.1016/0094-114X(74)90042-1 doi: 10.1016/0094-114X(74)90042-1
    [10] R. Abdel-Baky, F. Al-Solamy, A new geometrical approach to one-parameter spatial motion, J. Eng. Math., 60 (2008), 149–172. http://dx.doi.org/10.1007/s10665-007-9139-5 doi: 10.1007/s10665-007-9139-5
    [11] G. Figlioini, H. Stachel, J. Angeles, The computational fundamentals of spatial cycloidal gearing, In: Computational kinematics, Berlin: Springer, 2009,375–384. http://dx.doi.org/10.1007/978-3-642-01947-0_46
    [12] R. Abdel-Baky, R. Al-Ghefari, On the one-parameter spherical dual motions, Comput. Aided Geom. D., 28 (2011), 23–37. http://dx.doi.org/10.1016/j.cagd.2010.09.007 doi: 10.1016/j.cagd.2010.09.007
    [13] R. Al-Ghefari, R. Abdel-Baky, Kinematic geometry of a line trajectory in spatial motion, J. Mech. Sci. Technol., 29 (2015), 3597–3608. http://dx.doi.org/10.1007/s12206-015-0803-9 doi: 10.1007/s12206-015-0803-9
    [14] R. Abdel-Baky, On the curvature theory of a line trajectory in spatial kinematics, Commun. Korean Math. S., 34 (2019), 333–349. http://dx.doi.org/10.4134/CKMS.c180087 doi: 10.4134/CKMS.c180087
    [15] M. Aslan, G. Sekerci, Dual curves associated with the Bonnet ruled surfaces, Int. J. Geom. Methods M., 17 (2020), 2050204. http://dx.doi.org/10.1142/S0219887820502047 doi: 10.1142/S0219887820502047
    [16] N. Alluhaibi, Ruled surfaces with constant Disteli-axis, AIMS Mathematics, 5 (2020), 7678–7694. http://dx.doi.org/10.3934/math.2020491 doi: 10.3934/math.2020491
    [17] R. Abdel-Baky, F. Tas, W-Line congruences, Commun. Fac. Sci. Univ., 69 (2020), 450–460. http://dx.doi.org/10.31801/cfsuasmas.550369
    [18] R. Abdel-Baky, M. Naghi, A study on a line congruence as surface in the space of lines, AIMS Mathematics, 6 (2021), 11109–11123. http://dx.doi.org/10.3934/math.2021645 doi: 10.3934/math.2021645
    [19] J. Bruce, P. Giblin, Curves and singularities, 2 Eds., Cambridge: Cambridge University Press, 1992. http://dx.doi.org/10.1017/CBO9781139172615
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1532) PDF downloads(65) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog