In this treatise, several relationships are improved for the axodes of one-parameter spatial movements. Results are devised in some theorems which characterize many kinematical and geometrical properties of the movements employing the geometrical data of the stationary and movable axodes. An example illustrates the application of the formulae derived. Our findings contribute to a greater understanding of the similarities between spatial movements and axodes, with possible applications in fields such as mechanical engineering.
Citation: Areej A. Almoneef, Rashad A. Abdel-Baky. On the axodes of one-parameter spatial movements[J]. AIMS Mathematics, 2024, 9(4): 9867-9883. doi: 10.3934/math.2024483
In this treatise, several relationships are improved for the axodes of one-parameter spatial movements. Results are devised in some theorems which characterize many kinematical and geometrical properties of the movements employing the geometrical data of the stationary and movable axodes. An example illustrates the application of the formulae derived. Our findings contribute to a greater understanding of the similarities between spatial movements and axodes, with possible applications in fields such as mechanical engineering.
[1] | O. Bottema, B. Roth, Theoretical kinematics, New York: North-Holland Press, 1979. |
[2] | A. Karger, J. Novák, Space kinematics and Lie groups, New York: Gordon and Breach Science Publishers, 1985. |
[3] | J. A. Schaaf, B. Ravani, Geometric continuity of ruled surfaces, Comput. Aided Geom. Des., 15 (1998), 289–310. https://doi.org/10.1016/S0167-8396(97)00032-0 doi: 10.1016/S0167-8396(97)00032-0 |
[4] | J. A. Schaaf, Structure curvature function of line trajectories in spatial kinematics, Ph. D. thesis, University of California, 1988. |
[5] | D. L. Wang, J. Liu, D. Z. Xiao, Geometrical characteristics of some typical spatial constraints, Mech. Mach. Theory, 35 (2000), 1413–1430. https://doi.org/10.1016/S0094-114X(99)00077-4 doi: 10.1016/S0094-114X(99)00077-4 |
[6] | H. Pottmann, J. Wallner, Computational line geometry, Springer, 2001. https://doi.org/10.1007/978-3-642-04018-4 |
[7] | W. Kühnel, M. Steller, On closed Weingarten surfaces, Monatsh. Math., 146 (2005), 113–126. https://doi.org/10.1007/s00605-005-0313-4 doi: 10.1007/s00605-005-0313-4 |
[8] | Y. Yuan, The binormal surface of the space curves, Master thesis, Northeastern University, 2006. |
[9] | K. S. Sprott, B. Ravani, Cylindrical milling of ruled surfaces, Int. J. Adv. Manuf. Technol., 38 (2008), 649–656. https://doi.org/10.1007/s00170-007-1133-6 doi: 10.1007/s00170-007-1133-6 |
[10] | R. A. Abdel-Baky, F. R. Al-Solamy, A new geometrical approach to one-parameter spatial motion, J. Eng. Math., 60 (2008), 149–172. https://doi.org/10.1007/s10665-007-9139-5 doi: 10.1007/s10665-007-9139-5 |
[11] | R. A. Abdel-Baky, R. A. Al-Ghefari, On the one-parameter dual spherical motions, Comput. Aided Geom. Des., 28 (2011), 23–37. https://doi.org/10.1016/j.cagd.2010.09.007 doi: 10.1016/j.cagd.2010.09.007 |
[12] | Y. Yu, H. Liu, S. D. Jung, Structure and characterization of ruled surfaces in Euclidean 3-space, Appl. Math. Comput., 233 (2014), 252–259. https://doi.org/10.1016/j.amc.2014.02.006 doi: 10.1016/j.amc.2014.02.006 |
[13] | Y. Yu, H. Liu, S. D. Jung, Invariants of non-developable ruled surfaces in Euclidean 3-space, Beitr. Algebra Geom., 55 (2014), 189–199. https://doi.org/10.1007/s13366-013-0177-z doi: 10.1007/s13366-013-0177-z |
[14] | R. A. Al-Ghefari, R. A. Abdel-Baky, Kinematic geometry of a line trajectory in spatial motion, J. Mech. Sci. Technol., 29 (2015), 3597–3608. https://doi.org/10.1007/s12206-015-0803-9 doi: 10.1007/s12206-015-0803-9 |
[15] | R. A. Abdel-Baky, On the curvature theory of a line trajectory in spatial kinematics, Commun. Korean Math. Soc., 34 (2019), 333–349. https://doi.org/10.4134/CKMS.c180087 doi: 10.4134/CKMS.c180087 |
[16] | M. C. Aslan, G. A. Sekerci, Dual curves associated with the Bonnet ruled surfaces, Int. J. Geom. Methods Mod. Phys., 17 (2020), 2050204. https://doi.org/10.1142/S0219887820502047 doi: 10.1142/S0219887820502047 |
[17] | N. Alluhaibi, Ruled surfaces with constant Disteli-axis, AIMS Math., 5 (2020), 7678–7694. https://doi.org/10.3934/math.2020491 doi: 10.3934/math.2020491 |
[18] | H. Liu, Y. Liu, S. D. Jung, Ruled invariants and total classiffication of non-developable ruled surfaces, J. Geom., 113 (2022), 21. https://doi.org/10.1007/s00022-022-00631-9 doi: 10.1007/s00022-022-00631-9 |
[19] | M. C. Aslan, G. A. Sekerci, Dual curves associated with the Bonnet ruled surfaces, Int. J. Geom. Methods Mod. Phys., 17 (2004), 2050204. https://doi.org/10.1142/S0219887820502047 doi: 10.1142/S0219887820502047 |
[20] | R. A. Abdel-Baky, M. F. Naghi, A study on a line congruence as surface in the space of lines, AIMS Math., 6 (2021), 11109–11123. https://doi.org/10.3934/math.2021645 doi: 10.3934/math.2021645 |
[21] | S. Nazra, R. A. Abdel-Baky, Bertrand offsets of ruled surfaces with Blaschke frame in Euclidean 3-space, Axioms, 12 (2023), 649. https://doi.org/10.3390/axioms12070649 doi: 10.3390/axioms12070649 |
[22] | Y. Li, F. Mofarreh, R. A. Abdel-Baky, Kinematic-geometry of a line trajectory and the invariants of the axodes, Demonstr. Math., 56 (2022), 20220252. https://doi.org/10.1515/dema-2022-0252 doi: 10.1515/dema-2022-0252 |
[23] | L. Jäntschi, Eigenproblem basics and algorithms, Symmetry, 15 (2023), 2046. https://doi.org/10.3390/sym15112046 doi: 10.3390/sym15112046 |
[24] | Y. Li, Z. Chen, S. H. Nazra, R. A. Abdel-Baky, Singularities for timelike developable surfaces in Minkowski 3-space, Symmetry, 15 (2023), 277. https://doi.org/10.3390/sym15020277 doi: 10.3390/sym15020277 |
[25] | Y. Li, A. Alkhaldi, A. Ali, R. A. Abdel-Baky, M. K. Saad, Investigation of ruled surfaces and their singularities according to Blaschke frame in Euclidean 3-space, AIMS Math., 8 (2023), 13875–13888. https://doi.org/10.3934/math.2023709 doi: 10.3934/math.2023709 |