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1. Introduction

In the study of spatial movements (kinematics), the analysis of the trajectory of general rigid body
movements relies on two factors: the position and orientation of the movable line. The direction of the
movable line describes the shape of a cone. The intersection of the cone and a unit sphere, attached at
the vertex of the cone, determines a spherical curve known as the spherical indicatrix or image of the
line path. The position of the moveable line, relative to a reference point, is specified by a space curve
that is commonly known as the image of the line’s path.

However, in spatial movements, it is advisable to take into account the inherent characteristics
of the line path while considering ruled surfaces. Moreover, it is established that the instantaneous
rotational axis (ISA) of a movable object generates a pair of ruled surfaces, known as the invariable
and movable axodes (AX), with the ISA serving as their ruling (creating) in both the invariable
and movable spaces, respectively. TheAX undergoes rolling and sliding motion in a certain direction,
ensuring that the tangential contact within theAX is maintained along the full length of the two matting
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rulings. These rulings, located in eachAX, work together to determine the position of the ISA at any
given moment. It is considered that a certain motion results in a unique pencil of AX, and the same
applies in the opposite direction. If the axioms of any motion are fulfilled, it implies that the specific
movement may be reconstructed without knowledge of the actual components of the mechanism, their
configuration, exact dimensions, or the manner in which they are attached. During the process of
synthesis, it has been understood that theAX plays a crucial role in both the physical mechanism and
the actual movement of its components. There are numerous exceptional written works on the subject,
including a variety of treatises; for these, refer to [1–8].

Surprisingly, dual numbers have been employed to ponder the movement of a line space. They may
well be the most suitable tools for this purpose. In the context of dual number and screw algebra, the
E. Study map states that there is a one-to-one correspondence between the pencil of dual points on
the dual unit sphere in the dual 3-space D3 and the pencil of all directed lines in Euclidean 3-space
E3. Using this map: a one-parameter set of points (known as a dual curve) on a unit sphere in dual
space corresponds to a one-parameter pencil of directed lines (known as a ruled surface) in three-
dimensional Euclidean space E3 [9–11]. Consequently, numerous researchers have made significant
efforts to study the curvature properties of ruled surfaces using various methods [12–23]. However,
further investigation is required to gain a deeper understanding.

In this study, we have employed the E. Study map to promptly analyze the kinematic-geometry of
one parameter spatial movement. Our research focuses on examining the characteristics of the axodes
and comparing them to spherical movements. Consequently, the invariants were deliberated upon and
a dual form of the planar Euler-Savary equation was derived. This work aims to elucidate the topic
of second-order movement features to foster a comprehensive understanding. Rotations are crucial in
various professions, such as in astronomy (the movement of planets) and chemistry (the movement of
electrons and the rotation of molecules). The utilization of eigenvector, eigenvalue, and eigenproblem
methodologies can provide insights into difficult problems [23].

2. Basic concepts

In this section, we give some conceptualizations that we will employ in this article [1–4, 10, 11]: A
directed line (DL) can be identified by a point α ∈ L and a normalized orientation vector r of L, that
is, ∥r∥2 = 1. To gain coordinates for L, one composes the moment vector r∗ = α × r regarding to the
origin point in E3. If α is offset by any point y = α + vr, v ∈ R on L, this suggest that r∗ is linearly
independent of α on L. The vectors r and r∗ are not independent of one another; they fulfil that:

< r, r >=1, < r∗, r >=0.

The six coordinates rξ, r∗ξ(ξ = 1, 2, 3) of r and r∗ are named the normalized Plűcker coordinates of the
line L. Hence, the vectors r and r∗ locate L.

A dual (D) number r̂ is a number r + εr∗, where r, r∗ in R and ε is aD unit with ε , 0, and ε2 = 0.
Then, the set

D3 = {̂r= r + εr∗ =(̂r1, r̂2, r̂3)}

with the inner product
< r̂, r̂ >= r̂2

1 + r̂2
2 + r̂2

3
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forms theD 3-spaceD3. Thereby, a point r̂ hasD coordinates

r̂i = (ri + εr∗i ) ∈ D.

If r , 0, the norm
∥∥∥̂r∥∥∥ of r̂ = r + εr∗ is∥∥∥̂r∥∥∥ = ∥r∥ + ε< r∗, r >

∥r∥
, ∥r∥ , 0.

So, we may set theD vector r̂ as aD multiplier of aD unit vector (DUV) in the form

r̂=
∥∥∥̂r∥∥∥ ŝ,

where ŝ is referred to as the axis. The ratio

h =
< r∗, r >
∥r∥2

is known as the pitch along the axis ŝ. If h = 0 and ∥r∥ = 1, r̂ is a DL, and when h is definite, r̂ is an
proper screw. When h→ ∞, r̂ is named a pair. AD vector with norm equal to one is coined aDUV.
Hence, every

DL L = (r, r∗)∈E3 × E3

is appeared byDUV
r̂= r+εr∗(< r, r >=1, < r∗, r >=0).

TheDU sphere inD3 is expounded by

K = {̂r∈D3 |
∥∥∥̂r∥∥∥2 = r̂2

1 + r̂2
2 + r̂2

3 = 1}.

Then, we have the E. Study’s map: The set of points ofDU sphere inD3-space is in bijection with
the set of allDLs in E3 [10, 11].

3. One-parameter dual spherical movement

Let Km and K f be two DU spheres. Let 0̂ be the joint center and two orthonormal D coordinate

frames {̂0; ê1, ê2, ê3}, and {̂0; f̂1, f̂2, f̂3} be rigidly related with Km and K f , respectively. We set

{̂0; f̂1, f̂2, f̂3} as invariable, whereas the members of {̂0; ê1, ê2, ê3} are functions of a real parameter
t ∈ R (say the time). Then, we say that Km movable with respect to K f . Such movement is coined a
one-parameterD spherical movement, and is indicated by Km/K f . By setting

< f̂ξ, êζ >= Âξζ

and putting theD matrix
(DM)Â = (Âξζ),

we can set the E. Study map in the matrix sort as follows:

Km/K f :


f̂1

f̂2

f̂3

 =

Â11 Â12 Â13

Â21 Â22 Â23

Â31 Â32 Â33




ê1

ê2

ê3

 . (3.1)
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The
DM Â := (Âξζ) = (Aξζ) + ε(A∗ξζ)

has the property that Â−1 = Ât , which means it is an orthogonal DM. This result indicates that the
E. Study map is corresponds with an orthogonal DM. Comparable with the family of real orthogonal
matrices, the family of D orthogonal 3 × 3 matrices, denoted by O(D3×3), form a group with matrix
multiplication as the group operation (real orthogonal matrices are subgroup ofD orthogonal matrices).
D orthogonal matrices as understood here then also form a Lie group that is a manifold [6]. The identity
element of O(D3×3) is the 3 × 3 unit matrix. Since the center of the DU sphere in D3 must remain
steady, the transformation group in D3 (the image of Euclidean movements in E3) does not hold any
translations. Via the E. Study map: If Km and K f matches to the line spacesHm andH f , respectively,
then Km/K f matches the one-parameter spatial movement Hm/H f . Therefore, Hm is the moveable
space against the stationary space H f in E3. Hence, in order to have the Euclidean movements in D3,
we can state the following theorem [10, 11]:

Theorem 3.1. The Euclidean movements in E3 are fulfilled in D3 by 3 × 3 D orthogonal matrices
Â = (Âξζ), where ÂÂt = I, Âξζ areD numbers, and I is the 3 × 3 unit matrix.

Via Theorem 3.1, the Lie algebraL(OD3×3) of the groupO(D3×3) of 3×3Dmatrices Â is the algebra
of skew-symmetric 3 × 3D matrices. By differentiation of ÂÂt = I3 with respect to t ∈ R, we obtain

Â
′

Ât + (Â
′

Ât)t = 0, (3.2)

where 0 is the 3 × 3 zero matrix. We deduce from Eq (3.2) the following identification:

ψ̂(t) := Â
′

Ât =


0 −ψ̂3 ψ̂2

ψ̂3 0 −ψ̂1

−ψ̂2 ψ̂1 0

⇔

ψ̂1

ψ̂2

ψ̂3

 = ψ̂(t). (3.3)

Consequently, we may write the vectors fromD3 in two ways: as skew-symmetric 3× 3D matrices or
as vectors. In what follows we will use both of these likelihood according to which of the two will be
more useful in the specified case. Through the movement Km/K f , the differential velocity vector of a
fixedD point x̂ on Km, similar to the real spherical movement [1–5], is

x̂
′

= ψ̂ × x̂, (3.4)

where
ψ̂(t) = ψ(t)+εψ∗(t)

is the D screw or angular velocity vector of the movement Km/K f . ψ and ψ∗, respectively, are the
instantaneous rotational differential velocity vector and the instantaneous translational differential
velocity vector of the spatial movementHm/H f .

Let
r̂ = r+εr∗

be the ISA associated with ψ̂. Then,
ψ̂ = ψ(1 + εh)̂r, (3.5)
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where h is the pitch of the movementHm/H f . By means of Eq (3.1), for ψ̂ in K f , we have

ψ̂ f = Â
′

Ât=


0 −ψ̂3 f ψ̂2 f

ψ̂3 f 0 −ψ̂1 f

−ψ̂2 f ψ̂1 f 0

⇔

ψ̂1 f

ψ̂2 f

ψ̂3 f

 = ψ̂ f . (3.6)

Once again, the expression of ψ̂m in Km follows from

ψ̂m = Â
tÂ

′

=


0 −ψ̂3m ψ̂2m

ψ̂3m 0 −ψ̂1m

−ψ̂2m ψ̂1m 0

⇔

ψ̂1m

ψ̂2m

ψ̂3m

 = ψ̂m. (3.7)

Therefore, we have [1–5]:

Definition 3.1. For a one-parameterD spherical movement Km/K f , the following holds:

(i) ψ̂ f (t) = Â
′

Ât is coined the stationary directed cone.

(ii) ψ̂m(t) = ÂtÂ
′

is coined the movable directed cone.

(iii) r̂m(t) = ψ̂m(t)
∥∥∥∥ψ̂m(t)

∥∥∥∥−1
is coined the movable polhode.

(iv) r̂ f (t) = ψ̂ f (t)
∥∥∥∥ψ̂ f (t)

∥∥∥∥−1
is coined the invariable polhode.

We will use the subscript i whenever either m or f can be used. This agreement implies that the
same quantity must be utilized throughout the entire paper.

Theorem 3.2. For the curvature functions of the polhodes, we have [10, 11]:

p̂(t) =
∥∥∥̂r′m∥∥∥ = ∥∥∥̂r′f ∥∥∥ . (3.8)

Notice that the trajectory of the ISA, which is consists of all oriented lines r̂ f (t), is coined the
invariable axode. Analogously, r̂m(t) is coined the movable axodeAX. From p̂ = p̂i, it follows that the
movable and invariableAX osculate along the ruling line for every t ∈ R , that is, the rulings of theAX
gradually turn into one throughHm/H f and the tangent planes synchronize at the matching points. As
the movement Hm/H f progresses, the movable AX rolls and slides over the ISA (see Figure 1). As
an outcome, the following corollary can be specified.

Figure 1. Typical portions of axodes.
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Corollary 3.1. At any instant t, through Hm/H f , the πm osculate with the π f along the ISA in the
1st-order and their mutual distribution parameter is

µ(t) =
p∗

p
.

For further analysis, we recognize the relative Blaschke frame (RBF ) as follows:

r̂1(t) = r1(t) + εr∗1(t),

which is the ISA for the movementHm/H f , and

r̂2(t) := r2(t) + εr∗2(t)

=
dr1

dt

∥∥∥∥∥dr1

dt

∥∥∥∥∥−1

as the mutual central normal of r̂1(t) and r̂1(t + dt). A thirdDUV is realized as

r̂3(t) = r̂1 × r̂2.

The set {̂r1(t), r̂2(t), r̂3(t)} so realized will be coined RBF , where t ∈ R. It is fully appointed by the 1st-
order ownerships ofHm/H f . For the RBF with respect toHi (i = m, f ), we have

r̂′1
r̂′2
r̂′3

 |i =


0 p̂ 0
−p̂ 0 q̂i

0 −q̂i 0




r̂1

r̂2

r̂3

 (3.9)

= ω̂i ×


r̂1

r̂2

r̂3

 , (′=
d
dt

), (3.10)

where
ω̂i(t) = ω(t) + εω∗(t) = q̂îr1 + p̂̂r3

is the relative Darboux vector, and

p̂(t) = p(t) + εp∗(t) =
∥∥∥̂r′1∥∥∥ , q̂i = qi + εq∗i = det(̂r1 ,̂r

′

1, r̂
′′

1) (3.11)

are coined the Blaschke invariants. The tangent of the striction curve (SC) on the AX is defined
by [20–22]

c
′

(t) |i= q̂i(t)r1(t) + p(t)r3(t). (3.12)

On the other hand, due to the spatial three-pole-theorem, we gain the instantaneous screw ofHm/H f

as
ω̂(t) = ω̂ f (t) − ω̂m(t). (3.13)

The authenticity of this equation is shown in [10, 11]. Therefore,

ω̂(t) = ω(t)̂r1 with ω̂(t) := ω(t) + εω∗(t) = q̂ f (t) − q̂m(t). (3.14)

AIMS Mathematics Volume 9, Issue 4, 9867–9883.



9873

It is worthy to note that ω̂(t) is theD angular speed ofHm/H f . In our mission, we shall set that ω∗ , 0
to cancel out the pure translational movement. Also, we expel zero divisors ω = 0. Therefore, we work
with only non-torsional axodes.

Furthermore, for p̂(t) , 0, the relativeD geodesic curvature γ̂(t) of πi is

γ̂(t) := γ + ε(Γ − µγ) =
ω̂(t)
p̂(t)

, (3.15)

where
γ(t) = γ f (t) − γm(t), Γ(t) = Γ f (t) − Γm(t), µ(t) =

p∗(t)
p̂(t)

. (3.16)

γ(t), Γ(t), and µ(t) are coined the relative construction functions of the AX. They are all invariant of
the kinematic group and characterize fully the local forms of πi.

Corollary 3.2. For all instant t ∈ R, throughHm/H f , the pitch can be written as

h(t) :=
< ω∗, ω >

∥ω∥2

=
Γ f (t) − Γm(t)
γ f (t) − γm(t)

.

(3.17)

Furthermore, theDUV

b̂i(t) := bi(t) + εb∗i (t)

=
ω̂i∥∥∥ω̂i

∥∥∥= q̂i√
q̂2

i + p̂2
r̂1 +

p̂√
q̂2

i + p̂2
r̂3

(3.18)

is the Disteli-axis of πi. Let ϕ̂i = ϕi + εϕ
∗
i be theD radii of curvature among b̂i and r̂1. Then,

b̂i(t) = cos ϕ̂̂r1 + sin ϕ̂̂r3, (3.19)

where

cot ϕ̂i := cot ϕi − εϕ
∗
i (1 + cot2 ϕi) =

q̂i

p̂
. (3.20)

Consider two infinitesimally spaced rulings r̂1(t) and r̂1(t + dt). These two rulings are separated by
aD arc-length

dû := du + εdu∗ =
∥∥∥∥∥dr1

dt

∥∥∥∥∥ dt = p̂(t)dt. (3.21)

From now on, we will take the D arc length û instead of t ∈ R. Then r̂1(̂u) is coined a D arc-length
parameter curve. From now on, we shall often not write theD parameter û explicitly in our formulae.

Let {̂ti, n̂i, b̂i} be the mobile Serret-Frenet frame (SFF ) along r̂1(̂u). Then,

t + εt∗=̂t, ni + εn∗i=n̂i

and
bi + εb∗i=b̂i

AIMS Mathematics Volume 9, Issue 4, 9867–9883.
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are the unit tangent, unit principal normal, and unit binormal vectors of r̂1(̂u). The arc-length derivative
of the SFF is 

.

t̂
.

n̂i
.

b̂i

 =


0 κ̂i 0
−̂κi 0 τ̂i

0 −̂τi 0




t̂
n̂i

b̂i

 , (3.22)

where 
t̂
n̂i

b̂i

 =


0 1 0
− sin ϕ̂i 0 cos ϕ̂i

cos ϕ̂i 0 sin ϕ̂i




r̂1

r̂2

r̂3

 . (3.23)

One can display that

γ̂i(̂u) = γi + ε (Γi − γiµ) = cot ϕ − εϕ∗i (1 + cot2 ϕi),

κ̂i(̂u) := κi + εκ
∗
i =
√

1 + γ̂2 = 1
sin ϕ̂
= 1

ρ̂i (̂u) ,

τ̂i(̂u) := τi + ετ
∗
i = ±ϕ̂

′

i = ±
γ̂
′

i
1+γ̂2

i
= 1

σ̂i (̂u) ,

 (3.24)

where
ρ̂i = ρi + ερ

∗
i

and
σ̂i = σi + εσ

∗
i

are theD radii of curvature and theD torsion of πi, respectively.

3.1. Geometrical-kinematical properties of theAX

In this subsection, we consider geometrical-kinematical properties of πi as follows: Note that the
mutual central normal t̂i(̂r2) of πi is linked with r̂1. Its time derivative inH f can be derived as [1–5]

t̂
′

| f= t̂
′

|m +ω̂ × t̂, (3.25)

where t̂′ |mdenotes the time derivative of t̂ calculated inHm. Direct computation gives

t̂
′

|i= p̂
.

t̂ |i= p̂̂κîni. (3.26)

Considering Eq (3.25) with this, then

ω̂ × t̂ = p̂(̂κ f n̂ f − κ̂mn̂m). (3.27)

It is easily seen from Eq (3.14) that

< ω̂, t̂ >= ω̂ < ω̂, r̂1

>=
ω̂

2
d
dt
< r̂1, r̂1

>=
ω̂

2
d
dt

∥∥∥̂r1

∥∥∥2 = 0.

(3.28)
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Hence, we have

ω̂ × (ω̂ × t̂) =
∥∥∥̂t∥∥∥2 ω̂− < ω̂, t̂ > t̂
= ω̂.

(3.29)

With the aid of Eqs (3.27) and (3.29), we get

ω̂ = t̂ × [ p̂(̂κ f n̂ f − κ̂mn̂m)]

= p̂(̂κ f̂ t × n̂ f − κ̂m̂t × n̂m)

= p̂(̂κ f b̂ f − κ̂mb̂m).

Theorem 3.3. For all instant t ∈ R, throughHm/H f , theD angular velocity is located by the geometry
of the axodes and theD speed of contact due to the equation

ω̂ = p̂(̂κ f b̂ f − κ̂mb̂m). (3.30)

It follows from Eqs (3.14) and (3.30) that

γ̂̂r1 = κ̂ f b̂ f − κ̂mb̂m. (3.31)

Then, from Eqs (3.23) and (3.31), we obtain

cot ϕ̂ f − cot ϕ̂m = γ̂ f − γ̂m. (3.32)

This is the D version of a well-known formula of Euler-Savary from ordinary spherical movements
(compared with [1–5]). This version furnishes an engagement for the two AX in Hm/H f . From the
real andD parts of Eq (3.32), respectively, we locate

cot ϕ f − cot ϕm = γ f − γm (3.33)

and
ϕ∗m

sin2 ϕ f
−

ϕ∗f

sin2 ϕm
+ µ(cot ϕ f − cot ϕm) = Γ f − Γm. (3.34)

Equations (3.33) and (3.34) are new Disteli formulae of spatial movements for theAX. At the same
time, Eq (3.33) is a formula of Euler-Savary for the polodes of real spherical movements.

Theorem 3.4. For all instant t ∈ R, through Hm/H f , the D angular acceleration is located by the
geometry of theAX, theD speed of contact, and the rate of change of the speed due to the equation

â = ω̂
′

| f= â1 + â2 + â3,
where

â1 = p̂
′

(̂κ f b̂ f − κ̂mb̂m),

â2 = p̂
2
(
.

κ̂ f b̂ f −
.

κ̂mb̂m),

â3 = p̂
2
(̂κmτ̂mn̂m − κ̂ f τ̂ f n̂ f ) + p̂ω̂̂t.
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Proof. Differentiating Eq (3.30) with respect to t we obtain

â = p̂
′

(̂κ f b̂ f − κ̂mb̂m) + p̂
2
(
.

κ̂ f b̂ f −
.

κ̂mb̂m) − p̂̂κmb̂
′

m | f . (3.35)

Making use of the fundamental relation of relative movement

b̂
′

m | f = b̂
′

m |m +ω̂ × b̂m

= p̂
.

b̂m + ω̂̂r1 × b̂m

= p̂
.

b̂m −
ω̂

κ̂m
t̂.

(3.36)

Substituting Eq (3.36) into Eq (3.35) completes the proof. □

It can be shown that the tangent to the SC is

c
′

(u) |i= Γ̂ir1 + µ(u)r3, (′ =
d

du
). (3.37)

The curvature κi and torsion τi of the SC of πi can be offered, respectively, by

κi =

∥∥∥∥c′ × c
′′
∥∥∥∥

∥c′∥3
|i

=
1

(Γ2
i + µ

2)

√
(Γi + µγi)2 − (Γiµ

′
− µΓ

′

i)2

(3.38)

and

τi(u) :=
det(c′ , c

′′

, c
′′′

)∥∥∥c′ × c′′
∥∥∥2 |i

=
µ + γiΓi

Γ2
i + µ

2
−

d
du

(cot−1 Γiµ
′

− µΓ
′

i).

(3.39)

Letting βi be the arc length of the SC of πi, it follows that

dβi =
∥∥∥c′i∥∥∥ du =

√
Γ2

i + µ
2du. (3.40)

Making use of the results in [13], for the SC we may state the following:

Theorem 3.5. ThroughHm/H f , the SC of πi lies on a sphere of radius
√

a2 + b2 iff

1
κi
= a cos θ + b sin θ, θ =

βi∫
0

τidβi,

where a and b are constants.
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Now, we will examine how the invariants vary when the variable t (or u) varies. Let yi denote a
point on πi. Then,

πi : y(u, v)|i= c(u) |i + vr1(u), v ∈ R. (3.41)

The unit normal vector at any point yi(u, v) is

g(u) |i =
yu × yv

∥yu × yv∥
=
µr2 − vr3√
µ2 + v2

, yt =
∂y
∂t
. (3.42)

The 1st fundamental form I of πi is

I =g11du2 + 2g12dudv + g22dv2, (3.43)

where
g11 = ∥yu∥

2 = Γ2
i + µ

2, g12 = ∥yv∥
2 = Γi, g22 =< yv, yv >= 1. (3.44)

The 2nd fundamental form II is

II =h11du2 + 2h12dudv + h22dv2,

where h11, h12, and h22 are

h11 =
(Γ
′

i − γi)µ + (µ
′

+ γ
′

v)√
µ2 + v2

, h12 =
−µ√
µ2 + v2

, h22 = 0. (3.45)

The Gaussian curvature K and the mean curvatureHi, respectively, are

Ki(u, v) := K(u, v) = −
µ2

(µ2 + v2)2 (3.46)

and

Hi(u, v) =
(µ2 + v2)γi + µ

′

v + µΓi

2
(
µ2 + v2) 3

2

. (3.47)

Hence, we have the following theorem:

Theorem 3.6. ThroughHm/H f , the following holds:

(1) The mean curvatures of theAX are related as follows:

H f (u, v) −Hm(u, v) =
γ

2(µ2 + v2)
+

µΓ

2
[
µ2 + v2] 3

2

.

(2) The mutual Gaussian curvature of theAX satisfies

K(u, v) +

√
−K(u, v)
µ

=
1

16
(

1
K(u, v)

∂K(u, v)
∂v2 ).
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Due to the values of Γi and µ in Eq (36), the geometric characterizations of πi are as follows:

(a) If Γi = 0, that is, the πi are binormal surfaces, then

c
′

(u) |i= µ(u)r3 (3.48)

and
κi(u) = γi

µ
, µ(u) = γi(u)(a cos u + b sin u) = 1

τi
,

H f (u, v) −Hm(u, v) = γ

2(µ2+v2) .

 (3.49)

Hence, we deduce a geometric meaning of µ which is the radii of torsion of the spherical curve c(u).
Further, if µ(u) is a constant, the πi are binormal surfaces of a spherical curve of constant torsion.

(b) If µ(u) = 0, that is, the πi are tangential surfaces, then

c
′

(u) |i= Γi(u)r1 (3.50)

and

Γi(u) = 1
κi
= a cos

u∫
0
γidβi + b sin

u∫
0
γidβi, τi(u) = γi

Γi
,

K f (u, v) = Km(u, v) = 0, H f (u, v) −Hm(u, v) = γ

2(µ2+v2) .

 (3.51)

Here Γi(u) is the radii of curvature of the spherical curve c(u). Similarly, when Γi(u) is stationary, the
πi are tangential surfaces of a spherical curve of invariable curvature.

(c) If Γi = µ = 0, then πi are circular cones. Then, the SC degenerates to a point, that is, c′(u) |i= 0.
Here, we have

K f (u, v) = Km(u, v) = 0,

H f (u, v) −Hm(u, v) = γ

2v (cot ϕ f − cot ϕm).

 (3.52)

Hence, from Eqs (3.44) and (3.45), it follows that the πi are circular cones iff its parametric curves
are curvature lines (g12 = h12 = 0).

3.2. Example

Let us explain the above compensations on a straightforward example. Consider the two-parameter
dual spherical movement Km/K f explained by theDM

Â(ϑ̂) =


cos2 ϑ̂ sin ϑ̂ sin ϑ̂ cos ϑ̂
− sin ϑ̂ cos ϑ̂ cos ϑ̂ − sin2 ϑ̂

− sin ϑ̂ 0 cos ϑ̂

 with ϑ̂ = ϑ + εϑ∗. (3.53)

Upon substituting into expression (3.6) for ψ̂ f , we attain

ψ̂ f (ϑ̂) =
dÂ

dϑ̂
Ât=


0 1 cos ϑ̂
−1 0 − sin ϑ̂
− cos ϑ̂ sin ϑ̂ 0

⇔


sin ϑ̂
cos ϑ̂
−1

 = ψ̂ f .
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Similarly, we attain

ψ̂m(ϑ̂) = Ât dÂ

dϑ̂
=


0 cos ϑ̂ 1
− cos ϑ̂ 0 − sin ϑ̂
−1 sin ϑ̂ 0

⇔


sin ϑ̂
1
− cos ϑ̂

 = ψ̂m.

Then, we find

π f : r̂ f (ϑ̂) = ψ̂ f (ϑ̂)
∥∥∥∥ψ̂ f (ϑ̂)

∥∥∥∥−1

=
1
√

2
(sin ϑ̂̂f1 + cos ϑ̂̂f2 − f̂3),

πm : r̂m(ϑ̂) = ψ̂m(ϑ̂)
∥∥∥∥ψ̂m(ϑ̂)

∥∥∥∥−1

=
1
√

2
(sin ϑ̂̂f1 + f̂2 − cos ϑ̂̂f3).

(3.54)

Equation (3.54) has only two real parameters ϑ and ϑ∗. Thus, if we choose ϑ∗ = hϑ, h indicating the
pitch ofHm/H f and ϑ as the movement parameter, then Eq (3.54) represents the axodes πi. It is easily
ascertained that

r̂ f (0) = r̂m(0) =
1
√

2
(̂f2 − f̂3).

Hence, π f and πm contact along the ISA at the point ϑ = 0. Consequently, the assumptions of
Corollary 3.1 are satisfied. Thus, the Blaschke frame of the invariable axode π f is


r̂1

r̂2

r̂3

 | f =


sin ϑ̂
√

2
cos ϑ̂
√

2
− 1
√

2

cos ϑ̂ − sin ϑ̂ 0
− sin ϑ̂
√

2
− cos ϑ̂
√

2
− 1
√

2




f̂1

f̂2

f̂3

 . (3.55)

If we differentiate these expressions, we find

p̂ f (ϑ) =
1
√

2
(1 + εh), q̂ f (ϑ) =

1
√

2
(1 + εh). (3.56)

For the movable axode πm, similar discussions show that
r̂1

r̂2

r̂3

 |m =


sin ϑ̂
√

2
1
√

2
− cos ϑ̂
√

2

cos ϑ̂ 0 sin ϑ̂
sin ϑ̂
√

2
− 1
√

2
− cos ϑ̂
√

2




f̂1

f̂2

f̂3

 . (3.57)

Consequently, we obtain

p̂m(ϑ) = −q̂m(ϑ)

=
1
√

2
(1 + εh).

(3.58)
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Hence, combining Eqs (3.56) and (3.58), we have

p̂ f (ϑ) = p̂m(ϑ), q̂ f (ϑ) − q̂m(ϑ) =
√

2(1 + εh). (3.59)

which is in a total harmonization with the presumptions of Theorem 3.2. As we see from these
equations, the movable axode πm touches the stationary axode π f along the ISA in the 1st-order at
any instant ϑ ∈ R.

Now, we may calculate the equation of πi in terms of the point coordinates. Let yi be a point on πi.
We can write

πi : yi(ϑ, v)= r1(ϑ) × r∗1(ϑ) + vr1(ϑ), (i = f , m), v ∈ R. (3.60)

Into Eq (3.60) we substitute from Eqs (3.55) and (3.57) to obtain

π f : y f (ϑ, v) =
hϑ
2

(sinϑ,− cosϑ, 1) +
v
√

2
(sinϑ, cosϑ,−1)

and

πm : ym(ϑ, v) =
hϑ
2

(sinϑ, 1,− cosϑ) +
v
√

2
(sinϑ, 1,− cosϑ).

For h =
√

2, 0 ≤ ϑ ≤ 2π, −1 ≤ v ≤ 1, and the stationary (movable) axode π f (πm) is shown in
Figures 2 and 3. The graphs of the movable and stationary axodes are shown in Figure 4.

Figure 2. The stationary axode π f .
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Figure 3. The movable axode πm.

Figure 4. The movable and stationaryAX.

4. Conclusions

Some relations are derived for the spatial movement with one parameter. The geometrical properties
of spatial movement are derived in the geometrical data of the axodes. The approach applied does not
use the tools of instantaneous spherical kinematics [1]. The method offered is based on the E. Study
map and dual vector calculus discussed in [2–4, 9–11]. Several theorems, including the dual version
of the planer Euler-Savary equation, are obtained, which characterize kinematical and geometrical
properties of the movement. Geometrical type relations such as in Theorem 3.6, can be considered
as a form of Euler-Savary equation for the axodes. One example shows how we can use the derived
formulae to determine the kinematic-geometric properties of the axodes. Take, for instance, rotations,
which are essential for a lot of fields, from astronomy (movement of planets) to chemistry (movement
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9882

of electrons, rotation of molecules). Eigenvector/eiganvalue/eigenproblem approaches may bring light
to some difficult problems. Our future research will focus on exploring some implementations of our
major findings. We plan to consolidate notions from singularity theory, submanifold theory, and other
pertinent results (referenced in [24, 25]) to research favorable avenues within this article.
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