Research article

Exponential stability of stochastic complex networks with multi-weights driven by second-order process based on graph theory

  • Received: 01 January 2024 Revised: 22 February 2024 Accepted: 29 February 2024 Published: 12 March 2024
  • MSC : 05C82, 39A50, 60G12, 93D23

  • Stochastic complex networks with multi-weights which were driven by Brownian motion were widely investigated by many researchers. However, Brownian motion is not suitable for the modeling of engineering issues by reason of its variance, which is infinite at any time. So, in this paper, a novel kind of stochastic complex network with multi-weights driven by second-order process is developed. To disclose how the weights and second-order process affect the dynamical properties of stochastic complex networks with multi-weights driven by the second-order process, we discuss exponential stability of the system. Two types of sufficient criteria are provided to ascertain exponential stability of the system on the basis of Kirchhoff's matrix tree theorem and the Lyapunov method. Finally, some numerical examples are given to verify the correctness and validity of our results.

    Citation: Fan Yang, Xiaohui Ai. Exponential stability of stochastic complex networks with multi-weights driven by second-order process based on graph theory[J]. AIMS Mathematics, 2024, 9(4): 9847-9866. doi: 10.3934/math.2024482

    Related Papers:

  • Stochastic complex networks with multi-weights which were driven by Brownian motion were widely investigated by many researchers. However, Brownian motion is not suitable for the modeling of engineering issues by reason of its variance, which is infinite at any time. So, in this paper, a novel kind of stochastic complex network with multi-weights driven by second-order process is developed. To disclose how the weights and second-order process affect the dynamical properties of stochastic complex networks with multi-weights driven by the second-order process, we discuss exponential stability of the system. Two types of sufficient criteria are provided to ascertain exponential stability of the system on the basis of Kirchhoff's matrix tree theorem and the Lyapunov method. Finally, some numerical examples are given to verify the correctness and validity of our results.



    加载中


    [1] X. L. An, L. Zhang, Y. Z. Li, J. G. Zhang, Synchronization analysis of complex networks with multi-weights and its application in public traffic network, Phys. A Statist. Mech. Appl., 412 (2014), 149–156. http://dx.doi.org/10.1016/j.physa.2014.06.033 doi: 10.1016/j.physa.2014.06.033
    [2] S. S. Li, W. Liu, H. Gao, A complex social network analysis model based on extenics basic-element theory, Sci. Technol. Rev., 36 (2014), 21–25. http://dx.doi.org/10.3981/j.issn.1000-7857.2014.36.002 doi: 10.3981/j.issn.1000-7857.2014.36.002
    [3] J. F. Nong, Global exponential stability of delayed hopfield neural networks, In: 2012 International Conference on Computer Science and Information Processing (CSIP), 2012 (2012), 193–196 http://dx.doi.org/10.1109/CSIP.2012.6308827
    [4] M. Y. Chen, Y. Shang, C. S. Zhou, Y. Wu, J. Kurths, Enhanced synchronizability in scale-free networks, Chaos, 19 (2009), 013105. http://dx.doi.org/10.1063/1.3062864 doi: 10.1063/1.3062864
    [5] L. F. Wang, Q. L. Wang, Z. Kong, J. Y. Wei, Enhancing synchronizability by rewiring networks, Chinese Phys. B, 19 (2010), 80207. http://dx.doi.org/10.1088/1674-1056/19/8/080207 doi: 10.1088/1674-1056/19/8/080207
    [6] A. Arenas, A. D. Guilera, C. J. Pérez-Vicente, Synchronization processes in complex networks, Phys. D, 224 (2006), 27–34. http://dx.doi.org/10.1016/j.physd.2006.09.029 doi: 10.1016/j.physd.2006.09.029
    [7] X. F. Wang, G. R. Chen, Synchronization in small-world dynamical networks, Int. J. Bifurc. Chaos, 12 (2002), 187–192. http://dx.doi.org/10.1142/S0218127402004292 doi: 10.1142/S0218127402004292
    [8] X. B. Lu, B. Z. Qin, X. Y. Lin, New approach to cluster synchronization in complex dynamical networks, Phys. Lett. A, 373 (2009), 3650–3658. http://dx.doi.org/10.1088/0253-6102/51/3/21 doi: 10.1088/0253-6102/51/3/21
    [9] H. B. Guo, M. Y. Li, Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2413–2430. http://dx.doi.org/10.3934/dcdsb.2012.17.2413 doi: 10.3934/dcdsb.2012.17.2413
    [10] Y. Muroya, Y. Enatsu, T. Kuniya, Global stability of extended multi-group sir epidemic models with patches through migration and cross patch infection, Acta Math. Sci., 33 (2013), 341–361. http://dx.doi.org/10.1016/S0252-9602(13)60003-X doi: 10.1016/S0252-9602(13)60003-X
    [11] Z. Qin, J. L. Wang, Y. L. Huang, S. Y. Ren, Synchronization and H$_\infty$ synchronization of multi-weighted complex delayed dynamical networks with fixed and switching topologies, J. Franklin Inst., 354 (2017), 7119–7138. https://doi.org/10.1016/j.jfranklin.2017.08.033 doi: 10.1016/j.jfranklin.2017.08.033
    [12] J. Feng, X. Li, B. Mao, Q. Xu, Y. Bai, Weighted complex network analysis of the Beijing subway system: Train and passenger flows, Phys. A Statist. Mech. Appl., 474 (2017), 213–223. https://doi.org/10.1016/j.physa.2017.01.085 doi: 10.1016/j.physa.2017.01.085
    [13] A. Ray, A. R. Chowdhury, D. Ghosh, Effect of noise on chaos synchronization in time-delayed systems: Numerical and experimental observations, Phys. A Statist. Mech. Appl., 392 (2013), 4837–4849. http://dx.doi.org/10.1016/j.physa.2013.05.046 doi: 10.1016/j.physa.2013.05.046
    [14] S. Majhi, B. K. Bera, S. Banerjee, D. Ghosh, Synchronization of chaotic modulated time delay networks in presence of noise, Eur. Phys. J. Spec. Top., 225 (2017), 65–74. http://dx.doi.org/10.1140/epjst/e2016-02624-9 doi: 10.1140/epjst/e2016-02624-9
    [15] C. M. Zhang, T. R. Chen, Exponential stability of stochastic complex networks with multi-weights based on graph theory, Phys. A Statist. Mech. Appl., 496 (2018), 602–611. http://dx.doi.org/10.1016/j.physa.2017.12.132 doi: 10.1016/j.physa.2017.12.132
    [16] H. Zhou, Y. Zhang, W. X. Li, Synchronization of stochastic levy noise systems on a multi-weights network and its applications of Chua's crcuits, IEEE Trans. Circuits Syst. Regul. Pap., 66 (2019), 2709–2722. https://doi.org/10.1109/TCSI.2019.2899375 doi: 10.1109/TCSI.2019.2899375
    [17] S. Li, B. G. Zhang, W. X. Li, Stabilisation of multi-weights stochastic complex networks with time-varying delay driven by G-Brownian motion via aperiodically intermittent adaptive control, Int. J. Control, 94 (2021), 7–20. https://doi.org/10.1080/00207179.2019.1577562 doi: 10.1080/00207179.2019.1577562
    [18] L. Q. Yao, W. H. Zhang, New noise‐to‐state stability and instability criteria for random nonlinear systems, Int. J. Robust Nonlinear Control, 30 (2020), 526–537. http://dx.doi.org/10.1002/rnc.4773 doi: 10.1002/rnc.4773
    [19] T. C. Jiao, G. D. Zong, C. K. Ahn, Noise-to-state practical stability and stabilization of random neural networks, Nonlinear Dyn., 100 (2020), 2469–2481. http://dx.doi.org/10.1007/s11071-020-05628-0 doi: 10.1007/s11071-020-05628-0
    [20] Q. H. Shan, H. G. Zhang, Z. S. Wang, Z. Zhang, Global asymptotic stability and stabilization of neural networks with general noise, IEEE Trans. Neural Netw. Learn Syst., 29 (2018), 597–607. https://doi.org/10.1109/TNNLS.2016.2637567 doi: 10.1109/TNNLS.2016.2637567
    [21] Z. J. Wu, Stability criteria of random nonlinear systems and their applications, IEEE Trans. Autom. Control, 60 (2014), 1038–1049. http://dx.doi.org/10.1109/TAC.2014.2365684 doi: 10.1109/TAC.2014.2365684
    [22] Z. J. Wu, S. T. Wang, M. Y. Cui, Tracking controller design for random nonlinear benchmark system, J. Franklin Inst., 354 (2017), 360–371. https://doi.org/10.1016/j.jfranklin.2016.10.015 doi: 10.1016/j.jfranklin.2016.10.015
    [23] T. Jiao, W. X. Zheng, S. Y. Xu, Stability analysis for a class of random nonlinear impulsive systems, Int. J. Robust Nonlinear Control, 27 (2017), 1171–1193. https://doi.org/10.1002/rnc.3630 doi: 10.1002/rnc.3630
    [24] X. X. Liao, Theory and Application of Stability for Dynamical Systems, Beijing: National Defense Industry Press, 2000.
    [25] I. Karafyllis, M. Papageorgiou, Global exponential stability for discrete-time networks with applications to traffic networks, IEEE Trans. Control. Netw. Syst., 2 (2014), 68–77. https://doi.org/10.1109/TCNS.2014.2367364 doi: 10.1109/TCNS.2014.2367364
    [26] C. Peng, J. X. Ma, Q. K. Li, S. Gao, Noise-to-state stability in probability for random complex dynamical systems on networks, Mathematics, 10 (2022), 2096. http://dx.doi.org/10.3390/math10122096 doi: 10.3390/math10122096
    [27] J. J. Wu, Z. Y. Gao, H. J. Sun, J. Zhao, Urban Traffic System Complexity-The Method of Complex Networks and Its Application, Beijing: Science Press Publish, 2010.
    [28] Q. Luo, Y. Gao, Y. N. Qi, Model reference adaptive synchronization in integration complex dynamical networks, Acta Phys. Sin., 74 (2011), 6601–6616. https://doi.org/10.1016/j.na.2011.06.043 doi: 10.1016/j.na.2011.06.043
    [29] M. Y. Li, Z. S. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Differ. Equ., 248 (2010), 1–20. http://dx.doi.org/10.1016/j.jde.2009.09.003 doi: 10.1016/j.jde.2009.09.003
    [30] C. M. Zhang, B. S. Han, Stability analysis of stochastic delayed complex networks with multi-weights based on razumikhin technique and graph theory, Phys. A, 538 (2019), 122827. http://dx.doi.org/10.1016/j.physa.2019.122827 doi: 10.1016/j.physa.2019.122827
    [31] R. J. Wilson, Introduction to Graph Theory, $3^{rd}$ edition, New York: Longman, 1986.
    [32] J. H. Bao, X. R. Mao, G. Yin, C. G. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal. Theory Meth. Appl., 74 (2011), 6601–6616. https://doi.org/10.1016/j.na.2011.06.043 doi: 10.1016/j.na.2011.06.043
    [33] P. Ioannou, J. Sun, Robust Adaptive Control, Upper Saddle River: Prentice-Hall, 1996.
    [34] R. Z. Khas'Miniskii, Stochastic Stability of Differential Equations, Berlin: Springer, 1980.
    [35] W. X. Li, H. Su, K. Wang, Global stability analysis for stochastic coupled systems on networks, Automatica, 47 (2011), 215–220. https://doi.org/10.1016/j.automatica.2010.10.041 doi: 10.1016/j.automatica.2010.10.041
    [36] C. Zhang, W. X. Li, K. Wang, Graph theory-based approach for stability analysis of stochastic coupled systems with Levy noise on networks, IEEE Trans Neural Netw. Learn. Syst., 26 (2015), 1698–1709. https://doi.org/10.1109/TNNLS.2014.2352217 doi: 10.1109/TNNLS.2014.2352217
    [37] N. Zhang, S. J. Jiang, W. X. Li, Stability of stochastic state-dependent delayed complex networks under stochastic hybrid impulsive control, Syst. Control Lett., 174 (2023), 105494. https://doi.org/10.1016/j.sysconle.2023.105494 doi: 10.1016/j.sysconle.2023.105494
    [38] Q. Wei, C. J. Xie, B. Wang, Synchronization in complex dynamical networks coupled with complex chaotic system, Int. J. Mod. Phys. C, 26 (2015), 1550060. https://doi.org/10.1142/S0129183115500606 doi: 10.1142/S0129183115500606
    [39] C. Peng, X. Q. Liu, R. Kang, S. H. Wang, S. Gao, Stochastic input-to-state stability for stochastic complex dynamical control networks with impulsive perturbation, Chaos Solitons Fract., 166 (2023), 112897. https://doi.org/10.1016/j.chaos.2022.112897 doi: 10.1016/j.chaos.2022.112897
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(707) PDF downloads(55) Cited by(1)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog