In this paper, based on the E. Study map, clear terms are offered for the differential equations of one-parameter Lorentzian spatial kinematics that are coordinate system-independent. This cancels the request of demanding coordinate transformations that are typically required in the determination of the canonical systems. With the suggested technique, new proofs of the Disteli formulae of a spacelike line trajectory are instantly gained and their spatial equivalents are studied in detail. As a consequence, we address the kinematic geometry of a point trajectory for the one-parameter Lorentzian spherical and planar movements.
Citation: Awatif Al-Jedani, Rashad A. Abdel-Baky. One-parameter Lorentzian spatial kinematics and Disteli's formulae[J]. AIMS Mathematics, 2023, 8(9): 20187-20200. doi: 10.3934/math.20231029
In this paper, based on the E. Study map, clear terms are offered for the differential equations of one-parameter Lorentzian spatial kinematics that are coordinate system-independent. This cancels the request of demanding coordinate transformations that are typically required in the determination of the canonical systems. With the suggested technique, new proofs of the Disteli formulae of a spacelike line trajectory are instantly gained and their spatial equivalents are studied in detail. As a consequence, we address the kinematic geometry of a point trajectory for the one-parameter Lorentzian spherical and planar movements.
[1] | O. Bottema, B. Roth, Theoretical Kinematics, New York: North-Holland Press, 1979. |
[2] | A. Karger, J. Novak, Space Kinematics and Lie Groups, New York: Gordon and Breach Science Publishers, 1985. |
[3] | J. A. Schaaf, Curvature theory of line trajectories in spatial kinematics, Davis: University of California, PhD Thesis, 1988. |
[4] | H. Stachel, Instantaneous Spatial kinematics and the invariants of the axodes, Proc. Ball 2000 Symposium, 2000. |
[5] | H. Pottman, J. Wallner, Computational Line Geometry, Berlin, Heidelberg: Springer, 2001. https://doi.org/10.1007/978-3-642-04018-4 |
[6] | Ö. Köse, C. C. Sarıoglu, B. Karabey, I. Karakılıç, Kinematic differential geometry of a rigid body in spatial motion using dual vector calculus: Part-Ⅱ, Appl. Math. Comput., 182 (2006), 333–358. https://doi.org/10.1016/j.amc.2006.02.059 doi: 10.1016/j.amc.2006.02.059 |
[7] | R. A. Abdel-Baky, F. R. Al-Solamy, A new geometrical approach to one-parameter spatial motion, J. Eng. Math., 60 (2008), 149–172. https://doi.org/10.1007/s10665-007-9139-5 doi: 10.1007/s10665-007-9139-5 |
[8] | M. A. Gungor, S. Ersoy, M. Tosun, Dual Lorentzian spherical motions and dual Euler-Savary formula, Eur. J. Mech. A-Solid, 28 (2009), 820–826. https://doi.org/10.1016/j.euromechsol.2009.03.007 doi: 10.1016/j.euromechsol.2009.03.007 |
[9] | R. A. Abdel-Baky, R. A. Al-Ghefari, On the one-parameter dual spherical motions, Comput. Aided Geom. Des., 28 (2011), 23–37. https://doi.org/10.1016/j.cagd.2010.09.007 doi: 10.1016/j.cagd.2010.09.007 |
[10] | R. A. Al-Ghefari, R. A. Abdel-Baky, Kinematic geometry of a line trajectory in spatial motion, J. Mech. Sci. Technol., 29 (2015), 3597–3608. https://doi.org/10.1007/s12206-015-0803-9 doi: 10.1007/s12206-015-0803-9 |
[11] | T. Turhan, V. Özdemir, N. Ayyildiz, Some results on point-line trajectories in Lorentz 3-space, Int. Electron. J. Geom., 9 (2016), 44–49. https://doi.org/10.36890/iejg.584581 doi: 10.36890/iejg.584581 |
[12] | T. Turhan, N. Ayyıldız, A study on geometry of spatial kinematics in Lorentzian space, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., 21 (2017), 808–811. https://doi.org/10.19113/sdufbed.76191 doi: 10.19113/sdufbed.76191 |
[13] | R. A. Abdel-Baky, On the curvature theory of a line trajectory in spatial kinematics, Commun. Korean Math. Soc., 34 (2019), 333–349. https://doi.org/10.4134/CKMS.c180087 doi: 10.4134/CKMS.c180087 |
[14] | N. Alluhaibi, R. A. Abdel-Baky, On the one-parameter Lorentzian spatial motions, Int. J. Geom. Methods Mod. Phys., 16 (2019), 1950197. https://doi.org/10.1142/S0219887819501974 doi: 10.1142/S0219887819501974 |
[15] | N. Alluhaibi, R. A. Abdel-Baky, On kinematic geometry of hyperbolic dual spherical motions and Euler-Savary's equation, Int. J. Geom. Methods Mod. Phys., 17 (2020), 2050079. https://doi.org/10.1142/S0219887820500796 doi: 10.1142/S0219887820500796 |
[16] | M. C. Aslan, G. A. Sekerci, Dual curves associated with the Bonnet ruled surfaces, Int. J. Geom. Methods Mod. Phys., 17 (2020), 2050204. https://doi.org/10.1142/S0219887820502047 doi: 10.1142/S0219887820502047 |
[17] | N. Alluhaibi, Ruled surfaces with constant Disteli-axis, AIMS Mathematics, 5 (2020), 7678–7694. https://doi.org/10.3934/math.2020491 doi: 10.3934/math.2020491 |
[18] | N. Alluhaibi, R. A. Abdel-Baky, On the kinematic-geometry of one-parameter Lorentzian spatial movement, Int. J. Adv. Manuf. Technol., 121 (2022), 7721–7731. https://doi.org/10.1007/s00170-022-09812-x doi: 10.1007/s00170-022-09812-x |
[19] | Y. L. Li, N. Alluhaibi, R. A. Abdel-Baky, One-parameter Lorentzian dual spherical movements and invariants of the axodes, Symmetry, 14 (2022), 1930. https://doi.org/10.3390/sym14091930 doi: 10.3390/sym14091930 |