Previous studies have shown that fractional derivative operators have become an integral part of modeling natural and physical phenomena. During the progress and evolution of these operators, it has become clear to researchers that each of these operators has special capacities for investigating phenomena in engineering sciences, physics, biological mathematics, etc. Fixed point theory and its famous contractions have always served as useful tools in these studies. In this regard, in this work, we considered the Hilfer-type fractional operator to study the proposed integrodifferential equation. We have used the capabilities of measure theory and fixed point techniques to provide the required space to guarantee the existence of the solution. The Schauder and Arzela-Ascoli theorems play a fundamental role in the existence of solutions. Finally, we provided two examples with some graphical and numerical simulation to make our results more objective.
Citation: Reny George, Seher Melike Aydogan, Fethiye Muge Sakar, Mehran Ghaderi, Shahram Rezapour. A study on the existence of numerical and analytical solutions for fractional integrodifferential equations in Hilfer type with simulation[J]. AIMS Mathematics, 2023, 8(5): 10665-10684. doi: 10.3934/math.2023541
Previous studies have shown that fractional derivative operators have become an integral part of modeling natural and physical phenomena. During the progress and evolution of these operators, it has become clear to researchers that each of these operators has special capacities for investigating phenomena in engineering sciences, physics, biological mathematics, etc. Fixed point theory and its famous contractions have always served as useful tools in these studies. In this regard, in this work, we considered the Hilfer-type fractional operator to study the proposed integrodifferential equation. We have used the capabilities of measure theory and fixed point techniques to provide the required space to guarantee the existence of the solution. The Schauder and Arzela-Ascoli theorems play a fundamental role in the existence of solutions. Finally, we provided two examples with some graphical and numerical simulation to make our results more objective.
[1] | A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum mechanics, New York: Springer, 1997. http://dx.doi.org/10.1007/978-3-7091-2664-6 |
[2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[3] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives theory and applications, Amsterdam: Gordon and Breach, 1993. |
[4] | B. J. West, P. Grigolini, Applications of fractional calculus in physics, Singapore: World Scientific, 1998. |
[5] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. |
[6] | R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, Chem. Phys., 284 (2002), 399–408. http://dx.doi.org/10.1016/S0301-0104(02)00670-5 doi: 10.1016/S0301-0104(02)00670-5 |
[7] | M. Fabrizio, C. Giorgi, V. Pata, A new approach to equations with memory, Arch. Ration. Mech. An., 198 (2010), 189–232. http://dx.doi.org/10.1007/s00205-010-0300-3 doi: 10.1007/s00205-010-0300-3 |
[8] | K. M. Owolabi, Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative, Eur. Phys. J. Plus, 133 (2018), 1–13. http://dx.doi.org/10.1140/epjp/i2018-11863-9 doi: 10.1140/epjp/i2018-11863-9 |
[9] | D. Baleanu, S. Rezapour, Z. Saberpour, On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivation, Bound. Value Probl., 2019 (2019), 1–17. http://dx.doi.org/10.1186/s13661-019-1194-0 doi: 10.1186/s13661-019-1194-0 |
[10] | L. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999. |
[11] | M. Houas, Existence of solutions for a coupled system of Caputo-Hadamard type fractional differential equations with Hadamard fractional integral conditions, ATNAA, 5 (2021), 316–329. http://dx.doi.org/10.31197/atnaa.683278 doi: 10.31197/atnaa.683278 |
[12] | I. Ahmad, P. Kumam, K. Shah, P. Borisut, K. Sitthithakerngkiet, M. Ahmed Demba, Stability results for implicit fractional pantograph differential equations via $\phi$-Hilfer fractional derivative with a nonlocal Riemann-Liouville fractional integral condition, Mathematics, 8 (2020), 94. http://dx.doi.org/10.3390/math8010094 doi: 10.3390/math8010094 |
[13] | T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Differ. Equ., 2017 (2017), 1–11. http://dx.doi.org/10.1186/s13662-017-1285-0 doi: 10.1186/s13662-017-1285-0 |
[14] | M. I. Abbas, M. Ghaderi, S. Rezapour, S. T. M. Thabet, On a coupled system of fractional differential equations via the generalized proportional fractional derivatives, J. Funct. Space., 2022 (2022), 4779213. http://dx.doi.org/10.1155/2022/4779213 doi: 10.1155/2022/4779213 |
[15] | B. Abdellatif, J. Alzabut, M. Ghaderi, S. Rezapour, On a coupled system of fractional $(p, q)$-differential equation with Lipschitzian matrix in generalized metric space, AIMS Math., 8 (2022), 1566–1591. http://dx.doi.org/10.3934/math.2023079 doi: 10.3934/math.2023079 |
[16] | A. Din, Y. Li, T. Khan, G. Zaman, Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China, Chaos Soliton. Fract., 141 (2020), 100286. http://dx.doi.org/10.1016/j.chaos.2020.110286 doi: 10.1016/j.chaos.2020.110286 |
[17] | A. Alalyani, S. Saber, Stability analysis and numerical simulations of the fractional COVID-19 pandemic model, Int. J Nonlin. Sci. Num., 2022 (2022), 249100449. http://dx.doi.org/10.1515/ijnsns-2021-0042 doi: 10.1515/ijnsns-2021-0042 |
[18] | Y. G. Sanchez, Z. Sabir, L. G. Guirao, Design of a nonlinear SITR fractal model based on the dynamics of a novel coronavirus (COVID-19), Fractals, 28 (2020), 2040026. http://dx.doi.org/10.1142/s0218348x20400265 doi: 10.1142/s0218348x20400265 |
[19] | H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Soliton. Fract., 144 (2021), 110668. http://dx.doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668 |
[20] | A. Din, Y. Li, M. A. Shah, The complex dynamics of hepatitis B infected individuals with optimal control, J. Syst. Sci. Complex., 34 (2021), 1301–1323. http://dx.doi.org/10.1007/s11424-021-0053-0 doi: 10.1007/s11424-021-0053-0 |
[21] | A. Din, Y. Li, Stationary distribution extinction and optimal control for the stochastic hepatitis B epidemic model with partial immunity, Phys. Scr., 96 (2021), 074005. http://dx.doi.org/10.1088/1402-4896/abfacc doi: 10.1088/1402-4896/abfacc |
[22] | D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 134 (2020), 109705. http://dx.doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705 |
[23] | B. Ghanbari, S. Kumar, R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative, Chaos Soliton. Fract., 133 (2020), 109619. http://dx.doi.org/10.1016/j.chaos.2020.109619 doi: 10.1016/j.chaos.2020.109619 |
[24] | J. J. Nieto, J. Pimentel, Positive solutions of a fractional thermostat model, Bound. Value Probl., 2013 (2013), 1–11. http://dx.doi.org/10.1186/1687-2770-2013-5 doi: 10.1186/1687-2770-2013-5 |
[25] | M. Bonforte, Y. Sire, J. L. Vazquez, Optimal existence and uniqueness theory for the fractional heat equation, Nonlinear Anal. Theor., 153 (2017), 142–168. http://dx.doi.org/10.1016/j.na.2016.08.027 doi: 10.1016/j.na.2016.08.027 |
[26] | J. Alzabut, A. Selvam, R. Dhineshbabu, S. Tyagi, M. Ghaderi, S. Rezapour, A Caputo discrete fractional-order thermostat model with one and two sensors fractional boundary conditions depending on positive parameters by using the Lipschitz-type inequality, J. Inequal. Appl., 2022 (2022), 56. http://dx.doi.org/10.1186/s13660-022-02786-0 doi: 10.1186/s13660-022-02786-0 |
[27] | V. E. Tarasov, Fractional dynamics: Application of fractional calculus to dynamics of particles, Fields and Media, Berlin: Springer, 2011. |
[28] | B. Ghanbari, Abundant exact solutions to a generalized nonlinear Schrödinger equation with local fractional derivative, Math. Method. Appl. Sci., 44 (2021), 8759–8774. http://dx.doi.org/10.1002/mma.7302 doi: 10.1002/mma.7302 |
[29] | Q. M. A. Al-Mdallal, An efficient method for solving fractional Sturm-Liouville problems, Chaos Soliton. Fract., 40 (2009), 183–189. http://dx.doi.org/10.1016/j.chaos.2007.07.041 doi: 10.1016/j.chaos.2007.07.041 |
[30] | J. Wang, S. Peng, D. Oregan, Local stable manifold of Langevin differential equations with two fractional derivatives, Adv. Differ. Equ., 2017 (2017), 1–15. http://dx.doi.org/10.1186/s13662-017-1389-6 doi: 10.1186/s13662-017-1389-6 |
[31] | Z. Heydarpour, M. N. Parizi, R. Ghorbnian, M. Ghaderi, S. Rezapour, A. Mosavi, A study on a special case of the Sturm-Liouville equation using the Mittag-Leffler function and a new type of contraction, AIMS Math., 7 (2022), 18253–18279. http://dx.doi.org/10.3934/math.20221004 doi: 10.3934/math.20221004 |
[32] | A. M. Yang, Y. Han, J. Li, W. X. Liu, On steady heat flow problem involving Yang-Srivastava-Machado fractional derivative without singular kernel, Therm. Sci., 20 (2016), 717–721. http://dx.doi.org/10.2298/TSCI16S3717Y doi: 10.2298/TSCI16S3717Y |
[33] | R. George, M. Houas, M. Ghaderi, S. Rezapour, S. K. Elagan, On a coupled system of pantograph problem with three sequential fractional derivatives by using positive contraction-type inequalities, Results Phys., 39 (2022), 105687. http://dx.doi.org/10.1016/j.rinp.2022.105687 doi: 10.1016/j.rinp.2022.105687 |
[34] | N. D. Phuong, L. V. C. Hoan, E. Karapinar, J. Singh, H. D. Binh, N. H. Can, Fractional order continuity of a time semi-linear fractional diffusion-wave system, Alex. Eng. J., 59 (2020), 4959–4968. http://dx.doi.org/10.1016/j.aej.2020.08.054 doi: 10.1016/j.aej.2020.08.054 |
[35] | R. Kamocki, A new representation formula for the Hilfer fractional derivative and its application, J. Comput. Appl. Math., 308 (2016), 39–45. http://dx.doi.org/10.1016/j.cam.2016.05.014 doi: 10.1016/j.cam.2016.05.014 |
[36] | J. Wang, Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput., 266 (2015), 850–859. http://dx.doi.org/10.1016/j.amc.2015.05.144 doi: 10.1016/j.amc.2015.05.144 |
[37] | R. Subashini, K. Jothimani, K. S. Nisar, C. Ravichandran, New results on nonlocal functional integro-differential equations via Hilfer fractional derivative, Alex. Eng. J., 59 (2020), 2891–2899. http://dx.doi.org/10.1016/j.aej.2020.01.055 doi: 10.1016/j.aej.2020.01.055 |
[38] | K. M. Furati, M. D. Kassim, N. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616–1626. http://dx.doi.org/10.1016/j.camwa.2012.01.009 doi: 10.1016/j.camwa.2012.01.009 |
[39] | H. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344–354. http://dx.doi.org/10.1016/j.amc.2014.10.083 doi: 10.1016/j.amc.2014.10.083 |
[40] | A. Jaiswal, D. Bahuguna, Hilfer fractional differential equations with almost sectorial operators, Differ. Equ. Dyn. Syst., 2020 (2020), 1–17. http://dx.doi.org/10.1007/s12591-020-00514-y doi: 10.1007/s12591-020-00514-y |
[41] | XL. Ding, B. Ahmad, Analytical solutions to fractional evolution equations with almost sectorial operators, Adv. Differ. Equ., 2016 (2016), 1–25. http://dx.doi.org/10.1186/s13662-016-0927-y doi: 10.1186/s13662-016-0927-y |
[42] | L. Fang, Mild solutions for abstract fractional differential equations with almost sectorial operators and infinite delay, Adv. Differ. Equ., 2013 (2013), 1–11. http://dx.doi.org/10.1186/1687-1847-2013-327 doi: 10.1186/1687-1847-2013-327 |
[43] | L. Zhang, Y. Zhou, Fractional Cauchy problems with almost sectorial operators, Appl. Math. Comput., 257 (2015), 145–157. http://dx.doi.org/10.1016/j.amc.2014.07.024 doi: 10.1016/j.amc.2014.07.024 |
[44] | N. Heymans, I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheol. Acta., 45 (2006), 765–771. http://dx.doi.org/10.1007/s00397-005-0043-5 doi: 10.1007/s00397-005-0043-5 |
[45] | K. Deimling, Nonlinear functional analysis, Berlin: Springer, 1985. |
[46] | H. P. Heinz, On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal. Theor., 7 (1983), 1351–1371. http://dx.doi.org/10.1016/0362-546X(83)90006-8 doi: 10.1016/0362-546X(83)90006-8 |
[47] | V. Lakshmikantham, S. Leela, Nonlinear differential equations in abstract spaces, New York: Pergamon Press, 1969. |
[48] | J. Banas, K. Goebel, Measure of noncompactness in Banach space, New York: Marcel Dekker Inc., 1980. |
[49] | F. Mainardi, P. Paraddisi, R. Gorenflo, Probability distributions generated by fractional diffusion equations, 2007, arXiv: 0704.0320. |
[50] | R. Wang, D. Chen, T. J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Differ. Equations, 252 (2012), 202–235. http://dx.doi.org/10.1016/j.jde.2011.08.048 doi: 10.1016/j.jde.2011.08.048 |
[51] | H. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344–354. http://dx.doi.org/10.1016/j.amc.2014.10.083 doi: 10.1016/j.amc.2014.10.083 |
[52] | D. J. Guo, V. Lakshmikantham, X. Z. Liu, Nonlinear integral equations in abstract spaces, The Netherlands: Kluwer Acadmic Publishers, 1996. |
[53] | H. Monch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. Theor., 4 (1980), 985–999. http://dx.doi.org/10.1016/0362-546X(80)90010-3 doi: 10.1016/0362-546X(80)90010-3 |