Research article

Further results on the total Italian domination number of trees

  • Received: 07 December 2022 Revised: 17 February 2023 Accepted: 21 February 2023 Published: 02 March 2023
  • MSC : 05C69, 05C05

  • Let $ f:V(G)\rightarrow \{0, 1, 2\} $ be a function defined from a connected graph $ G $. Let $ W_i = \{x\in V(G): f(x) = i\} $ for every $ i\in \{0, 1, 2\} $. The function $ f $ is called a total Italian dominating function on $ G $ if $ \sum_{v\in N(x)}f(v)\geq 2 $ for every vertex $ x\in W_0 $ and if $ \sum_{v\in N(x)}f(v)\geq 1 $ for every vertex $ x\in W_1\cup W_2 $. The total Italian domination number of $ G $, denoted by $ \gamma_{tI}(G) $, is the minimum weight $ \omega(f) = \sum_{x\in V(G)}f(x) $ among all total Italian dominating functions $ f $ on $ G $. In this paper, we provide new lower and upper bounds on the total Italian domination number of trees. In particular, we show that if $ T $ is a tree of order $ n(T)\geq 2 $, then the following inequality chains are satisfied.

    (ⅰ) $ 2\gamma(T)\leq \gamma_{tI}(T)\leq n(T)-\gamma(T)+s(T) $,

    (ⅱ) $ \frac{n(T)+\gamma(T)+s(T)-l(T)+1}{2}\leq \gamma_{tI}(T)\leq \frac{n(T)+\gamma(T)+l(T)}{2}, $

    where $ \gamma(T) $, $ s(T) $ and $ l(T) $ represent the classical domination number, the number of support vertices and the number of leaves of $ T $, respectively. The upper bounds are derived from results obtained for the double domination number of a tree.

    Citation: Abel Cabrera-Martínez, Andrea Conchado Peiró, Juan Manuel Rueda-Vázquez. Further results on the total Italian domination number of trees[J]. AIMS Mathematics, 2023, 8(5): 10654-10664. doi: 10.3934/math.2023540

    Related Papers:

  • Let $ f:V(G)\rightarrow \{0, 1, 2\} $ be a function defined from a connected graph $ G $. Let $ W_i = \{x\in V(G): f(x) = i\} $ for every $ i\in \{0, 1, 2\} $. The function $ f $ is called a total Italian dominating function on $ G $ if $ \sum_{v\in N(x)}f(v)\geq 2 $ for every vertex $ x\in W_0 $ and if $ \sum_{v\in N(x)}f(v)\geq 1 $ for every vertex $ x\in W_1\cup W_2 $. The total Italian domination number of $ G $, denoted by $ \gamma_{tI}(G) $, is the minimum weight $ \omega(f) = \sum_{x\in V(G)}f(x) $ among all total Italian dominating functions $ f $ on $ G $. In this paper, we provide new lower and upper bounds on the total Italian domination number of trees. In particular, we show that if $ T $ is a tree of order $ n(T)\geq 2 $, then the following inequality chains are satisfied.

    (ⅰ) $ 2\gamma(T)\leq \gamma_{tI}(T)\leq n(T)-\gamma(T)+s(T) $,

    (ⅱ) $ \frac{n(T)+\gamma(T)+s(T)-l(T)+1}{2}\leq \gamma_{tI}(T)\leq \frac{n(T)+\gamma(T)+l(T)}{2}, $

    where $ \gamma(T) $, $ s(T) $ and $ l(T) $ represent the classical domination number, the number of support vertices and the number of leaves of $ T $, respectively. The upper bounds are derived from results obtained for the double domination number of a tree.



    加载中


    [1] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of domination in graphs, Chapman and Hall/CRC Pure and Applied Mathematics Series, Marcel Dekker, Inc. New York, 1998.
    [2] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of domination in graphs: Advanced topics, Chapman & Hall/CRC Pure and Applied Mathematics, Taylor & Francis, 1998.
    [3] S. C. García, A. Cabrera-Martínez, F. A. Hernández Mira, I. G. Yero, Total Roman $\{2\}$-domination in graphs, Quaest. Math., 44 (2022), 411–434. https://doi.org/10.2989/16073606.2019.1695230 doi: 10.2989/16073606.2019.1695230
    [4] H. A. Ahangar, M. Chellali, S. M. Sheikholeslami, J. C. Valenzuela-Tripodoro, Total Roman $\{2\}$-dominating functions in graphs, Discuss. Math. Graph Theory, 42 (2022), 937–958. https://doi.org/10.7151/dmgt.2316 doi: 10.7151/dmgt.2316
    [5] H. Abdollahzadeh Ahangar, M. Chellali, M. Hajjari, S. M. Sheikholeslami, Further progress on the total Roman $\{2\}$-domination number of graphs, Bull. Iranian Math. Soc., 48 (2022), 1111–1119. https://doi.org/10.1007/s41980-021-00565-z doi: 10.1007/s41980-021-00565-z
    [6] A. Cabrera-Martínez, S. C. García, J. A. Rodríguez-Velázquez, Double domination in lexicographic product graphs, Discrete Appl. Math., 284 (2020), 290–300. https://doi.org/10.1016/j.dam.2020.03.045 doi: 10.1016/j.dam.2020.03.045
    [7] P. Chakradhar, P. V. S. Reddy, Algorithmic aspects of total Roman $\{2\}$-domination in graphs, Commun. Comb. Optim., 7 (2022), 183–192. https://doi.org/10.22049/CCO.2021.27063.1189 doi: 10.22049/CCO.2021.27063.1189
    [8] S. M. Sheikholeslami, L. Volkmann, Nordhaus-Gaddum type inequalities on the total Italian domination number in graphs, RAIRO Oper. Res., 56 (2022), 2235–2243. https://doi.org/10.1051/ro/2022108 doi: 10.1051/ro/2022108
    [9] F. Harary, T. W. Haynes, Double domination in graphs, Ars Combin., 55 (2000), 201–213.
    [10] A. Cabrera-Martínez, New bounds on the double domination number of trees, Discrete Appl. Math., 315 (2022), 97–103. https://doi.org/10.1016/j.dam.2022.03.022 doi: 10.1016/j.dam.2022.03.022
    [11] A. Cabrera-Martínez, Some new results on the $k$-tuple domination number of graphs, RAIRO Oper. Res., 56 (2022), 3491–3497. https://doi.org/10.1051/ro/2022159 doi: 10.1051/ro/2022159
    [12] A. Cabrera-Martínez, J. A. Rodríguez-Velázquez, A note on double domination in graphs, Discrete Appl. Math., 300 (2021), 107–111. https://doi.org/10.1016/j.dam.2021.05.011 doi: 10.1016/j.dam.2021.05.011
    [13] M. Hajian, N. J. Rad, A new lower bound on the double domination number of a graph, Discrete Appl. Math., 254 (2019), 280–282. https://doi.org/10.1016/j.dam.2018.06.009 doi: 10.1016/j.dam.2018.06.009
    [14] N. A. A. Aziz, N. J. Rad, H. Kamarulhaili, A note on the double domination number in maximal outerplanar and planar graphs, RAIRO Oper. Res., 56 (2022), 3367–3371. https://doi.org/10.1051/ro/2022150 doi: 10.1051/ro/2022150
    [15] A. Meir, J. W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math., 61 (1975), 225–233.
    [16] A. Cabrera-Martínez, A. C. Peiró, On the $\{2\}$-domination number of graphs. AIMS Math., 7 (2022), 10731–10743. https://doi.org/10.3934/math.2022599 doi: 10.3934/math.2022599
    [17] M. Lemanska, Lower bound on the domination number of a tree, Discuss. Math. Graph Theory, 24 (2004), 165–169. https://doi.org/10.7151/dmgt.1222 doi: 10.7151/dmgt.1222
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1214) PDF downloads(107) Cited by(1)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog