The structure connectivity $ \kappa(G; H) $ and substructure connectivity $ \kappa^s(G; H) $ are important indicators to measure interconnection network's fault tolerance and reliability. The data center network, denoted by $ D_{k, n} $, have been proposed for data centers as a server-centric interconnection network structure, which can support millions of servers with high network capacity by only using commodity switches. In this paper, we obtain $ \kappa(D_{k, n}; S_m) $ and $ \kappa^s(D_{k, n}; S_m) $ when $ k\geq2 $, $ n\geq4 $ and $ 1\leq m\leq n+k-2 $. Furthermore, we obtain both $ \kappa(D_{k, n}; S_{23}) $ and $ \kappa^s(D_{k, n}; S_{23}) $ for $ k\geq8 $ and $ n\geq8 $.
Citation: Bo Zhu, Shumin Zhang, Jinyu Zou, Chengfu Ye. Structure connectivity and substructure connectivity of data center network[J]. AIMS Mathematics, 2023, 8(4): 9877-9889. doi: 10.3934/math.2023499
The structure connectivity $ \kappa(G; H) $ and substructure connectivity $ \kappa^s(G; H) $ are important indicators to measure interconnection network's fault tolerance and reliability. The data center network, denoted by $ D_{k, n} $, have been proposed for data centers as a server-centric interconnection network structure, which can support millions of servers with high network capacity by only using commodity switches. In this paper, we obtain $ \kappa(D_{k, n}; S_m) $ and $ \kappa^s(D_{k, n}; S_m) $ when $ k\geq2 $, $ n\geq4 $ and $ 1\leq m\leq n+k-2 $. Furthermore, we obtain both $ \kappa(D_{k, n}; S_{23}) $ and $ \kappa^s(D_{k, n}; S_{23}) $ for $ k\geq8 $ and $ n\geq8 $.
[1] | J. A. Bondy, U.S.R. Murty, Graph Theory, New York: Springer, 2008. |
[2] | N. W. Chang, S. Y. Hsieh, $\{2, 3\}$-extraconnectivities of hypercube-like networks, J. Comput. System Sci., 79 (2013), 669–688. https://doi.org/10.1016/j.jcss.2013.01.013 doi: 10.1016/j.jcss.2013.01.013 |
[3] | J. Fàbrega, M. A. Fiol, On the extraconnectivity of graphs, Discrete Math., 155 (1996), 49–57. https://doi.org/10.1016/0012-365X(94)00369-T doi: 10.1016/0012-365X(94)00369-T |
[4] | C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, S. Lu, DCell: A scalable and fault-tolerant network structure fordata centers, In: Special Interest Group on Data Communication, SIGCOMM., (2008), 75–86. https://doi.org/10.1145/1402958.1402968 |
[5] | J. Guo, M. Lu, The extra connectivity of bubble-sort star graphs, Theor. Comput. Sci., 645 (2016), 91–99. https://doi.org/10.1016/j.tcs.2016.06.043 doi: 10.1016/j.tcs.2016.06.043 |
[6] | F. Harary, Conditional connectivity, Networks., 13 (1983), 347–357. https://doi.org/10.1002/net.3230130303 doi: 10.1002/net.3230130303 |
[7] | S. Y. Hsieh, Y. H. Chang, Extraconnectivity of $k$-ary $n$-cube networks, Theoret. Comput. Sci., 443 (2012), 63–69. https://doi.org/10.1016/j.tcs.2012.03.030 doi: 10.1016/j.tcs.2012.03.030 |
[8] | C. Li, S. Lin, S. Li, Structure connectivity and substructure connectivity of $(n, k)$-star graph networks, 2018 15th International Symposium on Pervasive Systems, Algorithms and Networks (I-SPAN).IEEE, (2018), 240–246. https://doi.org/10.1109/I-SPAN.2018.00046 doi: 10.1109/I-SPAN.2018.00046 |
[9] | C. Li, S. Lin, S. Li, Structure connectivity and substructure connectivity of star graphs, Discrete Appl. Math., 284 (2020), 472–480. https://doi.org/10.1016/j.dam.2020.04.009 doi: 10.1016/j.dam.2020.04.009 |
[10] | C. K. Lin, L. Zhang, J. Fan, D. Wang, Structure connectivity and substructure connectivity of hypercubes, Theor. Comput. Sci., 634 (2016), 97–107. https://doi.org/10.1016/j.tcs.2016.04.014 doi: 10.1016/j.tcs.2016.04.014 |
[11] | D. Li, X. Hu, H. Liu, Structure connectivity and substructure connectivity of twisted hypercubes, Theor. Comput. Sci., 796 (2019), 169–179. https://doi.org/10.1016/j.tcs.2019.09.007 doi: 10.1016/j.tcs.2019.09.007 |
[12] | H. Lv, T. Wu, Structure and substructure connectivity of Balanced Hypercubes, Bull. Malays. Math. Sci. Soc., 43 (2020), 2659–2672. https://doi.org/10.1007/s40840-019-00827-4 doi: 10.1007/s40840-019-00827-4 |
[13] | X. Li, J. Fan, C. K. Lin, B. Cheng, X. Jia, The extra connectivity, extra conditional diagnosability and $t/k$-diagnosability of the data center network DCell, Theor. Comput. Sci., 766 (2019), 16–29. https://doi.org/10.1016/j.tcs.2018.09.014 doi: 10.1016/j.tcs.2018.09.014 |
[14] | Y. Lv, J. Fan, D. F. Hsu, C. K. Lin, Structure connectivity and substructure connectivity of $k$-ary $n$-cube networks, Inform. Sci., 433 (2018), 115–124. https://doi.org/10.1016/j.ins.2017.11.047 doi: 10.1016/j.ins.2017.11.047 |
[15] | S. A. Mane, Structure connectivity of hypercubes, AKCE Int. J. Graphs Comb., 15 (2018), 49–52. https://doi.org/10.1016/j.akcej.2018.01.009 doi: 10.1016/j.akcej.2018.01.009 |
[16] | E. Sabir, J. Meng, Structure fault tolerance of hypercubes and folded hypercubes, Theoret. Comput. Sci., 711 (2018), 44–55. https://doi.org/10.1016/j.tcs.2017.10.032 doi: 10.1016/j.tcs.2017.10.032 |
[17] | X. Wang, J. Fan, J. Zhou, C. K. Lin, The restricted $h$-connectivity of data center network DCell, Discrete Appl. Math., 203 (2016), 144–157. https://doi.org/10.1016/j.dam.2015.09.002 doi: 10.1016/j.dam.2015.09.002 |
[18] | W. H. Yang, J. X. Meng, Extraconnectivity of hypercubes, Appl. Math. Lett., 22 (2009), 887–891. https://doi.org/10.1016/j.aml.2008.07.016 doi: 10.1016/j.aml.2008.07.016 |
[19] | G. Zhang, D. Wang, Structure connectivity and substructure connectivity of bubble-sort star graph networks, Appl. Math. Comput., 363 (2019), 124632. https://doi.org/10.1016/j.amc.2019.124632 doi: 10.1016/j.amc.2019.124632 |
[20] | G. Zhang, D. Wang, The structure fault tolerance of arrangement graphs, Appl. Math. Comput., 400 (2021), 126039. https://doi.org/10.1016/j.amc.2021.126039 doi: 10.1016/j.amc.2021.126039 |
[21] | M. M. Zhang, J. X. Zhou, On $g$-extra connectivity of folded hypercubes, Theoret. Comput. Sci., 593 (2015), 146–153. https://doi.org/10.1016/j.tcs.2015.06.008 doi: 10.1016/j.tcs.2015.06.008 |