

AIMS Mathematics, 8(4): 9877–9889. DOI: 10.3934/math.2023499 Received: 06 December 2022 Revised: 05 February 2023 Accepted: 16 February 2023 Published: 22 February 2023

http://www.aimspress.com/journal/Math

Research article

Structure connectivity and substructure connectivity of data center network

Bo Zhu¹, Shumin Zhang^{2,4,*}, Jinyu Zou³ and Chengfu Ye^{2,4}

- ¹ Department of Computer, Qinghai Normal University, Xining, Qinghai 810008, China
- ² School of Mathematics and Statistics, Qinghai Normal University, Xining, Qinghai 810008, China
- ³ Department of Basic Research, Qinghai University, Xining, Qinghai 810016, China
- ⁴ Academy of Plateau Science and Sustainability, People's Government of Qinghai Province and Beijing Normal University
- * **Correspondence:** Email: zhangshumin@qhnu.edu.cn.

Abstract: The structure connectivity $\kappa(G; H)$ and substructure connectivity $\kappa^s(G; H)$ are important indicators to measure interconnection network's fault tolerance and reliability. The data center network, denoted by $D_{k,n}$, have been proposed for data centers as a server-centric interconnection network structure, which can support millions of servers with high network capacity by only using commodity switches. In this paper, we obtain $\kappa(D_{k,n}; S_m)$ and $\kappa^s(D_{k,n}; S_m)$ when $k \ge 2$, $n \ge 4$ and $1 \le m \le n+k-2$. Furthermore, we obtain both $\kappa(D_{k,n}; S_{23})$ and $\kappa^s(D_{k,n}; S_{23})$ for $k \ge 8$ and $n \ge 8$.

Keywords: structure connectivity; substructure connectivity; data center network **Mathematics Subject Classification:** 05C40, 05C07

1. Introduction

The topological structure of a computer interconnection network can be represented by a graph, where the vertices represent processors and the edges represent communication links between processors. The connectivity of a graph is an important parameter reflecting the strength between two nodes in an interconnection network. The connectivity of a graph *G*, denoted by $\kappa(G)$, is to delete the minimum number of vertices such that the remaining part is disconnected. The classical connectivity has certain limitations to measure the fault tolerance of the network, then Harary [6] proposed the concept of the conditional connectivity. Later, Fàbrega et al. [3] proposed the concept of the *g*-extra connectivity of *G*, denoted by $\kappa_g(G)$, is the minimum cardinality of vertices in *G* whose deletion would disconnect *G*, and each remaining component has more than *g* vertices. It has triggered extensive research by scholars, and some results can be found in [2, 5, 7, 13, 18, 21].

With the development of large-scale integration technology, a multi-processor system can contain thousands of processors. When one of the processors fails, the processors around it may all be affected. Therefore, it is necessary to consider deleting a certain structure in a network to measure the reliability of the network. Considering the fault status of a certain structure, rather than individual vertices, Lin et al. [10] have given the concepts of the structure connectivity and substructure connectivity. Recently, the results on the structure connectivity and substructure connectivity have come out focusing on networks. For example: hypercube network, folded hypercube network, star network, alternating group network and so on. Many results of networks can be found in the literature [8–12, 14–16, 19, 20].

A network may have thousands of substructures, so it is an important topic to study which substructures are more valuable for the network reliability. A star as a substructure of a network is very important. Because when the central node fails, all of its neighbors are affected. It is reasonable to assume that a node in a network has different degrees of influence on its surrounding nodes. Therefore, we can assign an impactability to each node v, denoted by imp(v). When imp(v) = 0, it means that v has no effect on its neighbors; imp(v) = 1 means that v affects all its direct neighbors; imp(v) = 2means that v affects not only all of its direct neighbors, but also its immediate neighbor's neighbors. In a network, the structure corresponding to the node v with imp(v) = 1 is an m-leaves star with v as the center, denoted by S_m . For v with imp(v) = 2, its corresponding structure is called a 2-step star with m-leaves, denoted by S_{2m} , centered on v. (See Figure 1.)

Figure 1. A star and a 2-step star with center vertices v.

2. Preliminaries

2.1. Basic notations and definitions

Given a graph *G*, let *V*(*G*), *E*(*G*) and (*u*, *v*) denote the set of vertices, the set of edges, and the edge whose end vertices are *u* and *v*. The degree of the vertex *u* in graph *G* is the number of neighbors of *u*, denoted by *d*(*u*). The neighbors of a vertex *u* in *G* is denoted by $N_G(u)$. For a set $U \subseteq V(G)$, the neighbors in V(G) - U of vertices in *U* are called the neighbors of *U*, denoted by $N_G(U)$. We denote a complete graph with *n* vertices by K_n . A graph *G* is said to be *k*-regular if every vertex of it has *k* neighbors. If G_1 is a subgraph of *G*, denoted by $G_1 \subseteq G$, then $V(G_1) \subseteq V(G)$ and $E(G_1) \subseteq E(G)$. If $G \cong H$, then *G* is isomorphic to *H*. Let $G_1 \leq H$ denote G_1 to be isomorphic to a connected subgraph of *H*. We use G[H] to represent the subgraph induced by *H*, which consists of the vertex set of *H* and the edge set $\{(u, v) | u, v \in V(H), (u, v) \in E(G)\}$. Terminologies not given here can be referred to [1].

Here is the definitions of the structure connectivity and substructure connectivity:

Definition 2.1. Let H be a connected subgraph of G and F be a set of subgraphs of G such that every element in F is isomorphic to H. If G - V(F) is disconnected, then F is called an H-structure cut. The minimum cardinality of H-structure cuts is called H-structure connectivity of G, denoted by $\kappa(G; H)$.

Definition 2.2. Let H be a connected subgraph of G and F^s be a set of subgraphs of G such that every element in F^s is isomorphic to connected subgraph of H. If G - V(F) is disconnected, then F^s is called an H-substructure cut. The minimum cardinality of H-substructure cuts is called H-substructure connectivity of G, denoted by $\kappa^s(G; H)$.

Obviously, $\kappa^{s}(G; H) \leq \kappa(G; H)$.

2.2. The data center networks

For a positive integer *n*, we use [n] and $\langle n \rangle$ to denote the sets $\{1, 2, ..., n\}$ and $\{0, 1, 2, ..., n\}$, respectively. For any positive integers $k \ge 0$ and $n \ge 2$, we use $D_{k,n}$ to denote a *k*-dimensional *DCell* with *n*-port switches. We use $t_{k,n}$ to denote the number of vertices in $D_{k,n}$ with $t_{0,n} = n$ and $t_{k,n} = t_{k-1,n} \times (t_{k-1,n} + 1)$, where $i \in [k]$. Let $I_{0,n} = \langle n - 1 \rangle$ and $I_{i,n} = \langle t_{i-1,n} \rangle$ for any $i \in [k]$. Let $V_{k,n} = \{u_k u_{k-1} \dots u_0 | u_i \in \langle t_{i-1,n} \rangle$ and $i \in \langle k \rangle\}$, and $V_{k,n}^l = \{u_k u_{k-1} \dots u_l | u_i \in \langle t_{i-1,n} \rangle$ and $i \in \{l, l+1, \dots, k\}$ for any $l \in [k]$. Clearly, $|V_{k,n}| = t_{k,n}$ and $|V_{k,n}^l| = t_{k,n}/t_{l-1,n}$. The $D_{k,n}$ is defined as follows.

Definition 2.3. The data center network $D_{k,n}$ is a graph with the vertex set $V_{k,n}$, where a vertex $u = u_k u_{k-1} \dots u_i \dots u_0$ is adjacent to a vertex $v = v_k v_{k-1} \dots v_i \dots v_0$ if and only if there is an positive integer l with

(1)
$$u_k u_{k-1} \dots u_l = v_k v_{k-1} \dots v_l$$
,
(2) $u_{l-1} \neq v_{l-1}$,
(3) $u_{l-1} = v_0 + \sum_{j=1}^{l-2} (v_j \times t_{j-1,n})$ and $v_{l-1} = u_0 + \sum_{j=1}^{l-2} (u_j \times t_{j-1,n}) + 1$ with $l \ge 1$.

Lemma 2.4. [4] Let $D_{k,n}$ be the data center network with $k \ge 0$ and $n \ge 2$.

(1) $D_{0,n}$ is a complete graph with n vertices labeled as 0, 1, 2, ..., n-1.

(2) For $k \ge 1$, $D_{k,n}$ consists of $t_{k-1,n} + 1$ copies of $D_{k-1,n}$ denoted by $D_{k-1,n}^i$, for each $i \in \langle t_{k-1,n} \rangle$. There is one edge between $D_{k-1,n}^i$ and $D_{k-1,n}^j$ for any $i, j \in I_{k,n}$ and $i \ne j$. This implies that the outside neighbors of vertices in $D_{k-1,n}^i$ belong to different copies of $D_{k-1,n}^j$ for $j \ne i$ and $i, j \in I_{k,n}$.

(3) For any two distinct vertices u, v in $D_{k-1,n}^{i}, N_{D_{k-1,n}^{l_{k,n} \setminus \{i\}}}(u) \cap N_{D_{k-1,n}^{l_{k,n} \setminus \{i\}}}(v) = \emptyset$ and $|N_{D_{k-1,n}^{l_{k,n} \setminus \{i\}}}(u)| = 1$.

Lemma 2.5. [4] For any positive integers $n \ge 2$ and $k \ge 0$, $D_{k,n}$ has the following combinatorial properties.

(1) $D_{k,n}$ is (n + k - 1)-regular with $t_{k,n}$ vertices and $\frac{(n+k-1)t_{k,n}}{2}$ edges.

(2) $\kappa(D_{k,n}) = \lambda(D_{k,n}) = n + k - 1.$

(3) For any integer $k \ge 0$, there is no cycle of length 3 in $D_{k,2}$ and for any integer $n \ge 3$ and $k \ge 0$, there exist cycles of length 3 in $D_{k,n}$.

(4) The number of vertices in $D_{k,n}$ satisfies $t_{k,n} \ge (n + \frac{1}{2})^{2^k} - \frac{1}{2}$.

Lemma 2.6. [17] There exist $t_{k-1,n}$ disjoint paths (in which any two paths have no common vertices) joining $D_{k-1,n}^i$ and $D_{k-1,n}^j$ for $i, j \in I_{k,n}$, denoted by $P(D_{k-1,n}^i, D_{k-1,n}^j)$.

Lemma 2.7. [13] For any positive integers $n \ge 2$, $k \ge 2$, and $0 \le g \le n - 1$, the g-extra connectivity of $D_{k,n}$ is $\kappa_g(D_{k,n}) = (g+1)(k-1) + n$.

The graph $D_{0,n}$ generates $D_{k,n}$ after k iterations. For any vertex u in $D_{0,n}$, an out neighbor is added every iteration. The graph $D_{i,n}$ consists of $t_{i-1,n} + 1$ copies of $D_{i-1,n}$. Let u^i be the out neighbor of u in $D_{i,n}$, and (u, u^i) be denoted by i edge for $1 \le i \le k$. So each vertex in some $D_{0,n}$ has k neighbors and k edges outside of $D_{0,n}$ in $D_{k,n}$. Several data center networks with small parameters k and n, see Figure 2.

Figure 2. Several data center networks with small parameters k and n.

3. Results of S_m -structure and substructure connectivity of $D_{k,n}$

Lemma 3.1. $\kappa(D_{k,n}; S_m) \leq \lceil \frac{n-1}{m+1} \rceil + k \text{ for } n \geq 4, k \geq 2 \text{ and } 1 \leq m \leq n+k-2.$

Proof. For any $v \in V(D_{k-1,n}^{i})$ for $i \in I_{k,n}$. By the structure of $D_{k,n}$, we know that v belongs to some $D_{0,n}$. Let the $D_{0,n}$ which v is in it be $D'_{0,n}$. Since v has n-1 neighbors in $D'_{0,n}$ and has k neighbors $v^{1}, v^{2}, \ldots, v^{k}$ outside of the $D'_{0,n}, d(v) = n + k - 1$ in $D_{k,n}$. By the construction of $D_{k,n}$, we know that v^{j} is the out neighbor of v in $D_{j,n}$ and v^{j} in a $D_{0,n}$, denoted by $D'_{0,n}$ and let v^{j} be the center vertex of an S_{m} in $D'_{0,n}$ for $1 \le j \le k$. Since there is only one edge between different copies in the same dimension, the S_{m} in $D'_{0,n}$ and the S_{m} in $D'_{0,n}$ have no common vertices for $1 \le i, j \le k$ and $i \ne j$. Thus, there are $k S_{m}$'s outside of $D'_{0,n}$ connecting to v. (See Figure3.)

When $1 \le m \le n-3$. Let $p \ge 0$, $q \ge 0$ be two positive integers such that n-1 = (m+1)p + q, where $0 \le q \le m$. If q = 0, then there are $p S_m$'s connecting to v in $D'_{0,n}$ and $k S_m$'s connecting to voutside of $D'_{0,n}$. If $1 \le q \le m$, then it means that after deleting $p S_m$'s in $D'_{0,n}$ there are q vertices left, except for v. Suppose that w is one of the remaining q vertices and w is the center vertex of an S_m . Then these q - 1 neighbors of w in $D'_{0,n}$ and the k neighbors outside of $D'_{0,n}$ can construct an S_m . Thus, there are $(\lceil \frac{n-1}{m+1} \rceil + k) S_m$'s connecting to v. The graph $D_{k,n}$ will be disconnected by deleting $(\lceil \frac{n-1}{m+1} \rceil + k) S_m$'s. Hence, the lemma holds.

When $n - 2 \le m \le n + k - 2$, we have $\lceil \frac{n-1}{m+1} \rceil + k = 1 + k$. Let *u* be the center vertex of an S_m in $D'_{0,n}$. Then *u* has n - 2 neighbors in $D'_{0,n}$ and *k* neighbors outside of $D'_{0,n}$ which can construct an S_m connecting to *v*. It is clearly that there are $(k + 1) S_m$'s connecting to *v*. Thus, $D_{k,n}$ will be disconnected by deleting $(k + 1) S_m$'s.

AIMS Mathematics

Figure 3. Graph Explanation of Lemma 3.1.

Lemma 3.2. Let $F = \{T | T \cong K_1 \text{ or } T \cong S_m, n-2 \le m \le n\}$. Then $D_{2,n} - F$ is connected for $n \ge 4$ and $|F| \leq 2.$

Proof. To prove this lemma by induction n. Clearly, $D_{2,4} - F$ is connected when $|F| \le 2$. Suppose that $D_{2,n-1} - F$ is connected when $|F| \le 2$ for $F = \{T | T \cong K_1 \text{ or } T \cong S_m, n-3 \le m \le n-1\}$. When $F = \{T | T \cong K_1\}$ and $|F| \le 2$, it is obviously that $D_{2,n} - F$ is connected. When $F = \{T | T \cong S_m, n-2 \le n \}$ $m \le n$, it means that the center vertex of each S_m in $D_{2,n}$ has at most one more neighbor deleted than the center vertex of each S_m in $D_{2,n-1}$. Since by the structure of $D_{2,n-1}$ and $D_{2,n}$, for any vertex v in $D_{2,n-1}$, d(v) = n, and for any vertex u in $D_{2,n}$, d(u) = n + 1. Thus, $D_{2,n} - F$ is connected.

Lemma 3.3. Let $F = \{T | T \cong K_1 \text{ or } T \cong S_m, 1 \le m \le n-3\}$. Then $D_{2,n} - F$ is connected for $n \ge 4$ and $|F| \le \left\lceil \frac{n-1}{m+1} \right\rceil + 1.$

Proof. To prove this lemma by induction n. When n = 4, we have m = 1, $F = \{T | T \cong K_1 \text{ or } T \cong S_1\}$, where $S_1 \cong K_2$ and $\lceil \frac{n-1}{m+1} \rceil + 1 = \lceil \frac{3}{2} \rceil + 1 = 3$. It is easy to check that $D_{2,4} - F$ is connected when $|F| \le 3$. Suppose that $D_{2,n-1} - F$ is connected when $|F| \le \lceil \frac{n-2}{m+1} \rceil + 1$ for $1 \le m \le n-4$. It suffices to show that $D_{2,n} - F$ is connected when $|F| \le \lceil \frac{n-1}{m+1} \rceil + 1$ for $1 \le m \le n-3$.

If $\lceil \frac{n-1}{m+1} \rceil + 1 = \lceil \frac{n-2}{m+1} \rceil + 1$, then the conclusion obviously holds. Suppose that $\lceil \frac{n-1}{m+1} \rceil + 1 - (\lceil \frac{n-2}{m+1} \rceil + 1) = 1$. When $F = \{T | T \cong K_1\}$, we have $|F| \le \lceil \frac{n-1}{m+1} \rceil + 1 = n - 1 + 1$ *n*. Since $\kappa(D_{2,n}) = n + 1$, by Lemma 2.5, $D_{2,n} - F$ is connected. When $F = \{T | T \cong S_m, 1 \le m \le n - 3\}$, by inductive hypothesis, $D_{2,n-1} - F$ is connected for $|F| \le \lceil \frac{n-2}{m+1} \rceil + 1$ and $1 \le m \le n-4$. Since $\lceil \frac{n-1}{m+1} \rceil + 1 - (\lceil \frac{n-2}{m+1} \rceil + 1) = 1$, it means that only more one S_m is deleted in $D_{2,n}$ than in $D_{2,n-1}$. Let the center vertex of this S_m be u.

Assume that u is in $D_{1,n}^i$ for $i \in I_{2,n}$. Let $F^i = F \cap D_{1,n}^i$. By the structure of $D_{k,n}$, we know that $D_{1,n}$ is made up of n + 1 copies of $D_{0,n}$, where $D_{0,n} \cong K_n$ and $D_{1,n-1}$ is made up of n copies of $D_{0,n-1}$, where $D_{0,n-1} \cong K_{n-1}$. When $D_{1,n-1}$ goes to $D_{1,n}$, each copy of $D_{0,n-1}$ adds a vertex to $D_{0,n}$, and another copy of $D_{0,n}$ is added. In this case, u is a new vertex from $D_{1,n-1}$ to $D_{1,n}$. By the structure of $D_{2,n}$, u has only one out neighbor $u' \in V(D_{1n}^k)$, it is clearly that $D_{1n}^k - F^k$ is connected, so $G[\bigcup_{i \neq l \in I_{1n}} V(D_{1n}^l - F^l)]$ is

connected for $i \in I_{2,n}$. Since $D_{1,n}^i \cong D_{1,n}$, u is in a $D_{0,n}$, denoted by $D'_{0,n}$. For any a vertex v in $D_{1,n}^i - F^i$, if $v \notin V(D'_{0,n})$, then it is clearly that v connects $G[\cup_{i \neq l \in I_{1,n}} V(D_{1,n}^l - F^l)]$. If $v \in V(D'_{0,n})$, since $D'_{0,n} \cong K_n$, then we have that v' which is a neighbor of v connects $G[\cup_{i \neq l \in I_{1,n}} V(D_{1,n}^l - F^l)]$. So $D_{2,n} - F$ is connected.

Assume that u is in $D_{1,n-1}^{i}$ for $i \in I_{2,n-1}$. Let $F_i = F \cap D_{1,n-1}^{i}$. By the structure of $D_{2,n}$, u has only one out neighbor $u' \in V(D_{1,n-1}^{j})$. If $D_{2,n-1} - F$ is disconnected, then $D_{1,n-1}^{i} - F_i$ or $D_{1,n-1}^{j} - F_j$ is disconnected and $G[\cup_{l \in I_{2,n-1}} V(D_{1,n}^{l} - F^{l})]$ is connected for $i \neq j, i \neq l, j \neq l$. Without loss of generality, suppose that $D_{1,n-1}^{i} - F_i$ is disconnected. For any vertex w of each component of $D_{1,n-1}^{i} - F_i$ adds a new neighbor w', when $D_{1,n-1}^{i}$ becomes $D_{1,n}^{i}$. We have that w' has an out neighbor w'' which is in $G[\cup_{l \in I_{2,n}} V(D_{1,n}^{l} - F^{l})]$ for $i \neq j, i \neq l, j \neq l$. (See Figure 4.) It is clearly that $G[\cup_{j \neq l \in I_{1,n}} V(D_{1,n}^{l} - F^{l})]$ is connected for $j \in I_{2,n}$.

$$\begin{aligned} P(F) &| \leq \left(\left\lceil \frac{n-1}{m+1} \right\rceil + 1 \right) * (m+1) \\ &= \left\lceil \frac{n-1}{m+1} \right\rceil * (m+1) + m + 1 \\ &\leq \frac{n-1+m}{m+1} * (m+1) + m + 1 \\ &= n+2m \\ &\leq n+2(n-3) \\ &= 3n-6. \end{aligned}$$

Figure 4. An illustration for "w" is in $G[\bigcup_{i \neq j \neq l \in I_{2,n}} V(D_{1,n}^l - F^l)]$ " in Lemma 3.3.

By Lemma 2.6, there exist $t_{1,n}$ disjoint paths (in which any two paths have no common vertices) joining $D_{1,n}^i$ and $D_{1,n}^j$ for $i, j \in I_{2,n}$, then we can get that $t_{1,n} \ge (n - \frac{1}{2})^2 + \frac{1}{2}$ for $n \ge 4$, furthermore $t_{1,n} \ge (n + \frac{1}{2})^2 + \frac{1}{2} > 3n - 6 \ge |V(F)|$. This implies that there is at least a path between $D_{1,n}^i$ and $D_{1,n}^j$ in $D_{2,n} - F$. So $D_{2,n} - F$ is connected when $|F| \le \lceil \frac{n-1}{m+1} \rceil + 1$.

Lemma 3.4. $\kappa^{s}(D_{k,n}; S_m) \ge \lceil \frac{n-1}{m+1} \rceil + k \text{ for } n \ge 4, k \ge 2 \text{ and } 1 \le m \le n+k-2.$

Proof. For an positive integer t, let $F = \{T_j | T_j \cong K_1 \text{ or } T_j \cong S_m, 1 \le m \le n + k - 2, 1 \le j \le t\}$ and |F| = t. Let $F^i = \{T_j | T_j \cong K_1 \text{ or } T_j \cong S_m, T_j \cap D^i_{k-1,n}, 1 \le m \le n + k - 2, 1 \le j \le t\}$ and C^i be the set of the center vertex of F in $D^i_{k-1,n}$ for $i \in I_{k,n}$. Divide it into the following two cases:

Case 1. $n - 2 \le m \le n + k - 2$.

|V|

Note that $n-2 \le m \le n+k-2$, it is clearly that $\lceil \frac{n-1}{m+1} \rceil = 1$. Thus, $\kappa^s(D_{k,n}, S_m) \ge \lceil \frac{n-1}{m+1} \rceil + k = 1+k$ for $n \ge 4$ and $k \ge 2$. We need to show that $D_{k,n} - F$ is connected when $|F| \le k$. To prove it by induction

on k. When k = 2, $D_{2,n} - F$ is connected by Lemma 3.2. For each S_m $(n - 2 \le m \le n + k - 2)$ in $D_{k,n}$, there might be one more vertex than the S_m $(n - 2 \le m \le n + k - 3)$ in $D_{k-1,n}$, but each vertex in $D_{k,n}$ has one more neighbor than the S_m in $D_{k-1,n}$, so we don't have to think about the size of S_m that we delete here, we think about the number of S_m that we delete. Suppose that $D_{k-1,n} - F$ is connected when $|F| \le k - 1$. In the following, we prove that $D_{k,n} - F$ is connected when $|F| \le k$ for $k \ge 3$.

Case 1.1 $|C^i| = k$.

By the structure of $D_{k,n}$, each center vertex of S_m in $D_{k-1,n}^i$ has at most an out neighbor in $D_{k-1,n}^j$, thus $|F^j| \le 1$ for $i \ne j \in I_{k,n}$, so the subgraph induced by $\bigcup_{i \ne j \in I_{k,n}} V(D_{k-1,n}^j - F^j)$ is connected. For any vertex $u \in V(D_{k-1,n}^i - F^i)$, we have that u has an out neighbor u' in $G[\bigcup_{i \ne j \in I_{k,n}} (D_{k-1,n}^j - F^j)]$. By Lemma 2.4(2), we know that $u' \notin V(F)$. It means that u connects $G[\bigcup_{i \ne j \in I_{k,n}} (D_{k-1,n}^j - F^j)]$. Thus, $D_{k,n} - F$ is connected when $|F| \le k$.

Case 1.2 $|C^i| = k - 1$.

Let *w* be the center vertex of S_m in $D_{k-1,n}^l$ for $i \neq l \in I_{k,n}$.

Suppose that *w* has no out neighbor in $D_{k-1,n}^i$. If *w* has an out neighbor in $D_{k-1,n}^j$ and a center vertex of S_m in $D_{k-1,n}^i$ also has an out neighbor in $D_{k-1,n}^j$, then $|F^j| = 2$ for $i \neq l \neq j \in I_{k,n}$. By the induction hypothesis, $D_{k-1,n}^j$ is connected for $j \in I_{k,n}$. By Lemma 2.4(2) and Lemma 2.5(4), we can get that each copy has $t_{k-1,n}$ out edges and $t_{k-1,n} \ge (n + \frac{1}{2})^{2^{k-1}} - \frac{1}{2} > 2$ for $n \ge 4, k \ge 3$. Thus, the subgraph induced by $\bigcup_{i\neq j\in I_{k,n}} V(D_{k-1,n}^j - F^j)$ is connected. For any vertex $u \in V(D_{k-1,n}^i - F^i)$, we have that *u* has an out neighbor *u'* in $G[\bigcup_{i\neq j\in I_{k,n}} (D_{k-1,n}^j - F^j)]$. By Lemma 2.4(2), we know that $u' \notin V(F)$. It implies that *u* connects $G[\bigcup_{i\neq j\in I_{k,n}} (D_{k-1,n}^j - F^j)]$. Thus, $D_{k,n} - F$ is connected.

Suppose that *w* has an out neighbor in $D_{k-1,n}^i$. So *w* has no out neighbor in $D_{k-1,n}^j$, it follows that $|F^j| \leq 1$ for $i \neq l \neq j \in I_{k,n}$. By induction hypothesis, $D_{k-1,n}^i$ may be disconnected but $D_{k-1,n}^j$ is connected for $i \neq j \in I_{k,n}$. So the subgraph induced by $\bigcup_{i\neq j\in I_{k,n}} V(D_{k-1,n}^j - F^j)$ is connected. For any vertex $u \in V(D_{k-1,n}^i - F^i)$, we have that *u* has an out neighbor *u'* in $G[\bigcup_{i\neq j\in I_{k,n}} (D_{k-1,n}^j - F^j)]$. By Lemma 2.4(2), we know that $u' \notin V(F)$. It means that *u* connects $G[\bigcup_{i\neq j\in I_{k,n}} (D_{k-1,n}^j - F^j)]$. Thus, $D_{k,n} - F$ is connected.

Case 1.3 $|C^i| \le k - 2$.

Suppose that all center vertices of S_m 's which are outside of $D_{k-1,n}^i$ have an out neighbor in $D_{k-1,n}^i$. Hence, $|F^i| = k$, then $D_{k-1,n}^i - F^i$ may be disconnected. Since each vertex has only an out neighbor, we know that $D_{k-1,n}^j - F^j$ is connected for $i \neq j \in I_{k,n}$. So the subgraph induced by $\bigcup_{i\neq j\in I_{k,n}} V(D_{k-1,n}^j - F^j)$ is connected. For any vertex $u \in V(D_{k-1,n}^i - F^i)$, we have that u has an out neighbor u' in $G[\bigcup_{i\neq j\in I_{k,n}} (D_{k-1,n}^j - F^j)]$. By Lemma 2.4(2), we know that $u' \notin V(F)$. It means that u connects $G[\bigcup_{i\neq j\in I_{k,n}} (D_{k-1,n}^j - F^j)]$. Thus, $D_{k,n} - F$ is connected.

Suppose that at least one center vertex of S_m which is outside of $D_{k-1,n}^i$ has no out neighbor in $D_{k-1,n}^i$. By induction hypothesis, $D_{k-1,n}^i$ is connected for $i \in I_{k,n}$. When $|F| \le k$, we have $|V(F)| \le k * (n+k-2)$. By the structure of $D_{k,n}$, it has $t_{k-1} + 1$ copies of $D_{k-1,n}$. By Lemma 2.5(4), we get that $t_{k-1,n} + 1 \ge (n + \frac{1}{2})^{2^{k-1}} + \frac{1}{2}$ and $t_{k-1,n} + 1 \ge (n + \frac{1}{2})^{2^{k-1}} + \frac{1}{2} > k * (n+k-2)$ when $n \ge 4, k \ge 3$. It means that there is at least a copy $D_{k-1,n}^h$ which is not deleted the vertices, so $|F^h| = 0$. By Lemma 2.6, there exist $t_{k-1,n}$ disjoint paths joining $D_{k-1,n}^h$ and $D_{k-1,n}^i$ for $i, h \in I_{k,n}$. Thus, $D_{k,n} - F$ is connected.

Case 2. $1 \le m \le n - 3$.

We prove it by induction on k. When k = 2, $D_{2,n} - F$ is connected by Lemma 3.3. Suppose that

 $D_{k-1,n} - F$ is connected for $|F| \le \lceil \frac{n-1}{m+1} \rceil + k - 2$. Divide it into the three subcases to prove that $D_{k,n} - F$ is connected when $|F| \le \lceil \frac{n-1}{m+1} \rceil + k - 1$ for $k \ge 3$.

Case 2.1 $|C^i| = \lceil \frac{n-1}{m+1} \rceil + k - 1$ for $i \in I_{k,n}$.

By the structure of $D_{k,n}$, each center vertex of S_m in $D_{k-1,n}^i$ has at most an out neighbor in $D_{k-1,n}^j$, so $|F^j| \leq 1$ for $i \neq j \in I_{k,n}$, furthermore, the subgraph induced by $G[\cup_{i\neq j\in I_{k,n}}(D_{k-1,n}^j - F^j)]$ is connected. For any vertex $u \in V(D_{k-1,n}^i - F^i)$, we have that u has an out neighbor u' in $G[\cup_{i\neq j\in I_{k,n}}(D_{k-1,n}^j - F^j)]$. By Lemma 2.4(2), we know that $u' \notin V(F)$. It means that u connects $G[\cup_{i\neq j\in I_{k,n}}(D_{k-1,n}^j - F^j)]$. Thus, $D_{k,n} - F$ is connected when $|F| \leq \lceil \frac{n-1}{m+1} \rceil + k - 1$ for $k \geq 3$.

Case 2.2 $|C^i| = \lceil \frac{n-1}{m+1} \rceil + k - 2$ for $i \in I_{k,n}$.

Let *w* be the center vertex of S_m in $D_{k-1,n}^h$ for $i \neq h \in I_{k,n}$.

Suppose that *w* has no out neighbor in $D_{k-1,n}^i$. If *w* has an out neighbor in $D_{k-1,n}^j$ and a center vertex of S_m in $D_{k-1,n}^i$ also has an out neighbor in $D_{k-1,n}^j$, then $|F^j| = 2$ for $i \neq h \neq j \in I_{k,n}$. By induction hypothesis, $D_{k-1,n}^j$ is connected for $j \in I_{k,n}$. By Lemma 2.4(2) and Lemma 2.5(4), we can get that each copy has $t_{k-1,n}$ out edges and $t_{k-1,n} \ge (n + \frac{1}{2})^{2^{k-1}} - \frac{1}{2} > 2$ for $n \ge 4, k \ge 3$. It means that the graph induced by $\bigcup_{i\neq j\in I_{k,n}} V(D_{k-1,n}^j - F^j)$ is connected. For any vertex $u \in V(D_{k-1,n}^i - F^i)$, we have that *u* has an out neighbor *u'* in $G[\bigcup_{i\neq j\in I_{k,n}} (D_{k-1,n}^j - F^j)]$. By Lemma 2.4(2), we know that $u' \notin V(F)$. It implies that the vertex *u* connects $G[\bigcup_{i\neq j\in I_{k,n}} (D_{k-1,n}^j - F^j)]$. Thus, $D_{k,n} - F$ is connected.

Suppose that *w* has an out neighbor in $D_{k-1,n}^i$. So *w* has no out neighbor in $D_{k-1,n}^j$, it follows that $|F^j| \leq 1$ for $i \neq h \neq j \in I_{k,n}$. By induction hypothesis, $D_{k-1,n}^i$ may be disconnected, but $D_{k-1,n}^j$ is connected for $i \neq j \in I_{k,n}$. So the subgraph induced by $\bigcup_{i\neq j\in I_{k,n}} V(D_{k-1,n}^j - F^j)$ is connected. For any vertex $u \in V(D_{k-1,n}^i - F^i)$, we have that *u* has an out neighbor *u'* in $G[\bigcup_{i\neq j\in I_{k,n}} (D_{k-1,n}^j - F^j)]$. By Lemma 2.4(2), we know that $u' \notin V(F)$. It means that *u* connects $G[\bigcup_{i\neq j\in I_{k,n}} (D_{k-1,n}^j - F^j)]$. Thus, $D_{k,n} - F$ is connected.

Case 2.3 $|C^i| \le \lceil \frac{n-1}{m+1} \rceil + k - 3$ for $i \in I_{k,n}$.

Suppose that the center vertices of S_m 's which are outside of $D_{k-1,n}^i$ have an out neighbor in $D_{k-1,n}^i$. Hence, $|F^i| = \lceil \frac{n-1}{m+1} \rceil + k - 1$, furthermore, $D_{k-1,n}^i - F^i$ may be disconnected. Since each vertex has only an out neighbor, we have that $D_{k-1,n}^j - F^j$ is connected for $i \neq j \in I_{k,n}$. So the subgraph induced by $\bigcup_{i\neq j\in I_{k,n}} V(D_{k-1,n}^j - F^j)$ is connected. For any vertex $u \in V(D_{k-1,n}^i - F^i)$, we have that u has an out neighbor u' in $G[\bigcup_{i\neq j\in I_{k,n}} (D_{k-1,n}^j - F^j)]$. By Lemma 2.4(2), we know that $u' \notin V(F)$. It means that uconnects $G[\bigcup_{i\neq j\in I_{k,n}} (D_{k-1,n}^j - F^j)]$. Thus, $D_{k,n} - F$ is connected.

Next, we consider that $|F^i| \leq \lceil \frac{n-1}{m+1} \rceil + k - 2$. By induction hypothesis, $D^i_{k-1,n}$ is connected for $i \in I_{k,n}$. Hence,

$$\begin{aligned} |V(F)| &= \left(\lceil \frac{n-1}{m+1} \rceil + k - 1 \right) * (m+1) \\ &= \left\lceil \frac{n-1}{m+1} \rceil * (m+1) + (k-1) * (m+1) \\ &< 2(n-1) + (k-1) * (m+1) \\ &\le 2(n-1) + (k-1) * (n-2) \\ &< 2(n-1) + (k-1) * (n-1) \\ &= (n-1) * (k+1). \end{aligned}$$

By the structure of $D_{k,n}$ and Lemma 2.5(4), we can get that $t_{k-1,n} + 1 \ge (n + \frac{1}{2})^{2^{k-1}} + \frac{1}{2}$. It is easy to check that $t_{k-1,n} + 1 \ge (n + \frac{1}{2})^{2^{k-1}} + \frac{1}{2} > (n-1) * (k+1) > |V(F)|$ for $n \ge 4$ and $k \ge 3$. It implies that at

AIMS Mathematics

least one copy $D_{k-1,n}^s$ is not deleted a vertex for $s \in I_{k,n}$. By Lemma 2.6, there exist $t_{k-1,n}$ disjoint paths joining $D_{k-1,n}^s$ and $D_{k-1,n}^i$ for $i, s \in I_{k,n}$, so $D_{k,n} - F$ is connected.

By Lemma 3.1 and Lemma 3.4, we obtain the following result.

Theorem 3.5. Let $n \ge 4$, $k \ge 2$ and $1 \le m \le n + k - 2$. Then $\kappa(D_{k,n}; S_m) = \kappa^s(D_{k,n}; S_m) = \lceil \frac{n-1}{m+1} \rceil + k$.

4. Results of S_{23} -structure and substructure connectivity of $D_{k,n}$

For any vertex u in $D_{k,n}$, it has (n - 1 + k) neighbors: (n - 1) neighbors in a copy of $D_{0,n}$, denoted by $D'_{0,n}$ and k neighbors outside of $D'_{0,n}$, denoted by u^1, u^2, \ldots, u^k . In $D_{1,n}$, the vertex u^1 is called an out neighbor of u; in $D_{2,n}$, the vertex u^2 is called an out neighbor of u, moreover, u and u^1 are in the same copy $D^i_{1,n}$ for $i \in I_{2,n}$. So in $D_{k,n}$, the vertex u^k is called an out neighbor of u and $u, u^1, u^2, \ldots, u^{k-1}$ are in the same copy $D^i_{k-1,n}$ for $j \in I_{k,n}$. In the same dimensional copy, each vertex has only one out neighbor, so there is no edge (u^i, u^j) . Thus, u^i and u^j have no other common neighbors except for vertex u for $u^i, u^j \in \{u^1, u^2, \ldots, u^k\}$.

In this part, we prove the results of S_{23} structure and substructure connectivity of $D_{k,n}$.

Lemma 4.1. Let S_{23} be a 2-step star with 7 vertices. For any vertex v in $D_{k,n}$, it has k neighbors outside of a $D_{0,n}$, denoted by $\{v^1, v^2, \ldots, v^k\}$. Let $T = \{v^1, v^2, \ldots, v^k\}$. Then $|V(S_{23})| \cap |T| \le 2$.

Proof. Assume that $v \in V(D_{k-1,n}^{i})$ for $i \in I_{k,n}$. Let *w* be the center vertex of the S_{23} in $D_{k-1,n}^{l}$ for $i \neq l \in I_{k,n}$. (The case of *w* in $D_{k-1,n}^{i}$ is similar to the case of *w* in $D_{k-1,n}^{l}$.) Let w^{k} be the out neighbor of *w*, furthermore, w^{1} and w^{2} be neighbors of *w* in $D_{k-1,n}^{l}$. If w^{k} is in $D_{k-1,n}^{i}$, then the S_{23} has two vertices in $D_{k-1,n}^{i}$. Since each vertex has only one out neighbor, it is clearly that v^{k} is not an out neighbor of w^{1} or w^{2} . Since there is no edge (v^{i}, v^{j}) for $v^{i}, v^{j} \in \{v^{1}, v^{2}, \ldots, v^{k-1}\}$, we have $|V(S_{23})| \cap |T| \leq 1$. If w^{k} is in $D_{k-1,n}^{j}$ for $i \neq l \neq j \in I_{k,n}$, then the S_{23} has two vertices in $D_{k-1,n}^{j}$. In this case, v^{k} can be a neighbor of w^{k} and the out neighbor of w^{1} or w^{2} can be v^{i} for $v^{i} \in \{v^{1}, v^{2}, \ldots, v^{k-1}\}$. (See Figure 5.) So we have $|V(S_{23})| \cap |T| \leq 2$. Next, we show that $|V(S_{23})| \cap |T| \geq 3$ does not hold. It is clearly that $v^{1}, v^{2}, \ldots, v^{k} \in V(D_{k-1,n}^{i}) \cup V(D_{k-1,n}^{j})$. The vertices of the S_{23} has at most 3 out neighbors and there is only one edge between any two copies, so at most two out neighbors of an S_{23} are in $D_{k-1,n}^{i}$ and $D_{k-1,n}^{j}$.

Lemma 4.2. Let $n \ge 8$ and $k \ge 3$. Then $\kappa(D_{k,n}, S_{23}) \le \lceil \frac{n-1}{7} \rceil + \frac{k}{2}$ for even k and $\kappa(D_{k,n}; S_{23}) \le \lceil \frac{n-2}{7} \rceil + \frac{k+1}{2}$ for odd k.

Proof. For any vertex v in $D_{k-1,n}^{i}$, let v be in $D_{0,n}^{i}$, where $D_{0,n}^{i} \cong K_{n}$, then v has k neighbors outside of $D_{0,n}^{i}$, denoted by $v^{1}, v^{2}, \ldots, v^{k}$ and n-1 neighbors in $D_{0,n}^{i}$.

When k is even. By Lemma 4.1, an S_{23} contains at most two vertices of v^1, v^2, \ldots, v^k , so there are $\frac{k}{2}$ S_{23} 's connecting to v outside of $D'_{0,n}$. Let $p \ge 0$, $q \ge 0$ be two positive integers such that n-1 = 7p+q, where $q \le 6$. If q = 0, then there are $p S_{23}$'s connecting to v in $D'_{0,n}$ and $\frac{k}{2} S_{23}$'s connecting to v outside of $D'_{0,n}$. If $1 \le q \le 6$, then there are $p S_{23}$'s connecting to v and q neighbors of v are left in $D'_{0,n}$ and $\frac{k}{2} S_{23}$'s connecting to v outside of $D'_{0,n}$. If $1 \le q \le 6$, then there are $p S_{23}$'s connecting to v and q neighbors of v are left in $D'_{0,n}$ and $\frac{k}{2} S_{23}$'s connecting to v outside of $D'_{0,n}$. Here we only illustrate the case when q = 1, denoted by u, other cases are similar. In $D_{k,n}$, the vertex u has at least three neighbors outside of $D'_{0,n}$, denoted by x, y, w, because $k \ge 3$. Let x', y', w' be the neighbors of x, y, w, respectively. Then u, x, y, w, x', y', w' constitute an S_{23} . Hence, there are $(p + 1) S_{23}$'s connecting to v in $D'_{0,n}$ when $1 \le q \le 6$. The graph $D_{k,n}$ will be disconnected by deleting $\lceil \frac{n-1}{7} \rceil + \frac{k}{2} S_{23}$'s.

When *k* is odd. By Lemma 4.1, there are $\frac{k-1}{2} S_{23}$'s connecting to the vertex *v* outside of $D'_{0,n}$ and v^k are left in $D^j_{k-1,n}$. We construct an S_{23} which contains v^k and v', where v' is the neighbor of *v* in $D'_{0,n}$. (See Figure 6.) Then there are $\lceil \frac{n-2}{7} \rceil S_{23}$'s connecting to *v* in $D'_{0,n}$ and $\frac{k-1}{2} + 1 S_{23}$'s connecting to the vertex *v* outside of $D'_{0,n}$. The graph $D_{k,n}$ will be disconnected by deleting $(\lceil \frac{n-2}{7} \rceil + \frac{k+1}{2}) S_{23}$'s.

Figure 5. An illustration for " w^k is in $D_{k-1,n}^j$ " in Lemma 4.1.

Figure 6. An illustration for the case which is "*k* is odd" in Lemma 4.2.

Lemma 4.3. Let $n \ge 8$ and $k \ge 8$. Then $\kappa^{s}(D_{k,n}; S_{23}) \ge \lceil \frac{n-1}{7} \rceil + \frac{k}{2}$ for even k, and $\kappa^{s}(D_{k,n}; S_{23}) \ge \lceil \frac{n-2}{7} \rceil + \frac{k+1}{2}$ for odd k.

AIMS Mathematics

Volume 8, Issue 4, 9877-9889.

Proof. We show that $\kappa^s(D_{k,n}, S_{23}) \ge \lceil \frac{n-1}{7} \rceil + \frac{k}{2}$ when k is even. Let $F = \{T | T \le S_{23}\}$ and $F^i = \{T_i | T_i \le S_{23}, T_i \cap D_{k-1,n}^i\}$ for $i \in I_{k,n}$. In the following, we prove that $D_{k,n} - F$ is connected when $|F| \le \lceil \frac{n-1}{7} \rceil + \frac{k}{2} - 1$. To the contrary, suppose that $D_{k,n} - F$ is disconnected and G_0 is a smallest component of $D_{k,n} - F$.

 $|V(F)| = \left(\left\lceil \frac{n-1}{7} \right\rceil + \frac{k}{2} - 1\right) * 7 \le \left(\frac{n-1+6}{7} + \frac{k}{2} - 1\right) * 7 = \frac{7}{2}k + n - 2 < 4k + n - 4 = \kappa_3(D_{k,n}).$

By Lemma 2.7, we have $|V(G_0)| \le 3$, thus discussion as follows:

Case 1. $|V(G_0)| = 1$.

Set $V(G_0) = \{v\}$. Thus $N(v) \subseteq V(F)$. To make the number of subgraphs of S_{23} 's minimum which contain the vertices in N(v), we should construct as many S_{23} 's as possible and each S_{23} needs to contain as many vertices in N(v) as possible. Since v has n - 1 neighbors in a $D_{0,n}$ which is denoted by $D'_{0,n}$ and has k neighbors v^1, v^2, \ldots, v^k outside of the $D'_{0,n}$, each S_{23} contains at most seven vertices in $D'_{0,n}$ or each S_{23} contains at most two vertices of v^1, v^2, \ldots, v^k by Lemma 4.1. Then $|F| \ge \lceil \frac{n-1}{7} \rceil + \frac{k}{2} > \lceil \frac{n-1}{7} \rceil + \frac{k}{2} - 1 \ge |F|$, a contradiction.

Case 2. $|V(G_0)| = 2$.

Set $V(G_0) = \{u, w\}$. Thus $N(\{u, w\}) \subseteq V(F)$. Let *u* be in a $D_{0,n}$, denoted by $D''_{0,n}$. If *w* is in $D''_{0,n}$, then *w* and *u* have (n - 2) common neighbors in $D''_{0,n}$. The vertex *w* has *k* neighbors outside of $D''_{0,n}$ and *v* also has *k* neighbors outside of $D''_{0,n}$. Furthermore, each S_{23} contains at most seven vertices in $D''_{0,n}$ or each S_{23} contains at most two vertices of the neighbors outside of the $D''_{0,n}$, by Lemma 4.1. So $|F| \ge \lfloor \frac{n-2}{7} \rfloor + \frac{2k}{2} = \lfloor \frac{n-2}{7} \rfloor + k > \lfloor \frac{n-1}{7} \rfloor + \frac{k}{2} - 1 \ge |F|$ for $n \ge 8$ and $k \ge 8$, a contradiction. If *w* is neighbors of *u* outside of $D''_{0,n}$, then *w* and *u* have no common neighbors. The vertex *u* has n - 1 neighbors in $D''_{0,n}$ and k - 1 neighbors outside of $D''_{0,n}$ except for *w*. Furthermore, each S_{23} contains at most seven vertices in $D''_{0,n}$ or each S_{23} contains at most two vertices of the neighbors. The vertex *u* has n - 1 neighbors in $D''_{0,n}$ and k - 1 neighbors outside of $D''_{0,n}$ except for *w*. Furthermore, each S_{23} contains at most seven vertices in $D''_{0,n}$ or each S_{23} contains at most two vertices of the neighbors outside of the $D''_{0,n}$, by Lemma 4.1. (The same situation for *w*.) So $|F| \ge 2 * \lfloor \frac{n-1}{7} \rfloor + 2 * \frac{k-1}{2} = 2 * \lfloor \frac{n-2}{7} \rfloor + (k-1) > \lfloor \frac{n-1}{7} \rfloor + \frac{k}{2} - 1 \ge |F|$ for $n \ge 8$ and $k \ge 8$, a contradiction.

Case 3. $|V(G_0)| = 3$.

Set $V(G_0) = \{x, y, z\}$. Thus $N(\{x, y, z\}) \subseteq V(F)$. To make the number of subgraphs of S_{23} 's minimum which contain the vertices in $N(\{x, y, z\})$, we should construct as many S_{23} 's as possible and each S_{23} needs to contain as many vertices in $N(\{x, y, z\})$ as possible. When x, y and z are in a same $D_{0,n}$, denoted by $D_{0,n}^{\prime\prime\prime}$, they have (n-3) common neighbors in $D_{0,n}^{\prime\prime\prime}$ and each of x, y, z has k neighbors outside of $D_{0,n}^{\prime\prime\prime}$. Each S_{23} contains at most seven vertices in $D_{0,n}^{\prime\prime\prime}$ or an S_{23} contains at most two vertices of their neighbors outside of $D_{0,n}^{\prime\prime\prime}$ by Lemma 4.1. Then $|F| \ge \lceil \frac{n-3}{7} \rceil + 3 * \frac{k}{2} > \lceil \frac{n-1}{7} \rceil + \frac{k}{2} - 1 \ge |F|$ for $n \ge 8$ and $k \ge 8$, a contradiction. When x, y and z are in two different $D_{0,n}$, without loss of generality, assume that x and y are in $D_{0,n}^{\prime\prime\prime}$ and z is in another $D_{0,n}$. Then x and y have (n-2) common neighbors, each of x, y has k neighbors outside of $D_{0,n}^{\prime\prime\prime}$. And z has (n-1) neighbors in a $D_{0,n}$ and (k-1) neighbors outside of $a D_{0,n}^{\prime\prime\prime}$. Then $|F| \ge \lceil \frac{n-2}{7} \rceil + \lceil \frac{n-1}{7} \rceil + 2 * \frac{k}{2} + \frac{k-1}{2} > \lceil \frac{n-1}{7} \rceil + \frac{k}{2} - 1 \ge |F|$ for $n \ge 8$ and $k \ge 8$, a contradiction. When x, y and z are in three different $D_{0,n}$, each of x, y, z has (n-1) neighbors outside of $x \ge 3$, a contradiction. When x, y and z are in three different $D_{0,n}$, each of x, y, z has (n-1) neighbors outside of $n \ge 8$ and $k \ge 8$, a contradiction. When x, y and z are in three different $D_{0,n}$, each of x, y, z has (n-1) neighbors outside of a $D_{0,n}$ and (k-1) neighbors outside of a $D_{0,n}$. Then $|F| \ge 3 * \lceil \frac{n-1}{7} \rceil + 3 * \frac{k-1}{2} > \lceil \frac{n-1}{7} \rceil + \frac{k}{2} - 1 \ge |F|$ for $n \ge 8$ and $k \ge 8$, a contradiction.

The proof of $\kappa^{s}(D_{k,n}, S_{23}) \ge \lceil \frac{n-2}{7} \rceil + \frac{k+1}{2}$ when k is odd is similar to the case when k is even.

By Lemma 4.2 and Lemma 4.3, we have the following result.

Theorem 4.4. Let $n \ge 8$, $k \ge 8$. Then $\kappa(D_{k,n}; S_{23}) = \kappa^s(D_{k,n}; S_{23}) = \lceil \frac{n-1}{7} \rceil + \frac{k}{2}$ for even k, and $\kappa(D_{k,n}; S_{23}) = \kappa^s(D_{k,n}; S_{23}) = \lceil \frac{n-2}{7} \rceil + \frac{k+1}{2}$ for odd k.

AIMS Mathematics

Volume 8, Issue 4, 9877-9889.

5. Conclusions

Structure connectivity and substructure connectivity are important parameters for measuring network fault tolerance. In this paper, we obtain that $\kappa(D_{k,n}; S_m) = \kappa^s(D_{k,n}; S_m) = \lceil \frac{n-1}{m+1} \rceil + k$ for $n \ge 4$, $k \ge 2$ and $1 \le m \le n + k - 2$. And when $n \ge 8$, $k \ge 8$, we prove that $\kappa(D_{k,n}; S_{23}) = \kappa^s(D_{k,n}; S_{23}) = \lceil \frac{n-1}{7} \rceil + \frac{k}{2}$ for even k, and $\kappa(D_{k,n}; S_{23}) = \kappa^s(D_{k,n}; S_{23}) = \lceil \frac{n-2}{7} \rceil + \frac{k+1}{2}$ for odd k.

Acknowledgments

This work is supported by the Science Found of Qinghai Province (No. 2021-ZJ-703), the National Science Foundation of China (Nos.11661068, 12261074 and 12201335).

Conflict of interest

No potential conflict of interest was reported by the authors.

References

- 1. J. A. Bondy, U.S.R. Murty, Graph Theory, New York: Springer, 2008.
- 2. N. W. Chang, S. Y. Hsieh, {2, 3}-extraconnectivities of hypercube-like networks, *J. Comput. System Sci.*, **79** (2013), 669–688. https://doi.org/10.1016/j.jcss.2013.01.013
- 3. J. Fàbrega, M. A. Fiol, On the extraconnectivity of graphs, *Discrete Math.*, **155** (1996), 49–57. https://doi.org/10.1016/0012-365X(94)00369-T
- C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, S. Lu, DCell: A scalable and fault-tolerant network structure fordata centers, In: Special Interest Group on Data Communication, *SIGCOMM.*, (2008), 75–86. https://doi.org/10.1145/1402958.1402968
- 5. J. Guo, M. Lu, The extra connectivity of bubble-sort star graphs, *Theor. Comput. Sci.*, **645** (2016), 91–99. https://doi.org/10.1016/j.tcs.2016.06.043
- 6. F. Harary, Conditional connectivity, *Networks.*, **13** (1983), 347–357. https://doi.org/10.1002/net.3230130303
- 7. S. Y. Hsieh, Y. H. Chang, Extraconnectivity of *k*-ary *n*-cube networks, *Theoret. Comput. Sci.*, **443** (2012), 63–69. https://doi.org/10.1016/j.tcs.2012.03.030
- 8. C. Li, S. Lin, S. Li, Structure connectivity and substructure connectivity of (*n*, *k*)-star graph networks, 2018 15th International Symposium on Pervasive Systems, Algorithms and Networks (I-SPAN).IEEE, (2018), 240–246. https://doi.org/10.1109/I-SPAN.2018.00046
- 9. C. Li, S. Lin, S. Li, Structure connectivity and substructure connectivity of star graphs, *Discrete Appl. Math.*, **284** (2020), 472–480. https://doi.org/10.1016/j.dam.2020.04.009
- 10. C. K. Lin, L. Zhang, J. Fan, D. Wang, Structure connectivity and substructure connectivity of hypercubes, *Theor. Comput. Sci.*, **634** (2016), 97–107. https://doi.org/10.1016/j.tcs.2016.04.014
- 11. D. Li, X. Hu, H. Liu, Structure connectivity and substructure connectivity of twisted hypercubes, *Theor. Comput. Sci.*, **796** (2019), 169–179. https://doi.org/10.1016/j.tcs.2019.09.007

- 12. H. Lv, T. Wu, Structure and substructure connectivity of Balanced Hypercubes, *Bull. Malays. Math. Sci. Soc.*, **43** (2020), 2659–2672. https://doi.org/10.1007/s40840-019-00827-4
- X. Li, J. Fan, C. K. Lin, B. Cheng, X. Jia, The extra connectivity, extra conditional diagnosability and *t/k*-diagnosability of the data center network DCell, *Theor. Comput. Sci.*, **766** (2019), 16–29. https://doi.org/10.1016/j.tcs.2018.09.014
- 14. Y. Lv, J. Fan, D. F. Hsu, C. K. Lin, Structure connectivity and substructure connectivity of *k*-ary *n*-cube networks, *Inform. Sci.*, **433** (2018), 115–124. https://doi.org/10.1016/j.ins.2017.11.047
- 15. S. A. Mane, Structure connectivity of hypercubes, *AKCE Int. J. Graphs Comb.*, **15** (2018), 49–52. https://doi.org/10.1016/j.akcej.2018.01.009
- 16. E. Sabir, J. Meng, Structure fault tolerance of hypercubes and folded hypercubes, *Theoret. Comput. Sci.*, **711** (2018), 44–55. https://doi.org/10.1016/j.tcs.2017.10.032
- 17. X. Wang, J. Fan, J. Zhou, C. K. Lin, The restricted *h*-connectivity of data center network DCell, *Discrete Appl. Math.*, **203** (2016), 144–157. https://doi.org/10.1016/j.dam.2015.09.002
- 18. W. H. Yang, J. X. Meng, Extraconnectivity of hypercubes, *Appl. Math. Lett.*, **22** (2009), 887–891. https://doi.org/10.1016/j.aml.2008.07.016
- 19. G. Zhang, D. Wang, Structure connectivity and substructure connectivity of bubble-sort star graph networks, *Appl. Math. Comput.*, **363** (2019), 124632. https://doi.org/10.1016/j.amc.2019.124632
- 20. G. Zhang, D. Wang, The structure fault tolerance of arrangement graphs, *Appl. Math. Comput.*, **400** (2021), 126039. https://doi.org/10.1016/j.amc.2021.126039
- 21. M. M. Zhang, J. X. Zhou, On *g*-extra connectivity of folded hypercubes, *Theoret. Comput. Sci.*, **593** (2015), 146–153. https://doi.org/10.1016/j.tcs.2015.06.008

 \bigcirc 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)