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Abstract: The structure connectivity κ(G; H) and substructure connectivity κs(G; H) are important
indicators to measure interconnection network’s fault tolerance and reliability. The data center network,
denoted by Dk,n, have been proposed for data centers as a server-centric interconnection network
structure, which can support millions of servers with high network capacity by only using commodity
switches. In this paper, we obtain κ(Dk,n; S m) and κs(Dk,n; S m) when k ≥ 2, n ≥ 4 and 1 ≤ m ≤ n+k−2.
Furthermore, we obtain both κ(Dk,n; S 23) and κs(Dk,n; S 23) for k ≥ 8 and n ≥ 8.
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1. Introduction

The topological structure of a computer interconnection network can be represented by a graph,
where the vertices represent processors and the edges represent communication links between
processors. The connectivity of a graph is an important parameter reflecting the strength between two
nodes in an interconnection network. The connectivity of a graph G, denoted by κ(G), is to delete the
minimum number of vertices such that the remaining part is disconnected. The classical connectivity
has certain limitations to measure the fault tolerance of the network, then Harary [6] proposed the
concept of the conditional connectivity. Later, Fàbrega et al. [3] proposed the concept of the g-extra
connectivity. The g-extra connectivity of G, denoted by κg(G), is the minimum cardinality of vertices
in G whose deletion would disconnect G, and each remaining component has more than g vertices. It
has triggered extensive research by scholars, and some results can be found in [2, 5, 7, 13, 18, 21].
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With the development of large-scale integration technology, a multi-processor system can contain
thousands of processors. When one of the processors fails, the processors around it may all be affected.
Therefore, it is necessary to consider deleting a certain structure in a network to measure the reliability
of the network. Considering the fault status of a certain structure, rather than individual vertices,
Lin et al. [10] have given the concepts of the structure connectivity and substructure connectivity.
Recently, the results on the structure connectivity and substructure connectivity have come out focusing
on networks. For example: hypercube network, folded hypercube network, star network, alternating
group network and so on. Many results of networks can be found in the literature [8–12,14–16,19,20].

A network may have thousands of substructures, so it is an important topic to study which
substructures are more valuable for the network reliability. A star as a substructure of a network is very
important. Because when the central node fails, all of its neighbors are affected. It is reasonable to
assume that a node in a network has different degrees of influence on its surrounding nodes. Therefore,
we can assign an impactability to each node v, denoted by imp(v). When imp(v) = 0, it means that
v has no effect on its neighbors; imp(v) = 1 means that v affects all its direct neighbors; imp(v) = 2
means that v affects not only all of its direct neighbors, but also its immediate neighbor’s neighbors. In
a network, the structure corresponding to the node v with imp(v) = 1 is an m-leaves star with v as the
center, denoted by S m. For v with imp(v) = 2, its corresponding structure is called a 2-step star with
m-leaves, denoted by S 2m, centered on v. (See Figure 1.)

v

v1 v2 v3 vm−1 vm
. . .

Sm

v

v1 v2 v3 vm−1 vm
. . .

S2m

. . .
u1 u2 u3 um−1 um

Figure 1. A star and a 2-step star with center vertices v.

2. Preliminaries

2.1. Basic notations and definitions

Given a graph G, let V(G), E(G) and (u, v) denote the set of vertices, the set of edges, and the edge
whose end vertices are u and v. The degree of the vertex u in graph G is the number of neighbors of
u, denoted by d(u). The neighbors of a vertex u in G is denoted by NG(u). For a set U ⊆ V(G), the
neighbors in V(G) − U of vertices in U are called the neighbors of U, denoted by NG(U). We denote
a complete graph with n vertices by Kn. A graph G is said to be k-regular if every vertex of it has k
neighbors. If G1 is a subgraph of G, denoted by G1 ⊆ G, then V(G1) ⊆ V(G) and E(G1) ⊆ E(G). If
G � H, then G is isomorphic to H. Let G1 ⪯ H denote G1 to be isomorphic to a connected subgraph
of H. We use G[H] to represent the subgraph induced by H, which consists of the vertex set of H and
the edge set {(u, v)|u, v ∈ V(H), (u, v) ∈ E(G)}. Terminologies not given here can be referred to [1].

Here is the definitions of the structure connectivity and substructure connectivity:
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Definition 2.1. Let H be a connected subgraph of G and F be a set of subgraphs of G such that every
element in F is isomorphic to H. If G − V(F) is disconnected, then F is called an H-structure cut. The
minimum cardinality of H-structure cuts is called H-structure connectivity of G, denoted by κ(G; H).

Definition 2.2. Let H be a connected subgraph of G and F s be a set of subgraphs of G such that
every element in F s is isomorphic to connected subgraph of H. If G − V(F) is disconnected, then F s is
called an H-substructure cut. The minimum cardinality of H-substructure cuts is called H-substructure
connectivity of G, denoted by κs(G; H).

Obviously, κs(G; H) ≤ κ(G; H).

2.2. The data center networks

For a positive integer n, we use [n] and ⟨n⟩ to denote the sets {1, 2, . . . , n} and {0, 1, 2 . . . , n},
respectively. For any positive integers k ≥ 0 and n ≥ 2, we use Dk,n to denote a k-dimensional
DCell with n-port switches. We use tk,n to denote the number of vertices in Dk,n with t0,n = n and
tk,n = tk−1,n × (tk−1,n + 1), where i ∈ [k]. Let I0,n = ⟨n − 1⟩ and Ii,n = ⟨ti−1,n⟩ for any i ∈ [k]. Let
Vk,n = {ukuk−1 . . . u0|ui ∈ ⟨ti−1,n⟩ and i ∈ ⟨k⟩}, and V l

k,n = {ukuk−1 . . . ul|ui ∈ ⟨ti−1,n⟩ and i ∈ {l, l + 1, . . . , k}
for any l ∈ [k]}. Clearly, |Vk,n| = tk,n and |V l

k,n| = tk,n/tl−1,n. The Dk,n is defined as follows.

Definition 2.3. The data center network Dk,n is a graph with the vertex set Vk,n, where a vertex u =
ukuk−1 . . . ui . . . u0 is adjacent to a vertex v = vkvk−1 . . . vi . . . v0 if and only if there is an positive integer
l with

(1) ukuk−1 . . . ul = vkvk−1 . . . vl,
(2) ul−1 , vl−1,
(3) ul−1 = v0 +

∑l−2
j=1(v j × t j−1,n) and vl−1 = u0 +

∑l−2
j=1(u j × t j−1,n) + 1 with l ≥ 1.

Lemma 2.4. [4] Let Dk,n be the data center network with k ≥ 0 and n ≥ 2.
(1) D0,n is a complete graph with n vertices labeled as 0, 1, 2, . . . , n − 1.
(2) For k ≥ 1, Dk,n consists of tk−1,n + 1 copies of Dk−1,n denoted by Di

k−1,n, for each i ∈ ⟨tk−1,n⟩.
There is one edge between Di

k−1,n and D j
k−1,n for any i, j ∈ Ik,n and i , j. This implies that the outside

neighbors of vertices in Di
k−1,n belong to different copies of D j

k−1,n for j , i and i, j ∈ Ik,n.
(3) For any two distinct vertices u, v in Di

k−1,n, N
D

Ik,n\{i}
k−1,n

(u)∩ N
D

Ik,n\{i}
k−1,n

(v) = ∅ and |N
D

Ik,n\{i}
k−1,n

(u)| = 1.

Lemma 2.5. [4] For any positive integers n ≥ 2 and k ≥ 0, Dk,n has the following combinatorial
properties.

(1) Dk,n is (n + k − 1)-regular with tk,n vertices and (n+k−1)tk,n
2 edges.

(2) κ(Dk,n) = λ(Dk,n) = n + k − 1.
(3) For any integer k ≥ 0, there is no cycle of length 3 in Dk,2 and for any integer n ≥ 3 and k ≥ 0,

there exist cycles of length 3 in Dk,n.
(4) The number of vertices in Dk,n satisfies tk,n ≥ (n + 1

2 )2k
− 1

2 .

Lemma 2.6. [17] There exist tk−1,n disjoint paths (in which any two paths have no common vertices)
joining Di

k−1,n and D j
k−1,n for i, j ∈ Ik,n, denoted by P(Di

k−1,n,D
j
k−1,n).

Lemma 2.7. [13] For any positive integers n ≥ 2, k ≥ 2, and 0 ≤ g ≤ n − 1, the g-extra connectivity
of Dk,n is κg(Dk,n) = (g + 1)(k − 1) + n.
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The graph D0,n generates Dk,n after k iterations. For any vertex u in D0,n, an out neighbor is added
every iteration. The graph Di,n consists of ti−1,n + 1 copies of Di−1,n. Let ui be the out neighbor of u in
Di,n, and (u, ui) be denoted by i edge for 1 ≤ i ≤ k. So each vertex in some D0,n has k neighbors and k
edges outside of D0,n in Dk,n. Several data center networks with small parameters k and n, see Figure
2.
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Figure 2. Several data center networks with small parameters k and n.

3. Results of S m-structure and substructure connectivity of Dk,n

Lemma 3.1. κ(Dk,n; S m) ≤ ⌈ n−1
m+1⌉ + k for n ≥ 4, k ≥ 2 and 1 ≤ m ≤ n + k − 2.

Proof. For any v ∈ V(Di
k−1,n) for i ∈ Ik,n. By the structure of Dk,n, we know that v belongs to some D0,n.

Let the D0,n which v is in it be D′0,n. Since v has n−1 neighbors in D′0,n and has k neighbors v1, v2, . . . , vk

outside of the D′0,n, d(v) = n + k − 1 in Dk,n. By the construction of Dk,n, we know that v j is the out
neighbor of v in D j,n and v j in a D0,n, denoted by D′ j0,n and let v j be the center vertex of an S m in D′ j0,n for
1 ≤ j ≤ k. Since there is only one edge between different copies in the same dimension, the S m in D′ j0,n
and the S m in D′i0,n have no common vertices for 1 ≤ i, j ≤ k and i , j. Thus, there are k S m’s outside
of D′0,n connecting to v. (See Figure3.)

When 1 ≤ m ≤ n − 3. Let p ≥ 0, q ≥ 0 be two positive integers such that n − 1 = (m + 1)p + q,
where 0 ≤ q ≤ m. If q = 0, then there are p S m’s connecting to v in D′0,n and k S m’s connecting to v
outside of D′0,n. If 1 ≤ q ≤ m, then it means that after deleting p S m’s in D′0,n there are q vertices left,
except for v. Suppose that w is one of the remaining q vertices and w is the center vertex of an S m.
Then these q − 1 neighbors of w in D′0,n and the k neighbors outside of D′0,n can construct an S m. Thus,
there are (⌈ n−1

m+1⌉ + k) S m’s connecting to v. The graph Dk,n will be disconnected by deleting (⌈ n−1
m+1⌉ + k)

S m’s. Hence, the lemma holds. □

When n − 2 ≤ m ≤ n + k − 2, we have ⌈ n−1
m+1⌉ + k = 1 + k. Let u be the center vertex of an S m in

D′0,n. Then u has n − 2 neighbors in D′0,n and k neighbors outside of D′0,n which can construct an S m

connecting to v. It is clearly that there are (k+ 1) S m’s connecting to v. Thus, Dk,n will be disconnected
by deleting (k + 1) S m’s.
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Figure 3. Graph Explanation of Lemma 3.1.

Lemma 3.2. Let F = {T |T � K1 or T � S m, n − 2 ≤ m ≤ n}. Then D2,n − F is connected for n ≥ 4 and
|F| ≤ 2.

Proof. To prove this lemma by induction n. Clearly, D2,4 − F is connected when |F| ≤ 2. Suppose
that D2,n−1 − F is connected when |F| ≤ 2 for F = {T |T � K1 or T � S m, n − 3 ≤ m ≤ n − 1}. When
F = {T |T � K1} and |F| ≤ 2, it is obviously that D2,n − F is connected. When F = {T |T � S m, n − 2 ≤
m ≤ n}, it means that the center vertex of each S m in D2,n has at most one more neighbor deleted than
the center vertex of each S m in D2,n−1. Since by the structure of D2,n−1 and D2,n, for any vertex v in
D2,n−1, d(v) = n, and for any vertex u in D2,n, d(u) = n + 1. Thus, D2,n − F is connected.

□

Lemma 3.3. Let F = {T |T � K1 or T � S m, 1 ≤ m ≤ n − 3}. Then D2,n − F is connected for n ≥ 4 and
|F| ≤ ⌈ n−1

m+1⌉ + 1.

Proof. To prove this lemma by induction n. When n = 4, we have m = 1, F = {T |T � K1 or T � S 1},
where S 1 � K2 and ⌈ n−1

m+1⌉+ 1 = ⌈ 3
2⌉+ 1 = 3. It is easy to check that D2,4 −F is connected when |F| ≤ 3.

Suppose that D2,n−1 − F is connected when |F| ≤ ⌈ n−2
m+1⌉ + 1 for 1 ≤ m ≤ n − 4. It suffices to show that

D2,n − F is connected when |F| ≤ ⌈ n−1
m+1⌉ + 1 for 1 ≤ m ≤ n − 3.

If ⌈ n−1
m+1⌉ + 1 = ⌈ n−2

m+1⌉ + 1, then the conclusion obviously holds.
Suppose that ⌈ n−1

m+1⌉+1−(⌈ n−2
m+1⌉+1) = 1. When F = {T |T � K1}, we have |F| ≤ ⌈ n−1

m+1⌉+1 = n−1+1 =
n. Since κ(D2,n) = n + 1, by Lemma 2.5, D2,n − F is connected. When F = {T |T � S m, 1 ≤ m ≤ n − 3},
by inductive hypothesis, D2,n−1 − F is connected for |F| ≤ ⌈ n−2

m+1⌉ + 1 and 1 ≤ m ≤ n − 4. Since
⌈ n−1

m+1⌉ + 1 − (⌈ n−2
m+1⌉ + 1) = 1, it means that only more one S m is deleted in D2,n than in D2,n−1. Let the

center vertex of this S m be u.
Assume that u is in Di

1,n for i ∈ I2,n. Let F i = F ∩ Di
1,n. By the structure of Dk,n, we know that D1,n

is made up of n + 1 copies of D0,n, where D0,n � Kn and D1,n−1 is made up of n copies of D0,n−1, where
D0,n−1 � Kn−1. When D1,n−1 goes to D1,n, each copy of D0,n−1 adds a vertex to D0,n, and another copy
of D0,n is added. In this case, u is a new vertex from D1,n−1 to D1,n. By the structure of D2,n, u has only
one out neighbor u′ ∈ V(Dk

1,n), it is clearly that Dk
1,n − Fk is connected, so G[∪i,l∈I1,nV(Dl

1,n − F l)] is

AIMS Mathematics Volume 8, Issue 4, 9877–9889.
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connected for i ∈ I2,n. Since Di
1,n � D1,n, u is in a D0,n, denoted by D′0,n. For any a vertex v in Di

1,n − F i,
if v < V(D′0,n), then it is clearly that v connects G[∪i,l∈I1,nV(Dl

1,n − F l)]. If v ∈ V(D′0,n), since D′0,n � Kn,
then we have that v′ which is a neighbor of v connects G[∪i,l∈I1,nV(Dl

1,n−F l)]. So D2,n−F is connected.
Assume that u is in Di

1,n−1 for i ∈ I2,n−1. Let Fi = F ∩Di
1,n−1. By the structure of D2,n, u has only one

out neighbor u′ ∈ V(D j
1,n−1). If D2,n−1−F is disconnected, then Di

1,n−1−Fi or D j
1,n−1−F j is disconnected

and G[∪l∈I2,n−1V(Dl
1,n − F l)] is connected for i , j, i , l, j , l. Without loss of generality, suppose that

Di
1,n−1−Fi is disconnected. For any vertex w of each component of Di

1,n−1−Fi adds a new neighbor w′,
when Di

1,n−1 becomes Di
1,n. We have that w′ has an out neighbor w′′ which is in G[∪l∈I2,nV(Dl

1,n − F l)]
for i , j, i , l, j , l. (See Figure 4.) It is clearly that G[∪ j,l∈I1,nV(Dl

1,n − F l)] is connected for j ∈ I2,n.
|V(F)| ≤ (⌈ n−1

m+1⌉ + 1) ∗ (m + 1)
= ⌈ n−1

m+1⌉ ∗ (m + 1) + m + 1
≤ n−1+m

m+1 ∗ (m + 1) + m + 1
= n + 2m
≤ n + 2(n − 3)
= 3n − 6.

w

w′

w′′

Di
1,n−1 − Fi

Dj
1,n−1 − Fj

G[∪i 6=j 6=l∈I2,nV (Dl
1,n − F l)]

Figure 4. An illustration for “w′′ is in G[∪i, j,l∈I2,nV(Dl
1,n − F l)]” in Lemma 3.3.

By Lemma 2.6, there exist t1,n disjoint paths (in which any two paths have no common vertices) joining
Di

1,n and D j
1,n for i, j ∈ I2,n, then we can get that t1,n ≥ (n − 1

2 )2 + 1
2 for n ≥ 4, furthermore t1,n ≥

(n + 1
2 )2 + 1

2 > 3n − 6 ≥ |V(F)|. This implies that there is at least a path between Di
1,n and D j

1,n in
D2,n − F. So D2,n − F is connected when |F| ≤ ⌈ n−1

m+1⌉ + 1.
□

Lemma 3.4. κs(Dk,n; S m) ≥ ⌈ n−1
m+1⌉ + k for n ≥ 4, k ≥ 2 and 1 ≤ m ≤ n + k − 2.

Proof. For an positive integer t, let F = {T j|T j � K1 or T j � S m, 1 ≤ m ≤ n + k − 2, 1 ≤ j ≤ t} and
|F| = t. Let F i = {T j|T j � K1 or T j � S m,T j ∩ Di

k−1,n, 1 ≤ m ≤ n + k − 2, 1 ≤ j ≤ t} and Ci be the set of
the center vertex of F in Di

k−1,n for i ∈ Ik,n. Divide it into the following two cases:
Case 1. n − 2 ≤ m ≤ n + k − 2.
Note that n − 2 ≤ m ≤ n + k − 2, it is clearly that ⌈ n−1

m+1⌉ = 1. Thus, κs(Dk,n, S m) ≥ ⌈ n−1
m+1⌉ + k = 1 + k

for n ≥ 4 and k ≥ 2. We need to show that Dk,n −F is connected when |F| ≤ k. To prove it by induction

AIMS Mathematics Volume 8, Issue 4, 9877–9889.
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on k. When k = 2, D2,n − F is connected by Lemma 3.2. For each S m (n − 2 ≤ m ≤ n + k − 2) in
Dk,n, there might be one more vertex than the S m (n − 2 ≤ m ≤ n + k − 3) in Dk−1,n, but each vertex in
Dk,n has one more neighbor than the S m in Dk−1,n, so we don’t have to think about the size of S m that
we delete here, we think about the number of S m that we delete. Suppose that Dk−1,n − F is connected
when |F| ≤ k − 1. In the following, we prove that Dk,n − F is connected when |F| ≤ k for k ≥ 3.

Case 1.1 |Ci| = k.
By the structure of Dk,n, each center vertex of S m in Di

k−1,n has at most an out neighbor in D j
k−1,n,

thus |F j| ≤ 1 for i , j ∈ Ik,n, so the subgraph induced by
⋃

i, j∈Ik,n
V(D j

k−1,n − F j) is connected. For any
vertex u ∈ V(Di

k−1,n − F i), we have that u has an out neighbor u′ in G[∪i, j∈Ik,n(D
j
k−1,n − F j)]. By Lemma

2.4(2), we know that u′ < V(F). It means that u connects G[∪i, j∈Ik,n(D
j
k−1,n − F j)]. Thus, Dk,n − F is

connected when |F| ≤ k.
Case 1.2 |Ci| = k − 1.
Let w be the center vertex of S m in Dl

k−1,n for i , l ∈ Ik,n.
Suppose that w has no out neighbor in Di

k−1,n. If w has an out neighbor in D j
k−1,n and a center vertex

of S m in Di
k−1,n also has an out neighbor in D j

k−1,n, then |F j| = 2 for i , l , j ∈ Ik,n. By the induction
hypothesis, D j

k−1,n is connected for j ∈ Ik,n. By Lemma 2.4(2) and Lemma 2.5(4), we can get that each
copy has tk−1,n out edges and tk−1,n ≥ (n + 1

2 )2k−1
− 1

2 > 2 for n ≥ 4, k ≥ 3. Thus, the subgraph induced
by
⋃

i, j∈Ik,n
V(D j

k−1,n − F j) is connected. For any vertex u ∈ V(Di
k−1,n − F i), we have that u has an out

neighbor u′ in G[∪i, j∈Ik,n(D
j
k−1,n − F j)]. By Lemma 2.4(2), we know that u′ < V(F). It implies that u

connects G[∪i, j∈Ik,n(D
j
k−1,n − F j)]. Thus, Dk,n − F is connected.

Suppose that w has an out neighbor in Di
k−1,n. So w has no out neighbor in D j

k−1,n, it follows that
|F j| ≤ 1 for i , l , j ∈ Ik,n. By induction hypothesis, Di

k−1,n may be disconnected but D j
k−1,n is

connected for i , j ∈ Ik,n. So the subgraph induced by
⋃

i, j∈Ik,n
V(D j

k−1,n − F j) is connected. For any
vertex u ∈ V(Di

k−1,n − F i), we have that u has an out neighbor u′ in G[∪i, j∈Ik,n(D
j
k−1,n − F j)]. By Lemma

2.4(2), we know that u′ < V(F). It means that u connects G[∪i, j∈Ik,n(D
j
k−1,n − F j)]. Thus, Dk,n − F is

connected.
Case 1.3 |Ci| ≤ k − 2.
Suppose that all center vertices of S m’s which are outside of Di

k−1,n have an out neighbor in Di
k−1,n.

Hence, |F i| = k, then Di
k−1,n − F i may be disconnected. Since each vertex has only an out neighbor, we

know that D j
k−1,n−F j is connected for i , j ∈ Ik,n. So the subgraph induced by

⋃
i, j∈Ik,n

V(D j
k−1,n−F j) is

connected. For any vertex u ∈ V(Di
k−1,n−F i), we have that u has an out neighbor u′ in G[∪i, j∈Ik,n(D

j
k−1,n−

F j)]. By Lemma 2.4(2), we know that u′ < V(F). It means that u connects G[∪i, j∈Ik,n(D
j
k−1,n − F j)].

Thus, Dk,n − F is connected.
Suppose that at least one center vertex of S m which is outside of Di

k−1,n has no out neighbor in Di
k−1,n.

By induction hypothesis, Di
k−1,n is connected for i ∈ Ik,n. When |F| ≤ k, we have |V(F)| ≤ k ∗ (n+ k−2).

By the structure of Dk,n, it has tk−1 + 1 copies of Dk−1,n. By Lemma 2.5(4), we get that tk−1,n + 1 ≥
(n + 1

2 )2k−1
+ 1

2 and tk−1,n + 1 ≥ (n + 1
2 )2k−1

+ 1
2 > k ∗ (n + k − 2) when n ≥ 4, k ≥ 3. It means that there

is at least a copy Dh
k−1,n which is not deleted the vertices, so |Fh| = 0. By Lemma 2.6, there exist tk−1,n

disjoint paths joining Dh
k−1,n and Di

k−1,n for i, h ∈ Ik,n. Thus, Dk,n − F is connected.
Case 2. 1 ≤ m ≤ n − 3.
We prove it by induction on k. When k = 2, D2,n − F is connected by Lemma 3.3. Suppose that
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Dk−1,n − F is connected for |F| ≤ ⌈ n−1
m+1⌉ + k − 2. Divide it into the three subcases to prove that Dk,n − F

is connected when |F| ≤ ⌈ n−1
m+1⌉ + k − 1 for k ≥ 3.

Case 2.1 |Ci| = ⌈ n−1
m+1⌉ + k − 1 for i ∈ Ik,n.

By the structure of Dk,n, each center vertex of S m in Di
k−1,n has at most an out neighbor in D j

k−1,n, so
|F j| ≤ 1 for i , j ∈ Ik,n, furthermore, the subgraph induced by G[∪i, j∈Ik,n(D

j
k−1,n − F j)] is connected.

For any vertex u ∈ V(Di
k−1,n − F i), we have that u has an out neighbor u′ in G[∪i, j∈Ik,n(D

j
k−1,n − F j)].

By Lemma 2.4(2), we know that u′ < V(F). It means that u connects G[∪i, j∈Ik,n(D
j
k−1,n − F j)]. Thus,

Dk,n − F is connected when |F| ≤ ⌈ n−1
m+1⌉ + k − 1 for k ≥ 3.

Case 2.2 |Ci| = ⌈ n−1
m+1⌉ + k − 2 for i ∈ Ik,n.

Let w be the center vertex of S m in Dh
k−1,n for i , h ∈ Ik,n.

Suppose that w has no out neighbor in Di
k−1,n. If w has an out neighbor in D j

k−1,n and a center vertex
of S m in Di

k−1,n also has an out neighbor in D j
k−1,n, then |F j| = 2 for i , h , j ∈ Ik,n. By induction

hypothesis, D j
k−1,n is connected for j ∈ Ik,n. By Lemma 2.4(2) and Lemma 2.5(4), we can get that each

copy has tk−1,n out edges and tk−1,n ≥ (n + 1
2 )2k−1

− 1
2 > 2 for n ≥ 4, k ≥ 3. It means that the graph

induced by
⋃

i, j∈Ik,n
V(D j

k−1,n − F j) is connected. For any vertex u ∈ V(Di
k−1,n − F i), we have that u has

an out neighbor u′ in G[∪i, j∈Ik,n(D
j
k−1,n − F j)]. By Lemma 2.4(2), we know that u′ < V(F). It implies

that the vertex u connects G[∪i, j∈Ik,n(D
j
k−1,n − F j)]. Thus, Dk,n − F is connected.

Suppose that w has an out neighbor in Di
k−1,n. So w has no out neighbor in D j

k−1,n, it follows that
|F j| ≤ 1 for i , h , j ∈ Ik,n. By induction hypothesis, Di

k−1,n may be disconnected, but D j
k−1,n is

connected for i , j ∈ Ik,n. So the subgraph induced by
⋃

i, j∈Ik,n
V(D j

k−1,n − F j) is connected. For any
vertex u ∈ V(Di

k−1,n − F i), we have that u has an out neighbor u′ in G[∪i, j∈Ik,n(D
j
k−1,n − F j)]. By Lemma

2.4(2), we know that u′ < V(F). It means that u connects G[∪i, j∈Ik,n(D
j
k−1,n − F j)]. Thus, Dk,n − F is

connected.
Case 2.3 |Ci| ≤ ⌈ n−1

m+1⌉ + k − 3 for i ∈ Ik,n.
Suppose that the center vertices of S m’s which are outside of Di

k−1,n have an out neighbor in Di
k−1,n.

Hence, |F i| = ⌈ n−1
m+1⌉ + k − 1, furthermore, Di

k−1,n − F i may be disconnected. Since each vertex has
only an out neighbor, we have that D j

k−1,n − F j is connected for i , j ∈ Ik,n. So the subgraph induced
by
⋃

i, j∈Ik,n
V(D j

k−1,n − F j) is connected. For any vertex u ∈ V(Di
k−1,n − F i), we have that u has an out

neighbor u′ in G[∪i, j∈Ik,n(D
j
k−1,n − F j)]. By Lemma 2.4(2), we know that u′ < V(F). It means that u

connects G[∪i, j∈Ik,n(D
j
k−1,n − F j)]. Thus, Dk,n − F is connected.

Next, we consider that |F i| ≤ ⌈ n−1
m+1⌉+ k− 2. By induction hypothesis, Di

k−1,n is connected for i ∈ Ik,n.
Hence,

|V(F)| = (⌈ n−1
m+1⌉ + k − 1) ∗ (m + 1)

= ⌈ n−1
m+1⌉ ∗ (m + 1) + (k − 1) ∗ (m + 1)

< 2(n − 1) + (k − 1) ∗ (m + 1)
≤ 2(n − 1) + (k − 1) ∗ (n − 2)
< 2(n − 1) + (k − 1) ∗ (n − 1)
= (n − 1) ∗ (k + 1).

By the structure of Dk,n and Lemma 2.5(4), we can get that tk−1,n + 1 ≥ (n + 1
2 )2k−1

+ 1
2 . It is easy to

check that tk−1,n + 1 ≥ (n + 1
2 )2k−1

+ 1
2 > (n − 1) ∗ (k + 1) > |V(F)| for n ≥ 4 and k ≥ 3. It implies that at
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least one copy Ds
k−1,n is not deleted a vertex for s ∈ Ik,n. By Lemma 2.6, there exist tk−1,n disjoint paths

joining Ds
k−1,n and Di

k−1,n for i, s ∈ Ik,n, so Dk,n − F is connected.
□

By Lemma 3.1 and Lemma 3.4, we obtain the following result.

Theorem 3.5. Let n ≥ 4, k ≥ 2 and 1 ≤ m ≤ n + k − 2. Then κ(Dk,n; S m) = κs(Dk,n; S m) = ⌈ n−1
m+1⌉ + k.

4. Results of S 23-structure and substructure connectivity of Dk,n

For any vertex u in Dk,n, it has (n − 1 + k) neighbors: (n − 1) neighbors in a copy of D0,n, denoted
by D′0,n and k neighbors outside of D′0,n, denoted by u1, u2, . . . , uk. In D1,n, the vertex u1 is called an out
neighbor of u; in D2,n, the vertex u2 is called an out neighbor of u, moreover, u and u1 are in the same
copy Di

1,n for i ∈ I2,n. So in Dk,n, the vertex uk is called an out neighbor of u and u, u1, u2, . . . , uk−1 are in
the same copy Di

k−1,n for j ∈ Ik,n. In the same dimensional copy, each vertex has only one out neighbor,
so there is no edge (ui, u j). Thus, ui and u j have no other common neighbors except for vertex u for
ui, u j ∈ {u1, u2, . . . , uk}.

In this part, we prove the results of S 23 structure and substructure connectivity of Dk,n.

Lemma 4.1. Let S 23 be a 2-step star with 7 vertices. For any vertex v in Dk,n, it has k neighbors outside
of a D0,n, denoted by {v1, v2, . . . , vk}. Let T = {v1, v2, . . . , vk}. Then |V(S 23)| ∩ |T | ≤ 2.

Proof. Assume that v ∈ V(Di
k−1,n) for i ∈ Ik,n. Let w be the center vertex of the S 23 in Dl

k−1,n for
i , l ∈ Ik,n. (The case of w in Di

k−1,n is similar to the case of w in Dl
k−1,n.) Let wk be the out neighbor of

w, furthermore, w1 and w2 be neighbors of w in Dl
k−1,n. If wk is in Di

k−1,n, then the S 23 has two vertices
in Di

k−1,n. Since each vertex has only one out neighbor, it is clearly that vk is not an out neighbor of
w1 or w2. Since there is no edge (vi, v j) for vi, v j ∈ {v1, v2, . . . , vk−1}, we have |V(S 23)| ∩ |T | ≤ 1. If
wk is in D j

k−1,n for i , l , j ∈ Ik,n, then the S 23 has two vertices in D j
k−1,n. In this case, vk can be a

neighbor of wk and the out neighbor of w1 or w2 can be vi for vi ∈ {v1, v2, . . . , vk−1}. (See Figure 5.)
So we have |V(S 23)| ∩ |T | ≤ 2. Next, we show that |V(S 23)| ∩ |T | ≥ 3 does not hold. It is clearly that
v1, v2, . . . , vk ∈ V(Di

k−1,n) ∪ V(D j
k−1,n). The vertices of the S 23 has at most 3 out neighbors and there is

only one edge between any two copies, so at most two out neighbors of an S 23 are in Di
k−1,n and D j

k−1,n.
Thus, |V(S 23)| ∩ |T | ≤ 2.

□

Lemma 4.2. Let n ≥ 8 and k ≥ 3. Then κ(Dk,n, S 23) ≤ ⌈n−1
7 ⌉+

k
2 for even k and κ(Dk,n; S 23) ≤ ⌈n−2

7 ⌉+
k+1

2
for odd k.

Proof. For any vertex v in Di
k−1,n, let v be in D′0,n, where D′0,n � Kn, then v has k neighbors outside of

D′0,n, denoted by v1, v2, . . . , vk and n − 1 neighbors in D′0,n.
When k is even. By Lemma 4.1, an S 23 contains at most two vertices of v1, v2, . . . , vk, so there are k

2
S 23’s connecting to v outside of D′0,n. Let p ≥ 0, q ≥ 0 be two positive integers such that n−1 = 7p+q,
where q ≤ 6. If q = 0, then there are p S 23’s connecting to v in D′0,n and k

2 S 23’s connecting to v outside
of D′0,n. If 1 ≤ q ≤ 6, then there are p S 23’s connecting to v and q neighbors of v are left in D′0,n and k

2
S 23’s connecting to v outside of D′0,n. Here we only illustrate the case when q = 1, denoted by u, other
cases are similar. In Dk,n, the vertex u has at least three neighbors outside of D′0,n, denoted by x, y,w,
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because k ≥ 3. Let x′, y′,w′ be the neighbors of x, y,w, respectively. Then u, x, y,w, x′, y′,w′ constitute
an S 23. Hence, there are (p + 1) S 23’s connecting to v in D′0,n when 1 ≤ q ≤ 6. The graph Dk,n will be
disconnected by deleting ⌈ n−1

7 ⌉ +
k
2 S 23’s.

When k is odd. By Lemma 4.1, there are k−1
2 S 23’s connecting to the vertex v outside of D′0,n and vk

are left in D j
k−1,n. We construct an S 23 which contains vk and v′, where v′ is the neighbor of v in D′0,n.

(See Figure 6.) Then there are ⌈ n−2
7 ⌉ S 23’s connecting to v in D′0,n and k−1

2 + 1 S 23’s connecting to the
vertex v outside of D′0,n. The graph Dk,n will be disconnected by deleting (⌈n−2

7 ⌉ +
k+1

2 ) S 23’s. □

Di
k−1,n

Dj
k−1,n

v

v1

vk−1

vk

D′
0,n

w

wk

Dl
k−1,nw2

w1

vk−2

Figure 5. An illustration for “wk is in D j
k−1,n” in Lemma 4.1.

Di
k−1,n

Dj
k−1,n

v

v1

vk−1

vk

D′
0,n

w

wk

Dl
k−1,n

w2
w1

v2

v′

Figure 6. An illustration for the case which is “k is odd” in Lemma 4.2.

Lemma 4.3. Let n ≥ 8 and k ≥ 8. Then κs(Dk,n; S 23) ≥ ⌈ n−1
7 ⌉ +

k
2 for even k, and κs(Dk,n; S 23) ≥

⌈ n−2
7 ⌉ +

k+1
2 for odd k.
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Proof. We show that κs(Dk,n, S 23) ≥ ⌈ n−1
7 ⌉ +

k
2 when k is even. Let F = {T |T ⪯ S 23} and F i = {Ti|Ti ⪯

S 23,Ti∩Di
k−1,n} for i ∈ Ik,n. In the following, we prove that Dk,n−F is connected when |F| ≤ ⌈n−1

7 ⌉+
k
2−1.

To the contrary, suppose that Dk,n − F is disconnected and G0 is a smallest component of Dk,n − F.
|V(F)| = (⌈ n−1

7 ⌉ +
k
2 − 1) ∗ 7 ≤ (n−1+6

7 + k
2 − 1) ∗ 7 = 7

2k + n − 2 < 4k + n − 4 = κ3(Dk,n).
By Lemma 2.7, we have |V(G0)| ≤ 3, thus discussion as follows:
Case 1. |V(G0)| = 1.
Set V(G0) = {v}. Thus N(v) ⊆ V(F). To make the number of subgraphs of S 23’s minimum which

contain the vertices in N(v), we should construct as many S 23’s as possible and each S 23 needs to
contain as many vertices in N(v) as possible. Since v has n− 1 neighbors in a D0,n which is denoted by
D′0,n and has k neighbors v1, v2, . . . , vk outside of the D′0,n, each S 23 contains at most seven vertices in
D′0,n or each S 23 contains at most two vertices of v1, v2, . . . , vk by Lemma 4.1. Then |F| ≥ ⌈n−1

7 ⌉ +
k
2 >

⌈ n−1
7 ⌉ +

k
2 − 1 ≥ |F|, a contradiction.

Case 2. |V(G0)| = 2.
Set V(G0) = {u,w}. Thus N({u,w}) ⊆ V(F). Let u be in a D0,n, denoted by D′′0,n. If w is in D′′0,n,

then w and u have (n − 2) common neighbors in D′′0,n. The vertex w has k neighbors outside of D′′0,n
and v also has k neighbors outside of D′′0,n. Furthermore, each S 23 contains at most seven vertices in
D′′0,n or each S 23 contains at most two vertices of the neighbors outside of the D′′0,n, by Lemma 4.1. So
|F| ≥ ⌈n−2

7 ⌉ +
2k
2 = ⌈

n−2
7 ⌉ + k > ⌈ n−1

7 ⌉ +
k
2 − 1 ≥ |F| for n ≥ 8 and k ≥ 8, a contradiction. If w is neighbor

of u outside of D′′0,n, then w and u have no common neighbors. The vertex u has n− 1 neighbors in D′′0,n
and k−1 neighbors outside of D′′0,n except for w. Furthermore, each S 23 contains at most seven vertices
in D′′0,n or each S 23 contains at most two vertices of the neighbors outside of the D′′0,n, by Lemma 4.1.
(The same situation for w.) So |F| ≥ 2 ∗ ⌈n−1

7 ⌉ + 2 ∗ k−1
2 = 2 ∗ ⌈n−2

7 ⌉ + (k − 1) > ⌈ n−1
7 ⌉ +

k
2 − 1 ≥ |F| for

n ≥ 8 and k ≥ 8, a contradiction.
Case 3. |V(G0)| = 3.
Set V(G0) = {x, y, z}. Thus N({x, y, z}) ⊆ V(F). To make the number of subgraphs of S 23’s minimum

which contain the vertices in N({x, y, z}), we should construct as many S 23’s as possible and each S 23

needs to contain as many vertices in N({x, y, z}) as possible. When x, y and z are in a same D0,n,
denoted by D′′′0,n, they have (n−3) common neighbors in D′′′0,n and each of x, y, z has k neighbors outside
of D′′′0,n. Each S 23 contains at most seven vertices in D′′′0,n or an S 23 contains at most two vertices of their
neighbors outside of D′′′0,n by Lemma 4.1. Then |F| ≥ ⌈n−3

7 ⌉ + 3 ∗ k
2 > ⌈

n−1
7 ⌉ +

k
2 − 1 ≥ |F| for n ≥ 8 and

k ≥ 8, a contradiction. When x, y and z are in two different D0,n, without loss of generality, assume that
x and y are in D′′′0,n and z is in another D0,n. Then x and y have (n − 2) common neighbors, each of x, y
has k neighbors outside of D′′′0,n. And z has (n − 1) neighbors in a D0,n and (k − 1) neighbors outside of
a D0,n except for x or y. Then |F| ≥ ⌈ n−2

7 ⌉ + ⌈
n−1

7 ⌉ + 2 ∗ k
2 +

k−1
2 > ⌈

n−1
7 ⌉ +

k
2 − 1 ≥ |F| for n ≥ 8 and

k ≥ 8, a contradiction. When x, y and z are in three different D0,n, each of x, y, z has (n − 1) neighbors
in a D0,n and (k − 1) neighbors outside of a D0,n. Then |F| ≥ 3 ∗ ⌈n−1

7 ⌉ + 3 ∗ k−1
2 > ⌈

n−1
7 ⌉ +

k
2 − 1 ≥ |F|

for n ≥ 8 and k ≥ 8, a contradiction.
The proof of κs(Dk,n, S 23) ≥ ⌈n−2

7 ⌉ +
k+1

2 when k is odd is similar to the case when k is even.
□

By Lemma 4.2 and Lemma 4.3, we have the following result.

Theorem 4.4. Let n ≥ 8, k ≥ 8. Then κ(Dk,n; S 23) = κs(Dk,n; S 23) = ⌈ n−1
7 ⌉ +

k
2 for even k, and

κ(Dk,n; S 23) = κs(Dk,n; S 23) = ⌈ n−2
7 ⌉ +

k+1
2 for odd k.
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5. Conclusions

Structure connectivity and substructure connectivity are important parameters for measuring
network fault tolerance. In this paper, we obtain that κ(Dk,n; S m) = κs(Dk,n; S m) = ⌈ n−1

m+1⌉ + k for n ≥ 4,
k ≥ 2 and 1 ≤ m ≤ n + k − 2. And when n ≥ 8, k ≥ 8, we prove that κ(Dk,n; S 23) = κs(Dk,n; S 23) =
⌈ n−1

7 ⌉ +
k
2 for even k, and κ(Dk,n; S 23) = κs(Dk,n; S 23) = ⌈ n−2

7 ⌉ +
k+1

2 for odd k.
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3. J. Fàbrega, M. A. Fiol, On the extraconnectivity of graphs, Discrete Math., 155 (1996), 49–57.
https://doi.org/10.1016/0012-365X(94)00369-T

4. C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, S. Lu, DCell: A scalable and fault-tolerant network
structure fordata centers, In: Special Interest Group on Data Communication, SIGCOMM., (2008),
75–86. https://doi.org/10.1145/1402958.1402968

5. J. Guo, M. Lu, The extra connectivity of bubble-sort star graphs, Theor. Comput. Sci., 645 (2016),
91–99. https://doi.org/10.1016/j.tcs.2016.06.043

6. F. Harary, Conditional connectivity, Networks., 13 (1983), 347–357.
https://doi.org/10.1002/net.3230130303

7. S. Y. Hsieh, Y. H. Chang, Extraconnectivity of k-ary n-cube networks, Theoret. Comput. Sci., 443
(2012), 63–69. https://doi.org/10.1016/j.tcs.2012.03.030

8. C. Li, S. Lin, S. Li, Structure connectivity and substructure connectivity of (n, k)-star graph
networks, 2018 15th International Symposium on Pervasive Systems, Algorithms and Networks
(I-SPAN).IEEE, (2018), 240–246. https://doi.org/10.1109/I-SPAN.2018.00046

9. C. Li, S. Lin, S. Li, Structure connectivity and substructure connectivity of star graphs, Discrete
Appl. Math., 284 (2020), 472–480. https://doi.org/10.1016/j.dam.2020.04.009

10. C. K. Lin, L. Zhang, J. Fan, D. Wang, Structure connectivity and substructure connectivity of
hypercubes, Theor. Comput. Sci., 634 (2016), 97–107. https://doi.org/10.1016/j.tcs.2016.04.014

11. D. Li, X. Hu, H. Liu, Structure connectivity and substructure connectivity of twisted hypercubes,
Theor. Comput. Sci., 796 (2019), 169–179. https://doi.org/10.1016/j.tcs.2019.09.007

AIMS Mathematics Volume 8, Issue 4, 9877–9889.

http://dx.doi.org/https://doi.org/10.1016/j.jcss.2013.01.013
http://dx.doi.org/https://doi.org/10.1016/0012-365X(94)00369-T
http://dx.doi.org/https://doi.org/10.1145/1402958.1402968
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2016.06.043
http://dx.doi.org/https://doi.org/10.1002/net.3230130303
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2012.03.030
http://dx.doi.org/https://doi.org/10.1109/I-SPAN.2018.00046
http://dx.doi.org/https://doi.org/10.1016/j.dam.2020.04.009
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2016.04.014
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2019.09.007


9889

12. H. Lv, T. Wu, Structure and substructure connectivity of Balanced Hypercubes, Bull. Malays. Math.
Sci. Soc., 43 (2020), 2659–2672. https://doi.org/10.1007/s40840-019-00827-4

13. X. Li, J. Fan, C. K. Lin, B. Cheng, X. Jia, The extra connectivity, extra conditional diagnosability
and t/k-diagnosability of the data center network DCell, Theor. Comput. Sci., 766 (2019), 16–29.
https://doi.org/10.1016/j.tcs.2018.09.014

14. Y. Lv, J. Fan, D. F. Hsu, C. K. Lin, Structure connectivity and substructure connectivity of k-ary
n-cube networks, Inform. Sci., 433 (2018), 115–124. https://doi.org/10.1016/j.ins.2017.11.047

15. S. A. Mane, Structure connectivity of hypercubes, AKCE Int. J. Graphs Comb., 15 (2018), 49–52.
https://doi.org/10.1016/j.akcej.2018.01.009

16. E. Sabir, J. Meng, Structure fault tolerance of hypercubes and folded hypercubes, Theoret. Comput.
Sci., 711 (2018), 44–55. https://doi.org/10.1016/j.tcs.2017.10.032

17. X. Wang, J. Fan, J. Zhou, C. K. Lin, The restricted h-connectivity of data center network DCell,
Discrete Appl. Math., 203 (2016), 144–157. https://doi.org/10.1016/j.dam.2015.09.002

18. W. H. Yang, J. X. Meng, Extraconnectivity of hypercubes, Appl. Math. Lett., 22 (2009), 887–891.
https://doi.org/10.1016/j.aml.2008.07.016

19. G. Zhang, D. Wang, Structure connectivity and substructure connectivity of bubble-sort star graph
networks, Appl. Math. Comput., 363 (2019), 124632. https://doi.org/10.1016/j.amc.2019.124632

20. G. Zhang, D. Wang, The structure fault tolerance of arrangement graphs, Appl. Math. Comput.,
400 (2021), 126039. https://doi.org/10.1016/j.amc.2021.126039

21. M. M. Zhang, J. X. Zhou, On g-extra connectivity of folded hypercubes, Theoret. Comput. Sci.,
593 (2015), 146–153. https://doi.org/10.1016/j.tcs.2015.06.008

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 4, 9877–9889.

http://dx.doi.org/https://doi.org/10.1007/s40840-019-00827-4
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2018.09.014
http://dx.doi.org/https://doi.org/10.1016/j.ins.2017.11.047
http://dx.doi.org/https://doi.org/10.1016/j.akcej.2018.01.009
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2017.10.032
http://dx.doi.org/https://doi.org/10.1016/j.dam.2015.09.002
http://dx.doi.org/https://doi.org/10.1016/j.aml.2008.07.016
http://dx.doi.org/https://doi.org/10.1016/j.amc.2019.124632
http://dx.doi.org/https://doi.org/10.1016/j.amc.2021.126039
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2015.06.008
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Basic notations and definitions
	The data center networks

	Results of Sm-structure and substructure connectivity of Dk,n
	Results of S23-structure and substructure connectivity of Dk,n
	Conclusions

