Research article

Structure connectivity and substructure connectivity of data center network

Bo Zhu ${ }^{1}$, Shumin Zhang ${ }^{2,4, *}$, Jinyu Zou ${ }^{3}$ and Chengfu $\mathbf{Y e}^{2,4}$
${ }^{1}$ Department of Computer, Qinghai Normal University, Xining, Qinghai 810008, China
${ }^{2}$ School of Mathematics and Statistics, Qinghai Normal University, Xining, Qinghai 810008, China
${ }^{3}$ Department of Basic Research, Qinghai University, Xining, Qinghai 810016, China
${ }^{4}$ Academy of Plateau Science and Sustainability, People's Government of Qinghai Province and Beijing Normal University

* Correspondence: Email: zhangshumin@ qhnu.edu.cn.

Abstract

The structure connectivity $\kappa(G ; H)$ and substructure connectivity $\kappa^{s}(G ; H)$ are important indicators to measure interconnection network's fault tolerance and reliability. The data center network, denoted by $D_{k, n}$, have been proposed for data centers as a server-centric interconnection network structure, which can support millions of servers with high network capacity by only using commodity switches. In this paper, we obtain $\kappa\left(D_{k, n} ; S_{m}\right)$ and $\kappa^{s}\left(D_{k, n} ; S_{m}\right)$ when $k \geq 2, n \geq 4$ and $1 \leq m \leq n+k-2$. Furthermore, we obtain both $\kappa\left(D_{k, n} ; S_{23}\right)$ and $\kappa^{s}\left(D_{k, n} ; S_{23}\right)$ for $k \geq 8$ and $n \geq 8$.

Keywords: structure connectivity; substructure connectivity; data center network Mathematics Subject Classification: 05C40, 05C07

1. Introduction

The topological structure of a computer interconnection network can be represented by a graph, where the vertices represent processors and the edges represent communication links between processors. The connectivity of a graph is an important parameter reflecting the strength between two nodes in an interconnection network. The connectivity of a graph G, denoted by $\kappa(G)$, is to delete the minimum number of vertices such that the remaining part is disconnected. The classical connectivity has certain limitations to measure the fault tolerance of the network, then Harary [6] proposed the concept of the conditional connectivity. Later, Fàbrega et al. [3] proposed the concept of the g-extra connectivity. The g-extra connectivity of G, denoted by $\kappa_{g}(G)$, is the minimum cardinality of vertices in G whose deletion would disconnect G, and each remaining component has more than g vertices. It has triggered extensive research by scholars, and some results can be found in [2,5,7,13, 18, 21].

With the development of large-scale integration technology, a multi-processor system can contain thousands of processors. When one of the processors fails, the processors around it may all be affected. Therefore, it is necessary to consider deleting a certain structure in a network to measure the reliability of the network. Considering the fault status of a certain structure, rather than individual vertices, Lin et al. [10] have given the concepts of the structure connectivity and substructure connectivity. Recently, the results on the structure connectivity and substructure connectivity have come out focusing on networks. For example: hypercube network, folded hypercube network, star network, alternating group network and so on. Many results of networks can be found in the literature [8-12,14-16, 19, 20].

A network may have thousands of substructures, so it is an important topic to study which substructures are more valuable for the network reliability. A star as a substructure of a network is very important. Because when the central node fails, all of its neighbors are affected. It is reasonable to assume that a node in a network has different degrees of influence on its surrounding nodes. Therefore, we can assign an impactability to each node v, denoted by $\operatorname{imp}(v)$. When $\operatorname{imp}(v)=0$, it means that v has no effect on its neighbors; $\operatorname{imp}(v)=1$ means that v affects all its direct neighbors; $\operatorname{imp}(v)=2$ means that v affects not only all of its direct neighbors, but also its immediate neighbor's neighbors. In a network, the structure corresponding to the node v with $\operatorname{imp}(v)=1$ is an m-leaves star with v as the center, denoted by S_{m}. For v with $\operatorname{imp}(v)=2$, its corresponding structure is called a 2 -step star with m-leaves, denoted by $S_{2 m}$, centered on v. (See Figure 1.)

Figure 1. A star and a 2 -step star with center vertices v.

2. Preliminaries

2.1. Basic notations and definitions

Given a graph G, let $V(G), E(G)$ and (u, v) denote the set of vertices, the set of edges, and the edge whose end vertices are u and v. The degree of the vertex u in graph G is the number of neighbors of u, denoted by $d(u)$. The neighbors of a vertex u in G is denoted by $N_{G}(u)$. For a set $U \subseteq V(G)$, the neighbors in $V(G)-U$ of vertices in U are called the neighbors of U, denoted by $N_{G}(U)$. We denote a complete graph with n vertices by K_{n}. A graph G is said to be k-regular if every vertex of it has k neighbors. If G_{1} is a subgraph of G, denoted by $G_{1} \subseteq G$, then $V\left(G_{1}\right) \subseteq V(G)$ and $E\left(G_{1}\right) \subseteq E(G)$. If $G \cong H$, then G is isomorphic to H. Let $G_{1} \leq H$ denote G_{1} to be isomorphic to a connected subgraph of H. We use $G[H]$ to represent the subgraph induced by H, which consists of the vertex set of H and the edge set $\{(u, v) \mid u, v \in V(H),(u, v) \in E(G)\}$. Terminologies not given here can be referred to [1].

Here is the definitions of the structure connectivity and substructure connectivity:

Definition 2.1. Let H be a connected subgraph of G and F be a set of subgraphs of G such that every element in F is isomorphic to H. If $G-V(F)$ is disconnected, then F is called an H-structure cut. The minimum cardinality of H-structure cuts is called H-structure connectivity of G, denoted by $\kappa(G ; H)$.

Definition 2.2. Let H be a connected subgraph of G and F^{s} be a set of subgraphs of G such that every element in F^{s} is isomorphic to connected subgraph of H. If $G-V(F)$ is disconnected, then F^{s} is called an H-substructure cut. The minimum cardinality of H-substructure cuts is called H-substructure connectivity of G, denoted by $\kappa^{s}(G ; H)$.

Obviously, $\kappa^{s}(G ; H) \leq \kappa(G ; H)$.

2.2. The data center networks

For a positive integer n, we use $[n]$ and $\langle n\rangle$ to denote the sets $\{1,2, \ldots, n\}$ and $\{0,1,2 \ldots, n\}$, respectively. For any positive integers $k \geq 0$ and $n \geq 2$, we use $D_{k, n}$ to denote a k-dimensional $D C e l l$ with n-port switches. We use $t_{k, n}$ to denote the number of vertices in $D_{k, n}$ with $t_{0, n}=n$ and $t_{k, n}=t_{k-1, n} \times\left(t_{k-1, n}+1\right)$, where $i \in[k]$. Let $I_{0, n}=\langle n-1\rangle$ and $I_{i, n}=\left\langle t_{i-1, n}\right\rangle$ for any $i \in[k]$. Let $V_{k, n}=\left\{u_{k} u_{k-1} \ldots u_{0} \mid u_{i} \in\left\langle t_{i-1, n}\right\rangle\right.$ and $\left.i \in\langle k\rangle\right\}$, and $V_{k, n}^{l}=\left\{u_{k} u_{k-1} \ldots u_{l} \mid u_{i} \in\left\langle t_{i-1, n}\right\rangle\right.$ and $i \in\{l, l+1, \ldots, k\}$ for any $l \in[k]\}$. Clearly, $\left|V_{k, n}\right|=t_{k, n}$ and $\left|V_{k, n}^{l}\right|=t_{k, n} / t_{l-1, n}$. The $D_{k, n}$ is defined as follows.

Definition 2.3. The data center network $D_{k, n}$ is a graph with the vertex set $V_{k, n}$, where a vertex $u=$ $u_{k} u_{k-1} \ldots u_{i} \ldots u_{0}$ is adjacent to a vertex $v=v_{k} v_{k-1} \ldots v_{i} \ldots v_{0}$ if and only if there is an positive integer l with
(1) $u_{k} u_{k-1} \ldots u_{l}=v_{k} v_{k-1} \ldots v_{l}$,
(2) $u_{l-1} \neq v_{l-1}$,
(3) $u_{l-1}=v_{0}+\sum_{j=1}^{l-2}\left(v_{j} \times t_{j-1, n}\right)$ and $v_{l-1}=u_{0}+\sum_{j=1}^{l-2}\left(u_{j} \times t_{j-1, n}\right)+1$ with $l \geq 1$.

Lemma 2.4. [4] Let $D_{k, n}$ be the data center network with $k \geq 0$ and $n \geq 2$.
(1) $D_{0, n}$ is a complete graph with n vertices labeled as $0,1,2, \ldots, n-1$.
(2) For $k \geq 1, D_{k, n}$ consists of $t_{k-1, n}+1$ copies of $D_{k-1, n}$ denoted by $D_{k-1, n}^{i}$, for each $i \in\left\langle t_{k-1, n}\right\rangle$. There is one edge between $D_{k-1, n}^{i}$ and $D_{k-1, n}^{j}$ for any $i, j \in I_{k, n}$ and $i \neq j$. This implies that the outside neighbors of vertices in $D_{k-1, n}^{i}$ belong to different copies of $D_{k-1, n}^{j}$ for $j \neq i$ and $i, j \in I_{k, n}$.

Lemma 2.5. [4] For any positive integers $n \geq 2$ and $k \geq 0, D_{k, n}$ has the following combinatorial properties.
(1) $D_{k, n}$ is $(n+k-1)$-regular with $t_{k, n}$ vertices and $\frac{(n+k-1) t_{k, n}}{2}$ edges.
(2) $\kappa\left(D_{k, n}\right)=\lambda\left(D_{k, n}\right)=n+k-1$.
(3) For any integer $k \geq 0$, there is no cycle of length 3 in $D_{k, 2}$ and for any integer $n \geq 3$ and $k \geq 0$, there exist cycles of length 3 in $D_{k, n}$.
(4) The number of vertices in $D_{k, n}$ satisfies $t_{k, n} \geq\left(n+\frac{1}{2}\right)^{2^{k}}-\frac{1}{2}$.

Lemma 2.6. [17] There exist $t_{k-1, n}$ disjoint paths (in which any two paths have no common vertices) joining $D_{k-1, n}^{i}$ and $D_{k-1, n}^{j}$ for $i, j \in I_{k, n}$, denoted by $P\left(D_{k-1, n}^{i}, D_{k-1, n}^{j}\right)$.
Lemma 2.7. [13] For any positive integers $n \geq 2, k \geq 2$, and $0 \leq g \leq n-1$, the g-extra connectivity of $D_{k, n}$ is $\kappa_{g}\left(D_{k, n}\right)=(g+1)(k-1)+n$.

The graph $D_{0, n}$ generates $D_{k, n}$ after k iterations. For any vertex u in $D_{0, n}$, an out neighbor is added every iteration. The graph $D_{i, n}$ consists of $t_{i-1, n}+1$ copies of $D_{i-1, n}$. Let u^{i} be the out neighbor of u in $D_{i, n}$, and $\left(u, u^{i}\right)$ be denoted by i edge for $1 \leq i \leq k$. So each vertex in some $D_{0, n}$ has k neighbors and k edges outside of $D_{0, n}$ in $D_{k, n}$. Several data center networks with small parameters k and n, see Figure 2.

(b) $D_{1,2}$

(c) $D_{2,2}$

(d) $D_{0,3}$

(e) $D_{1,3}$

Figure 2. Several data center networks with small parameters k and n.

3. Results of S_{m}-structure and substructure connectivity of $D_{k, n}$

Lemma 3.1. $\kappa\left(D_{k, n} ; S_{m}\right) \leq\left\lceil\frac{n-1}{m+1}\right\rceil+k$ for $n \geq 4, k \geq 2$ and $1 \leq m \leq n+k-2$.
Proof. For any $v \in V\left(D_{k-1, n}^{i}\right)$ for $i \in I_{k, n}$. By the structure of $D_{k, n}$, we know that v belongs to some $D_{0, n}$. Let the $D_{0, n}$ which v is in it be $D_{0, n}^{\prime}$. Since v has $n-1$ neighbors in $D_{0, n}^{\prime}$ and has k neighbors $v^{1}, v^{2}, \ldots, \nu^{k}$ outside of the $D_{0, n}^{\prime}, d(v)=n+k-1$ in $D_{k, n}$. By the construction of $D_{k, n}$, we know that v^{j} is the out neighbor of v in $D_{j, n}$ and v^{j} in a $D_{0, n}$, denoted by $D_{0, n}^{\prime j}$ and let v^{j} be the center vertex of an S_{m} in $D_{0, n}^{\prime j}$ for $1 \leq j \leq k$. Since there is only one edge between different copies in the same dimension, the S_{m} in $D_{0, n}^{\prime j}$ and the S_{m} in $D_{0, n}^{\prime i}$ have no common vertices for $1 \leq i, j \leq k$ and $i \neq j$. Thus, there are $k S_{m}$'s outside of $D_{0, n}^{\prime}$ connecting to v. (See Figure3.)

When $1 \leq m \leq n-3$. Let $p \geq 0, q \geq 0$ be two positive integers such that $n-1=(m+1) p+q$, where $0 \leq q \leq m$. If $q=0$, then there are $p S_{m}$'s connecting to v in $D_{0, n}^{\prime}$ and $k S_{m}$'s connecting to v outside of $D_{0, n}^{\prime}$. If $1 \leq q \leq m$, then it means that after deleting $p S_{m}$'s in $D_{0, n}^{\prime}$ there are q vertices left, except for v. Suppose that w is one of the remaining q vertices and w is the center vertex of an S_{m}. Then these $q-1$ neighbors of w in $D_{0, n}^{\prime}$ and the k neighbors outside of $D_{0, n}^{\prime}$ can construct an S_{m}. Thus, there are $\left(\left\lceil\frac{n-1}{m+1}\right\rceil+k\right) S_{m}$'s connecting to v. The graph $D_{k, n}$ will be disconnected by deleting $\left(\left\lceil\frac{n-1}{m+1}\right\rceil+k\right)$ S_{m} 's. Hence, the lemma holds.

When $n-2 \leq m \leq n+k-2$, we have $\left\lceil\frac{n-1}{m+1}\right\rceil+k=1+k$. Let u be the center vertex of an S_{m} in $D_{0, n}^{\prime}$. Then u has $n-2$ neighbors in $D_{0, n}^{\prime}$ and k neighbors outside of $D_{0, n}^{\prime}$ which can construct an S_{m} connecting to v. It is clearly that there are $(k+1) S_{m}$'s connecting to v. Thus, $D_{k, n}$ will be disconnected by deleting $(k+1) S_{m}$'s.

Figure 3. Graph Explanation of Lemma 3.1.

Lemma 3.2. Let $F=\left\{T \mid T \cong K_{1}\right.$ or $\left.T \cong S_{m}, n-2 \leq m \leq n\right\}$. Then $D_{2, n}-F$ is connected for $n \geq 4$ and $|F| \leq 2$.

Proof. To prove this lemma by induction n. Clearly, $D_{2,4}-F$ is connected when $|F| \leq 2$. Suppose that $D_{2, n-1}-F$ is connected when $|F| \leq 2$ for $F=\left\{T \mid T \cong K_{1}\right.$ or $\left.T \cong S_{m}, n-3 \leq m \leq n-1\right\}$. When $F=\left\{T \mid T \cong K_{1}\right\}$ and $|F| \leq 2$, it is obviously that $D_{2, n}-F$ is connected. When $F=\left\{T \mid T \cong S_{m}, n-2 \leq\right.$ $m \leq n\}$, it means that the center vertex of each S_{m} in $D_{2, n}$ has at most one more neighbor deleted than the center vertex of each S_{m} in $D_{2, n-1}$. Since by the structure of $D_{2, n-1}$ and $D_{2, n}$, for any vertex v in $D_{2, n-1}, d(v)=n$, and for any vertex u in $D_{2, n}, d(u)=n+1$. Thus, $D_{2, n}-F$ is connected.

Lemma 3.3. Let $F=\left\{T \mid T \cong K_{1}\right.$ or $\left.T \cong S_{m}, 1 \leq m \leq n-3\right\}$. Then $D_{2, n}-F$ is connected for $n \geq 4$ and $|F| \leq\left\lceil\frac{n-1}{m+1}\right\rceil+1$.

Proof. To prove this lemma by induction n. When $n=4$, we have $m=1, F=\left\{T \mid T \cong K_{1}\right.$ or $\left.T \cong S_{1}\right\}$, where $S_{1} \cong K_{2}$ and $\left\lceil\frac{n-1}{m+1}\right\rceil+1=\left\lceil\frac{3}{2}\right\rceil+1=3$. It is easy to check that $D_{2,4}-F$ is connected when $|F| \leq 3$. Suppose that $D_{2, n-1}-F$ is connected when $|F| \leq\left\lceil\frac{n-2}{m+1}\right\rceil+1$ for $1 \leq m \leq n-4$. It suffices to show that $D_{2, n}-F$ is connected when $|F| \leq\left\lceil\frac{n-1}{m+1}\right\rceil+1$ for $1 \leq m \leq n-3$.

If $\left\lceil\frac{n-1}{m+1}\right\rceil+1=\left\lceil\frac{n-2}{m+1}\right\rceil+1$, then the conclusion obviously holds.
Suppose that $\left\lceil\frac{n-1}{m+1}\right\rceil+1-\left(\left\lceil\frac{n-2}{m+1}\right\rceil+1\right)=1$. When $F=\left\{T \mid T \cong K_{1}\right\}$, we have $|F| \leq\left\lceil\frac{n-1}{m+1}\right\rceil+1=n-1+1=$ n. Since $\kappa\left(D_{2, n}\right)=n+1$, by Lemma 2.5, $D_{2, n}-F$ is connected. When $F=\left\{T \mid T \cong S_{m}, 1 \leq m \leq n-3\right\}$, by inductive hypothesis, $D_{2, n-1}-F$ is connected for $|F| \leq\left\lceil\frac{n-2}{m+1}\right\rceil+1$ and $1 \leq m \leq n-4$. Since $\left\lceil\frac{n-1}{m+1}\right\rceil+1-\left(\left\lceil\frac{n-2}{m+1}\right\rceil+1\right)=1$, it means that only more one S_{m} is deleted in $D_{2, n}$ than in $D_{2, n-1}$. Let the center vertex of this S_{m} be u.

Assume that u is in $D_{1, n}^{i}$ for $i \in I_{2, n}$. Let $F^{i}=F \cap D_{1, n}^{i}$. By the structure of $D_{k, n}$, we know that $D_{1, n}$ is made up of $n+1$ copies of $D_{0, n}$, where $D_{0, n} \cong K_{n}$ and $D_{1, n-1}$ is made up of n copies of $D_{0, n-1}$, where $D_{0, n-1} \cong K_{n-1}$. When $D_{1, n-1}$ goes to $D_{1, n}$, each copy of $D_{0, n-1}$ adds a vertex to $D_{0, n}$, and another copy of $D_{0, n}$ is added. In this case, u is a new vertex from $D_{1, n-1}$ to $D_{1, n}$. By the structure of $D_{2, n}, u$ has only one out neighbor $u^{\prime} \in V\left(D_{1, n}^{k}\right)$, it is clearly that $D_{1, n}^{k}-F^{k}$ is connected, so $G\left[\cup_{i \neq l \in I_{1, n}} V\left(D_{1, n}^{l}-F^{l}\right)\right]$ is
connected for $i \in I_{2, n}$. Since $D_{1, n}^{i} \cong D_{1, n}, u$ is in a $D_{0, n}$, denoted by $D_{0, n}^{\prime}$. For any a vertex v in $D_{1, n}^{i}-F^{i}$, if $v \notin V\left(D_{0, n}^{\prime}\right)$, then it is clearly that v connects $G\left[\cup_{i \neq \mid \epsilon I_{1, n}} V\left(D_{1, n}^{l}-F^{l}\right)\right]$. If $v \in V\left(D_{0, n}^{\prime}\right)$, since $D_{0, n}^{\prime} \cong K_{n}$, then we have that v^{\prime} which is a neighbor of v connects $G\left[\cup_{i \neq l \in \epsilon_{1, n}} V\left(D_{1, n}^{l}-F^{l}\right)\right]$. So $D_{2, n}-F$ is connected.

Assume that u is in $D_{1, n-1}^{i}$ for $i \in I_{2, n-1}$. Let $F_{i}=F \cap D_{1, n-1}^{i}$. By the structure of $D_{2, n}, u$ has only one out neighbor $u^{\prime} \in V\left(D_{1, n-1}^{j}\right)$. If $D_{2, n-1}-F$ is disconnected, then $D_{1, n-1}^{i}-F_{i}$ or $D_{1, n-1}^{j}-F_{j}$ is disconnected and $G\left[\cup_{l \in I_{2, n-1}} V\left(D_{1, n}^{l}-F^{l}\right)\right]$ is connected for $i \neq j, i \neq l, j \neq l$. Without loss of generality, suppose that $D_{1, n-1}^{i}-F_{i}$ is disconnected. For any vertex w of each component of $D_{1, n-1}^{i}-F_{i}$ adds a new neighbor w^{\prime}, when $D_{1, n-1}^{i}$ becomes $D_{1, n}^{i}$. We have that w^{\prime} has an out neighbor $w^{\prime \prime}$ which is in $G\left[\cup_{l \in I_{2, n}} V\left(D_{1, n}^{l}-F^{l}\right)\right]$ for $i \neq j, i \neq l, j \neq l$. (See Figure 4.) It is clearly that $G\left[\cup_{j \neq l \in I_{1, n}} V\left(D_{1, n}^{l}-F^{l}\right)\right]$ is connected for $j \in I_{2, n}$.

$$
\begin{aligned}
|V(F)| & \leq\left(\left\lceil\frac{n-1}{m+1}\right\rceil+1\right) *(m+1) \\
& =\left\lceil\frac{n-1}{m+1}\right\rceil *(m+1)+m+1 \\
& \leq \frac{n-1+m}{m+1} *(m+1)+m+1 \\
& =n+2 m \\
& \leq n+2(n-3) \\
& =3 n-6 .
\end{aligned}
$$

Figure 4. An illustration for " $w^{\prime \prime}$ is in $G\left[\cup_{i \neq j \neq l \in \epsilon_{2, n}} V\left(D_{1, n}^{l}-F^{l}\right)\right]$ " in Lemma 3.3.

By Lemma 2.6, there exist $t_{1, n}$ disjoint paths (in which any two paths have no common vertices) joining $D_{1, n}^{i}$ and $D_{1, n}^{j}$ for $i, j \in I_{2, n}$, then we can get that $t_{1, n} \geq\left(n-\frac{1}{2}\right)^{2}+\frac{1}{2}$ for $n \geq 4$, furthermore $t_{1, n} \geq$ $\left(n+\frac{1}{2}\right)^{2}+\frac{1}{2}>3 n-6 \geq|V(F)|$. This implies that there is at least a path between $D_{1, n}^{i}$ and $D_{1, n}^{j}$ in $D_{2, n}-F$. So $D_{2, n}-F$ is connected when $|F| \leq\left\lceil\frac{n-1}{m+1}\right\rceil+1$.

Lemma 3.4. $\kappa^{s}\left(D_{k, n} ; S_{m}\right) \geq\left\lceil\frac{n-1}{m+1}\right\rceil+k$ for $n \geq 4, k \geq 2$ and $1 \leq m \leq n+k-2$.
Proof. For an positive integer t, let $F=\left\{T_{j} \mid T_{j} \cong K_{1}\right.$ or $\left.T_{j} \cong S_{m}, 1 \leq m \leq n+k-2,1 \leq j \leq t\right\}$ and $|F|=t$. Let $F^{i}=\left\{T_{j} \mid T_{j} \cong K_{1}\right.$ or $\left.T_{j} \cong S_{m}, T_{j} \cap D_{k-1, n}^{i}, 1 \leq m \leq n+k-2,1 \leq j \leq t\right\}$ and C^{i} be the set of the center vertex of F in $D_{k-1, n}^{i}$ for $i \in I_{k, n}$. Divide it into the following two cases:

Case 1. $n-2 \leq m \leq n+k-2$.
Note that $n-2 \leq m \leq n+k-2$, it is clearly that $\left\lceil\frac{n-1}{m+1}\right\rceil=1$. Thus, $\kappa^{s}\left(D_{k, n}, S_{m}\right) \geq\left\lceil\frac{n-1}{m+1}\right\rceil+k=1+k$ for $n \geq 4$ and $k \geq 2$. We need to show that $D_{k, n}-F$ is connected when $|F| \leq k$. To prove it by induction
on k. When $k=2, D_{2, n}-F$ is connected by Lemma 3.2. For each $S_{m}(n-2 \leq m \leq n+k-2)$ in $D_{k, n}$, there might be one more vertex than the $S_{m}(n-2 \leq m \leq n+k-3)$ in $D_{k-1, n}$, but each vertex in $D_{k, n}$ has one more neighbor than the S_{m} in $D_{k-1, n}$, so we don't have to think about the size of S_{m} that we delete here, we think about the number of S_{m} that we delete. Suppose that $D_{k-1, n}-F$ is connected when $|F| \leq k-1$. In the following, we prove that $D_{k, n}-F$ is connected when $|F| \leq k$ for $k \geq 3$.

Case $1.1\left|C^{i}\right|=k$.
By the structure of $D_{k, n}$, each center vertex of S_{m} in $D_{k-1, n}^{i}$ has at most an out neighbor in $D_{k-1, n}^{j}$, thus $\left|F^{j}\right| \leq 1$ for $i \neq j \in I_{k, n}$, so the subgraph induced by $\bigcup_{i \neq j \in I_{k, n}} V\left(D_{k-1, n}^{j}-F^{j}\right)$ is connected. For any vertex $u \in V\left(D_{k-1, n}^{i}-F^{i}\right)$, we have that u has an out neighbor u^{\prime} in $G\left[\cup_{i \neq j \in I_{l, n}}\left(D_{k-1, n}^{j}-F^{j}\right)\right]$. By Lemma 2.4(2), we know that $u^{\prime} \notin V(F)$. It means that u connects $G\left[\cup_{i \neq j \in I_{k, n}}\left(D_{k-1, n}^{j}-F^{j}\right)\right]$. Thus, $D_{k, n}-F$ is connected when $|F| \leq k$.

Case $1.2\left|C^{i}\right|=k-1$.
Let w be the center vertex of S_{m} in $D_{k-1, n}^{l}$ for $i \neq l \in I_{k, n}$.
Suppose that w has no out neighbor in $D_{k-1, n}^{i}$. If w has an out neighbor in $D_{k-1, n}^{j}$ and a center vertex of S_{m} in $D_{k-1, n}^{i}$ also has an out neighbor in $D_{k-1, n}^{j}$, then $\left|F^{j}\right|=2$ for $i \neq l \neq j \in I_{k, n}$. By the induction hypothesis, $D_{k-1, n}^{j}$ is connected for $j \in I_{k, n}$. By Lemma 2.4(2) and Lemma 2.5(4), we can get that each copy has $t_{k-1, n}$ out edges and $t_{k-1, n} \geq\left(n+\frac{1}{2}\right)^{2^{k-1}}-\frac{1}{2}>2$ for $n \geq 4, k \geq 3$. Thus, the subgraph induced by $\bigcup_{i \neq j \in I_{k, n}} V\left(D_{k-1, n}^{j}-F^{j}\right)$ is connected. For any vertex $u \in V\left(D_{k-1, n}^{i}-F^{i}\right)$, we have that u has an out neighbor u^{\prime} in $G\left[\cup_{i \neq j \in I_{k, n}}\left(D_{k-1, n}^{j}-F^{j}\right)\right]$. By Lemma 2.4(2), we know that $u^{\prime} \notin V(F)$. It implies that u connects $G\left[\cup_{i \neq j \in \epsilon_{k, n}}\left(D_{k-1, n}^{j}-F^{j}\right)\right]$. Thus, $D_{k, n}-F$ is connected.

Suppose that w has an out neighbor in $D_{k-1, n}^{i}$. So w has no out neighbor in $D_{k-1, n}^{j}$, it follows that $\left|F^{j}\right| \leq 1$ for $i \neq l \neq j \in I_{k, n}$. By induction hypothesis, $D_{k-1, n}^{i}$ may be disconnected but $D_{k-1, n}^{j}$ is connected for $i \neq j \in I_{k, n}$. So the subgraph induced by $\bigcup_{i \neq j \in I_{k, n}} V\left(D_{k-1, n}^{j}-F^{j}\right)$ is connected. For any vertex $u \in V\left(D_{k-1, n}^{i}-F^{i}\right)$, we have that u has an out neighbor u^{\prime} in $G\left[\cup_{i \neq j \in I_{l, n}}\left(D_{k-1, n}^{j}-F^{j}\right)\right]$. By Lemma 2.4(2), we know that $u^{\prime} \notin V(F)$. It means that u connects $G\left[\cup_{i \neq j \in I_{k, n}}\left(D_{k-1, n}^{j}-F^{j}\right)\right]$. Thus, $D_{k, n}-F$ is connected.

Case $1.3\left|C^{i}\right| \leq k-2$.
Suppose that all center vertices of S_{m} 's which are outside of $D_{k-1, n}^{i}$ have an out neighbor in $D_{k-1, n}^{i}$. Hence, $\left|F^{i}\right|=k$, then $D_{k-1, n}^{i}-F^{i}$ may be disconnected. Since each vertex has only an out neighbor, we know that $D_{k-1, n}^{j}-F^{j}$ is connected for $i \neq j \in I_{k, n}$. So the subgraph induced by $\bigcup_{i \neq j \in I_{k, n}} V\left(D_{k-1, n}^{j}-F^{j}\right)$ is connected. For any vertex $u \in V\left(D_{k-1, n}^{i}-F^{i}\right)$, we have that u has an out neighbor u^{\prime} in $G\left[\cup_{i \neq j \in l_{k, n}}\left(D_{k-1, n}^{j}-\right.\right.$ $\left.\left.F^{j}\right)\right]$. By Lemma 2.4(2), we know that $u^{\prime} \notin V(F)$. It means that u connects $G\left[\mathrm{U}_{i \neq j \in I_{k, n}}\left(D_{k-1, n}^{j}-F^{j}\right)\right]$. Thus, $D_{k, n}-F$ is connected.

Suppose that at least one center vertex of S_{m} which is outside of $D_{k-1, n}^{i}$ has no out neighbor in $D_{k-1, n}^{i}$. By induction hypothesis, $D_{k-1, n}^{i}$ is connected for $i \in I_{k, n}$. When $|F| \leq k$, we have $|V(F)| \leq k *(n+k-2)$. By the structure of $D_{k, n}$, it has $t_{k-1}+1$ copies of $D_{k-1, n}$. By Lemma 2.5(4), we get that $t_{k-1, n}+1 \geq$ $\left(n+\frac{1}{2}\right)^{2^{k-1}}+\frac{1}{2}$ and $t_{k-1, n}+1 \geq\left(n+\frac{1}{2} 2^{2^{k-1}}+\frac{1}{2}>k *(n+k-2)\right.$ when $n \geq 4, k \geq 3$. It means that there is at least a copy $D_{k-1, n}^{h}$ which is not deleted the vertices, so $\left|F^{h}\right|=0$. By Lemma 2.6, there exist $t_{k-1, n}$ disjoint paths joining $D_{k-1, n}^{h}$ and $D_{k-1, n}^{i}$ for $i, h \in I_{k, n}$. Thus, $D_{k, n}-F$ is connected.

Case 2. $1 \leq m \leq n-3$.
We prove it by induction on k. When $k=2, D_{2, n}-F$ is connected by Lemma 3.3. Suppose that
$D_{k-1, n}-F$ is connected for $|F| \leq\left\lceil\frac{n-1}{m+1}\right\rceil+k-2$. Divide it into the three subcases to prove that $D_{k, n}-F$ is connected when $|F| \leq\left\lceil\frac{n-1}{m+1}\right\rceil+k-1$ for $k \geq 3$.

Case 2.1 $\left|C^{i}\right|=\left\lceil\frac{n-1}{m+1}\right\rceil+k-1$ for $i \in I_{k, n}$.
By the structure of $D_{k, n}$, each center vertex of S_{m} in $D_{k-1, n}^{i}$ has at most an out neighbor in $D_{k-1, n}^{j}$, so $\left|F^{j}\right| \leq 1$ for $i \neq j \in I_{k, n}$, furthermore, the subgraph induced by $G\left[\cup_{i \neq j \in I_{k, n}}\left(D_{k-1, n}^{j}-F^{j}\right)\right]$ is connected. For any vertex $u \in V\left(D_{k-1, n}^{i}-F^{i}\right)$, we have that u has an out neighbor u^{\prime} in $G\left[\mathrm{U}_{i \neq j \in I_{k, n}}\left(D_{k-1, n}^{j}-F^{j}\right)\right]$. By Lemma 2.4(2), we know that $u^{\prime} \notin V(F)$. It means that u connects $G\left[\mathrm{U}_{i \neq j \in I_{k, n}}\left(D_{k-1, n}^{j}-F^{j}\right)\right]$. Thus, $D_{k, n}-F$ is connected when $|F| \leq\left\lceil\frac{n-1}{m+1}\right\rceil+k-1$ for $k \geq 3$.

Case 2.2 $\left|C^{i}\right|=\left\lceil\frac{n-1}{m+1}\right\rceil+k-2$ for $i \in I_{k, n}$.
Let w be the center vertex of S_{m} in $D_{k-1, n}^{h}$ for $i \neq h \in I_{k, n}$.
Suppose that w has no out neighbor in $D_{k-1, n}^{i}$. If w has an out neighbor in $D_{k-1, n}^{j}$ and a center vertex of S_{m} in $D_{k-1, n}^{i}$ also has an out neighbor in $D_{k-1, n}^{j}$, then $\left|F^{j}\right|=2$ for $i \neq h \neq j \in I_{k, n}$. By induction hypothesis, $D_{k-1, n}^{j}$ is connected for $j \in I_{k, n}$. By Lemma 2.4(2) and Lemma 2.5(4), we can get that each copy has $t_{k-1, n}$ out edges and $t_{k-1, n} \geq\left(n+\frac{1}{2}\right)^{2^{k-1}}-\frac{1}{2}>2$ for $n \geq 4, k \geq 3$. It means that the graph induced by $\bigcup_{i \neq j \in l_{k, n}} V\left(D_{k-1, n}^{j}-F^{j}\right)$ is connected. For any vertex $u \in V\left(D_{k-1, n}^{i}-F^{i}\right)$, we have that u has an out neighbor u^{\prime} in $G\left[\cup_{i \neq j \in I_{l, n}}\left(D_{k-1, n}^{j}-F^{j}\right)\right]$. By Lemma 2.4(2), we know that $u^{\prime} \notin V(F)$. It implies that the vertex u connects $G\left[\cup_{i \neq j \in I_{k, n}}\left(D_{k-1, n}^{j}-F^{j}\right)\right]$. Thus, $D_{k, n}-F$ is connected.

Suppose that w has an out neighbor in $D_{k-1, n}^{i}$. So w has no out neighbor in $D_{k-1, n}^{j}$, it follows that $\left|F^{j}\right| \leq 1$ for $i \neq h \neq j \in I_{k, n}$. By induction hypothesis, $D_{k-1, n}^{i}$ may be disconnected, but $D_{k-1, n}^{j}$ is connected for $i \neq j \in I_{k, n}$. So the subgraph induced by $\bigcup_{i \neq j \in l_{k, n}} V\left(D_{k-1, n}^{j}-F^{j}\right)$ is connected. For any vertex $u \in V\left(D_{k-1, n}^{i}-F^{i}\right)$, we have that u has an out neighbor u^{\prime} in $G\left[\cup_{i \neq j \in I_{k, n}}\left(D_{k-1, n}^{j}-F^{j}\right)\right]$. By Lemma 2.4(2), we know that $u^{\prime} \notin V(F)$. It means that u connects $G\left[\cup_{i \neq j \in I_{k, n}}\left(D_{k-1, n}^{j}-F^{j}\right)\right]$. Thus, $D_{k, n}-F$ is connected.

Case $2.3\left|C^{i}\right| \leq\left\lceil\frac{n-1}{m+1}\right\rceil+k-3$ for $i \in I_{k, n}$.
Suppose that the center vertices of S_{m} 's which are outside of $D_{k-1, n}^{i}$ have an out neighbor in $D_{k-1, n}^{i}$. Hence, $\left|F^{i}\right|=\left\lceil\frac{n-1}{m+1}\right\rceil+k-1$, furthermore, $D_{k-1, n}^{i}-F^{i}$ may be disconnected. Since each vertex has only an out neighbor, we have that $D_{k-1, n}^{j}-F^{j}$ is connected for $i \neq j \in I_{k, n}$. So the subgraph induced by $\bigcup_{i \neq j \in I_{k, n}} V\left(D_{k-1, n}^{j}-F^{j}\right)$ is connected. For any vertex $u \in V\left(D_{k-1, n}^{i}-F^{i}\right)$, we have that u has an out neighbor u^{\prime} in $G\left[\cup_{i \neq j \in I_{l, n}}\left(D_{k-1, n}^{j}-F^{j}\right)\right]$. By Lemma 2.4(2), we know that $u^{\prime} \notin V(F)$. It means that u connects $G\left[\cup_{i \neq j \in l_{k, n}}\left(D_{k-1, n}^{j}-F^{j}\right)\right]$. Thus, $D_{k, n}-F$ is connected.

Next, we consider that $\left|F^{i}\right| \leq\left\lceil\frac{n-1}{m+1}\right\rceil+k-2$. By induction hypothesis, $D_{k-1, n}^{i}$ is connected for $i \in I_{k, n}$. Hence,

$$
\begin{aligned}
|V(F)| & =\left(\left\lceil\frac{n-1}{m+1}\right\rceil+k-1\right) *(m+1) \\
& =\left\lceil\frac{n-1}{m+1}\right\rceil *(m+1)+(k-1) *(m+1) \\
& <2(n-1)+(k-1) *(m+1) \\
& \leq 2(n-1)+(k-1) *(n-2) \\
& <2(n-1)+(k-1) *(n-1) \\
& =(n-1) *(k+1) .
\end{aligned}
$$

By the structure of $D_{k, n}$ and Lemma 2.5(4), we can get that $t_{k-1, n}+1 \geq\left(n+\frac{1}{2}\right)^{2^{k-1}}+\frac{1}{2}$. It is easy to check that $t_{k-1, n}+1 \geq\left(n+\frac{1}{2}\right)^{2^{k-1}}+\frac{1}{2}>(n-1) *(k+1)>|V(F)|$ for $n \geq 4$ and $k \geq 3$. It implies that at
least one copy $D_{k-1, n}^{s}$ is not deleted a vertex for $s \in I_{k, n}$. By Lemma 2.6, there exist $t_{k-1, n}$ disjoint paths joining $D_{k-1, n}^{s}$ and $D_{k-1, n}^{i}$ for $i, s \in I_{k, n}$, so $D_{k, n}-F$ is connected.

By Lemma 3.1 and Lemma 3.4, we obtain the following result.
Theorem 3.5. Let $n \geq 4, k \geq 2$ and $1 \leq m \leq n+k-2$. Then $\kappa\left(D_{k, n} ; S_{m}\right)=\kappa^{s}\left(D_{k, n} ; S_{m}\right)=\left\lceil\frac{n-1}{m+1}\right\rceil+k$.

4. Results of S_{23}-structure and substructure connectivity of $D_{k, n}$

For any vertex u in $D_{k, n}$, it has $(n-1+k)$ neighbors: $(n-1)$ neighbors in a copy of $D_{0, n}$, denoted by $D_{0, n}^{\prime}$ and k neighbors outside of $D_{0, n}^{\prime}$, denoted by $u^{1}, u^{2}, \ldots, u^{k}$. In $D_{1, n}$, the vertex u^{1} is called an out neighbor of u; in $D_{2, n}$, the vertex u^{2} is called an out neighbor of u, moreover, u and u^{1} are in the same copy $D_{1, n}^{i}$ for $i \in I_{2, n}$. So in $D_{k, n}$, the vertex u^{k} is called an out neighbor of u and $u, u^{1}, u^{2}, \ldots, u^{k-1}$ are in the same copy $D_{k-1, n}^{i}$ for $j \in I_{k, n}$. In the same dimensional copy, each vertex has only one out neighbor, so there is no edge $\left(u^{i}, u^{j}\right)$. Thus, u^{i} and u^{j} have no other common neighbors except for vertex u for $u^{i}, u^{j} \in\left\{u^{1}, u^{2}, \ldots, u^{k}\right\}$.

In this part, we prove the results of S_{23} structure and substructure connectivity of $D_{k, n}$.
Lemma 4.1. Let S_{23} be a 2 -step star with 7 vertices. For any vertex v in $D_{k, n}$, it has k neighbors outside of a $D_{0, n}$, denoted by $\left\{v^{1}, v^{2}, \ldots, v^{k}\right\}$. Let $T=\left\{v^{1}, v^{2}, \ldots, v^{k}\right\}$. Then $\left|V\left(S_{23}\right)\right| \cap|T| \leq 2$.

Proof. Assume that $v \in V\left(D_{k-1, n}^{i}\right)$ for $i \in I_{k, n}$. Let w be the center vertex of the S_{23} in $D_{k-1, n}^{l}$ for $i \neq l \in I_{k, n}$. (The case of w in $D_{k-1, n}^{i}$ is similar to the case of w in $D_{k-1, n}^{l}$.) Let w^{k} be the out neighbor of w, furthermore, w^{1} and w^{2} be neighbors of w in $D_{k-1, n}^{l}$. If w^{k} is in $D_{k-1, n}^{i}$, then the S_{23} has two vertices in $D_{k-1, n}^{i}$. Since each vertex has only one out neighbor, it is clearly that v^{k} is not an out neighbor of w^{1} or w^{2}. Since there is no edge $\left(v^{i}, v^{j}\right)$ for $v^{i}, v^{j} \in\left\{v^{1}, v^{2}, \ldots, v^{k-1}\right\}$, we have $\left|V\left(S_{23}\right)\right| \cap|T| \leq 1$. If w^{k} is in $D_{k-1, n}^{j}$ for $i \neq l \neq j \in I_{k, n}$, then the S_{23} has two vertices in $D_{k-1, n}^{j}$. In this case, v^{k} can be a neighbor of w^{k} and the out neighbor of w^{1} or w^{2} can be v^{i} for $v^{i} \in\left\{v^{1}, v^{2}, \ldots, v^{k-1}\right\}$. (See Figure 5.) So we have $\left|V\left(S_{23}\right)\right| \cap|T| \leq 2$. Next, we show that $\left|V\left(S_{23}\right)\right| \cap|T| \geq 3$ does not hold. It is clearly that $v^{1}, v^{2}, \ldots, v^{k} \in V\left(D_{k-1, n}^{i}\right) \cup V\left(D_{k-1, n}^{j}\right)$. The vertices of the S_{23} has at most 3 out neighbors and there is only one edge between any two copies, so at most two out neighbors of an S_{23} are in $D_{k-1, n}^{i}$ and $D_{k-1, n}^{j}$. Thus, $\left|V\left(S_{23}\right)\right| \cap|T| \leq 2$.

Lemma 4.2. Let $n \geq 8$ and $k \geq 3$. Then $\kappa\left(D_{k, n}, S_{23}\right) \leq\left\lceil\frac{n-1}{7}\right\rceil+\frac{k}{2}$ for even k and $\kappa\left(D_{k, n} ; S_{23}\right) \leq\left\lceil\frac{n-2}{7}\right\rceil+\frac{k+1}{2}$ for odd k.

Proof. For any vertex v in $D_{k-1, n}^{i}$, let v be in $D_{0, n}^{\prime}$, where $D_{0, n}^{\prime} \cong K_{n}$, then v has k neighbors outside of $D_{0, n}^{\prime}$, denoted by $v^{1}, v^{2}, \ldots, v^{k}$ and $n-1$ neighbors in $D_{0, n}^{\prime}$.

When k is even. By Lemma 4.1, an S_{23} contains at most two vertices of $v^{1}, v^{2}, \ldots, v^{k}$, so there are $\frac{k}{2}$ S_{23} 's connecting to v outside of $D_{0, n}^{\prime}$. Let $p \geq 0, q \geq 0$ be two positive integers such that $n-1=7 p+q$, where $q \leq 6$. If $q=0$, then there are $p S_{23}$'s connecting to v in $D_{0, n}^{\prime}$ and $\frac{k}{2} S_{23}$'s connecting to v outside of $D_{0, n}^{\prime}$. If $1 \leq q \leq 6$, then there are $p S_{23}$'s connecting to v and q neighbors of v are left in $D_{0, n}^{\prime}$ and $\frac{k}{2}$ S_{23} 's connecting to v outside of $D_{0, n}^{\prime}$. Here we only illustrate the case when $q=1$, denoted by u, other cases are similar. In $D_{k, n}$, the vertex u has at least three neighbors outside of $D_{0, n}^{\prime}$, denoted by x, y, w,
because $k \geq 3$. Let $x^{\prime}, y^{\prime}, w^{\prime}$ be the neighbors of x, y, w, respectively. Then $u, x, y, w, x^{\prime}, y^{\prime}, w^{\prime}$ constitute an S_{23}. Hence, there are $(p+1) S_{23}$'s connecting to v in $D_{0, n}^{\prime}$ when $1 \leq q \leq 6$. The graph $D_{k, n}$ will be disconnected by deleting $\left\lceil\frac{n-1}{7}\right\rceil+\frac{k}{2} S_{23}$'s.

When k is odd. By Lemma 4.1, there are $\frac{k-1}{2} S_{23}$'s connecting to the vertex v outside of $D_{0, n}^{\prime}$ and v^{k} are left in $D_{k-1, n}^{j}$. We construct an S_{23} which contains v^{k} and v^{\prime}, where v^{\prime} is the neighbor of v in $D_{0, n}^{\prime}$. (See Figure 6.) Then there are $\left\lceil\frac{n-2}{7}\right\rceil S_{23}$'s connecting to v in $D_{0, n}^{\prime}$ and $\frac{k-1}{2}+1 S_{23}$'s connecting to the vertex v outside of $D_{0, n}^{\prime}$. The graph $D_{k, n}$ will be disconnected by deleting ($\left\lceil\frac{n-2}{7}\right\rceil+\frac{k+1}{2}$) S_{23} 's.

Figure 5. An illustration for " w^{k} is in $D_{k-1, n}^{j} "$ in Lemma 4.1.

Figure 6. An illustration for the case which is " k is odd" in Lemma 4.2.

Lemma 4.3. Let $n \geq 8$ and $k \geq 8$. Then $\kappa^{s}\left(D_{k, n} ; S_{23}\right) \geq\left\lceil\frac{n-1}{7}\right\rceil+\frac{k}{2}$ for even k, and $\kappa^{s}\left(D_{k, n} ; S_{23}\right) \geq$ $\left\lceil\frac{n-2}{7}\right\rceil+\frac{k+1}{2}$ for odd k.

Proof. We show that $\kappa^{s}\left(D_{k, n}, S_{23}\right) \geq\left\lceil\frac{n-1}{7}\right\rceil+\frac{k}{2}$ when k is even. Let $F=\left\{T \mid T \leq S_{23}\right\}$ and $F^{i}=\left\{T_{i} \mid T_{i} \leq\right.$ $\left.S_{23}, T_{i} \cap D_{k-1, n}^{i}\right\}$ for $i \in I_{k, n}$. In the following, we prove that $D_{k, n}-F$ is connected when $|F| \leq\left\lceil\frac{n-1}{7}\right\rceil+\frac{k}{2}-1$. To the contrary, suppose that $D_{k, n}-F$ is disconnected and G_{0} is a smallest component of $D_{k, n}-F$.
$|V(F)|=\left(\left\lceil\frac{n-1}{7}\right\rceil+\frac{k}{2}-1\right) * 7 \leq\left(\frac{n-1+6}{7}+\frac{k}{2}-1\right) * 7=\frac{7}{2} k+n-2<4 k+n-4=\kappa_{3}\left(D_{k, n}\right)$.
By Lemma 2.7, we have $\left|V\left(G_{0}\right)\right| \leq 3$, thus discussion as follows:
Case 1. $\left|V\left(G_{0}\right)\right|=1$.
Set $V\left(G_{0}\right)=\{v\}$. Thus $N(v) \subseteq V(F)$. To make the number of subgraphs of S_{23} 's minimum which contain the vertices in $N(v)$, we should construct as many S_{23} 's as possible and each S_{23} needs to contain as many vertices in $N(v)$ as possible. Since v has $n-1$ neighbors in a $D_{0, n}$ which is denoted by $D_{0, n}^{\prime}$ and has k neighbors $v^{1}, v^{2}, \ldots, v^{k}$ outside of the $D_{0, n}^{\prime}$, each S_{23} contains at most seven vertices in $D_{0, n}^{\prime \prime}$ or each S_{23} contains at most two vertices of $v^{1}, v^{2}, \ldots, v^{k}$ by Lemma 4.1. Then $|F| \geq\left\lceil\frac{n-1}{7}\right\rceil+\frac{k}{2}>$ $\left\lceil\frac{n-1}{7}\right\rceil+\frac{k}{2}-1 \geq|F|$, a contradiction.

Case 2. $\left|V\left(G_{0}\right)\right|=2$.
Set $V\left(G_{0}\right)=\{u, w\}$. Thus $N(\{u, w\}) \subseteq V(F)$. Let u be in a $D_{0, n}$, denoted by $D_{0, n}^{\prime \prime}$. If w is in $D_{0, n}^{\prime \prime}$, then w and u have $(n-2)$ common neighbors in $D_{0, n}^{\prime \prime}$. The vertex w has k neighbors outside of $D_{0, n}^{\prime \prime}$ and v also has k neighbors outside of $D_{0, n}^{\prime \prime}$. Furthermore, each S_{23} contains at most seven vertices in $D_{0, n}^{\prime \prime}$ or each S_{23} contains at most two vertices of the neighbors outside of the $D_{0, n}^{\prime \prime}$, by Lemma 4.1. So $|F| \geq\left\lceil\frac{n-2}{7}\right\rceil+\frac{2 k}{2}=\left\lceil\frac{n-2}{7}\right\rceil+k>\left\lceil\frac{n-1}{7}\right\rceil+\frac{k}{2}-1 \geq|F|$ for $n \geq 8$ and $k \geq 8$, a contradiction. If w is neighbor of u outside of $D_{0, n}^{\prime \prime}$, then w and u have no common neighbors. The vertex u has $n-1$ neighbors in $D_{0, n}^{\prime \prime}$ and $k-1$ neighbors outside of $D_{0, n}^{\prime \prime}$ except for w. Furthermore, each S_{23} contains at most seven vertices in $D_{0, n}^{\prime \prime}$ or each S_{23} contains at most two vertices of the neighbors outside of the $D_{0, n}^{\prime \prime}$, by Lemma 4.1. (The same situation for w.) So $|F| \geq 2 *\left\lceil\frac{n-1}{7}\right\rceil+2 * \frac{k-1}{2}=2 *\left\lceil\frac{n-2}{7}\right\rceil+(k-1)>\left\lceil\frac{n-1}{7}\right\rceil+\frac{k}{2}-1 \geq|F|$ for $n \geq 8$ and $k \geq 8$, a contradiction.

Case 3. $\left|V\left(G_{0}\right)\right|=3$.
Set $V\left(G_{0}\right)=\{x, y, z\}$. Thus $N(\{x, y, z\}) \subseteq V(F)$. To make the number of subgraphs of S_{23} 's minimum which contain the vertices in $N(\{x, y, z\})$, we should construct as many S_{23} 's as possible and each S_{23} needs to contain as many vertices in $N(\{x, y, z\})$ as possible. When x, y and z are in a same $D_{0, n}$, denoted by $D_{0, n}^{\prime \prime \prime}$, they have $(n-3)$ common neighbors in $D_{0, n}^{\prime \prime \prime}$ and each of x, y, z has k neighbors outside of $D_{0, n}^{\prime \prime \prime}$. Each S_{23} contains at most seven vertices in $D_{0, n}^{\prime \prime \prime}$ or an S_{23} contains at most two vertices of their neighbors outside of $D_{0, n}^{\prime \prime \prime}$ by Lemma 4.1. Then $|F| \geq\left\lceil\frac{n-3}{7}\right\rceil+3 * \frac{k}{2}>\left\lceil\frac{n-1}{7}\right\rceil+\frac{k}{2}-1 \geq|F|$ for $n \geq 8$ and $k \geq 8$, a contradiction. When x, y and z are in two different $D_{0, n}$, without loss of generality, assume that x and y are in $D_{0, n}^{\prime \prime \prime}$ and z is in another $D_{0, n}$. Then x and y have $(n-2)$ common neighbors, each of x, y has k neighbors outside of $D_{0, n}^{\prime \prime \prime}$. And z has $(n-1)$ neighbors in a $D_{0, n}$ and $(k-1)$ neighbors outside of a $D_{0, n}$ except for x or y. Then $|F| \geq\left\lceil\frac{n-2}{7}\right\rceil+\left\lceil\frac{n-1}{7}\right\rceil+2 * \frac{k}{2}+\frac{k-1}{2}>\left\lceil\frac{n-1}{7}\right\rceil+\frac{k}{2}-1 \geq|F|$ for $n \geq 8$ and $k \geq 8$, a contradiction. When x, y and z are in three different $D_{0, n}$, each of x, y, z has ($n-1$) neighbors in a $D_{0, n}$ and $(k-1)$ neighbors outside of a $D_{0, n}$. Then $|F| \geq 3 *\left\lceil\frac{n-1}{7}\right\rceil+3 * \frac{k-1}{2}>\left\lceil\frac{n-1}{7}\right\rceil+\frac{k}{2}-1 \geq|F|$ for $n \geq 8$ and $k \geq 8$, a contradiction.

The proof of $\kappa^{s}\left(D_{k, n}, S_{23}\right) \geq\left\lceil\frac{n-2}{7}\right\rceil+\frac{k+1}{2}$ when k is odd is similar to the case when k is even.

By Lemma 4.2 and Lemma 4.3, we have the following result.
Theorem 4.4. Let $n \geq 8, k \geq 8$. Then $\kappa\left(D_{k, n} ; S_{23}\right)=\kappa^{s}\left(D_{k, n} ; S_{23}\right)=\left\lceil\frac{n-1}{7}\right\rceil+\frac{k}{2}$ for even k, and $\kappa\left(D_{k, n} ; S_{23}\right)=\kappa^{s}\left(D_{k, n} ; S_{23}\right)=\left\lceil\frac{n-2}{7}\right\rceil+\frac{k+1}{2}$ for odd k.

5. Conclusions

Structure connectivity and substructure connectivity are important parameters for measuring network fault tolerance. In this paper, we obtain that $\kappa\left(D_{k, n} ; S_{m}\right)=\kappa^{s}\left(D_{k, n} ; S_{m}\right)=\left\lceil\frac{n-1}{m+1}\right\rceil+k$ for $n \geq 4$, $k \geq 2$ and $1 \leq m \leq n+k-2$. And when $n \geq 8, k \geq 8$, we prove that $\kappa\left(D_{k, n} ; S_{23}\right)=\kappa^{s}\left(D_{k, n} ; S_{23}\right)=$ $\left\lceil\frac{n-1}{7}\right\rceil+\frac{k}{2}$ for even k, and $\kappa\left(D_{k, n} ; S_{23}\right)=\kappa^{s}\left(D_{k, n} ; S_{23}\right)=\left\lceil\frac{n-2}{7}\right\rceil+\frac{k+1}{2}$ for odd k.

Acknowledgments

This work is supported by the Science Found of Qinghai Province (No. 2021-ZJ-703), the National Science Foundation of China (Nos.11661068, 12261074 and 12201335).

Conflict of interest

No potential conflict of interest was reported by the authors.

References

1. J. A. Bondy, U.S.R. Murty, Graph Theory, New York: Springer, 2008.
2. N. W. Chang, S. Y. Hsieh, \{2, 3\}-extraconnectivities of hypercube-like networks, J. Comput. System Sci., 79 (2013), 669-688. https://doi.org/10.1016/j.jcss.2013.01.013
3. J. Fàbrega, M. A. Fiol, On the extraconnectivity of graphs, Discrete Math., 155 (1996), 49-57. https://doi.org/10.1016/0012-365X(94)00369-T
4. C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, S. Lu, DCell: A scalable and fault-tolerant network structure fordata centers, In: Special Interest Group on Data Communication, SIGCOMM., (2008), 75-86. https://doi.org/10.1145/1402958.1402968
5. J. Guo, M. Lu, The extra connectivity of bubble-sort star graphs, Theor. Comput. Sci., 645 (2016), 91-99. https://doi.org/10.1016/j.tcs.2016.06.043
6. F. Harary, Conditional connectivity, Networks., 13 (1983), 347-357. https://doi.org/10.1002/net. 3230130303
7. S. Y. Hsieh, Y. H. Chang, Extraconnectivity of k-ary n-cube networks, Theoret. Comput. Sci., 443 (2012), 63-69. https://doi.org/10.1016/j.tcs.2012.03.030
8. C. Li, S. Lin, S. Li, Structure connectivity and substructure connectivity of (n, k)-star graph networks, 2018 15th International Symposium on Pervasive Systems, Algorithms and Networks (I-SPAN).IEEE, (2018), 240-246. https://doi.org/10.1109/I-SPAN.2018.00046
9. C. Li, S. Lin, S. Li, Structure connectivity and substructure connectivity of star graphs, Discrete Appl. Math., 284 (2020), 472-480. https://doi.org/10.1016/j.dam.2020.04.009
10. C. K. Lin, L. Zhang, J. Fan, D. Wang, Structure connectivity and substructure connectivity of hypercubes, Theor. Comput. Sci., 634 (2016), 97-107. https://doi.org/10.1016/j.tcs.2016.04.014
11. D. Li, X. Hu, H. Liu, Structure connectivity and substructure connectivity of twisted hypercubes, Theor. Comput. Sci., 796 (2019), 169-179. https://doi.org/10.1016/j.tcs.2019.09.007
12. H. Lv, T. Wu, Structure and substructure connectivity of Balanced Hypercubes, Bull. Malays. Math. Sci. Soc., 43 (2020), 2659-2672. https://doi.org/10.1007/s40840-019-00827-4
13. X. Li, J. Fan, C. K. Lin, B. Cheng, X. Jia, The extra connectivity, extra conditional diagnosability and t / k-diagnosability of the data center network DCell, Theor. Comput. Sci., 766 (2019), 16-29. https://doi.org/10.1016/j.tcs.2018.09.014
14. Y. Lv, J. Fan, D. F. Hsu, C. K. Lin, Structure connectivity and substructure connectivity of k-ary n-cube networks, Inform. Sci., 433 (2018), 115-124. https://doi.org/10.1016/j.ins.2017.11.047
15. S. A. Mane, Structure connectivity of hypercubes, AKCE Int. J. Graphs Comb., 15 (2018), 49-52. https://doi.org/10.1016/j.akcej.2018.01.009
16. E. Sabir, J. Meng, Structure fault tolerance of hypercubes and folded hypercubes, Theoret. Comput. Sci., 711 (2018), 44-55. https://doi.org/10.1016/j.tcs.2017.10.032
17. X. Wang, J. Fan, J. Zhou, C. K. Lin, The restricted h-connectivity of data center network DCell, Discrete Appl. Math., 203 (2016), 144-157. https://doi.org/10.1016/j.dam.2015.09.002
18. W. H. Yang, J. X. Meng, Extraconnectivity of hypercubes, Appl. Math. Lett., 22 (2009), 887-891. https://doi.org/10.1016/j.aml.2008.07.016
19. G. Zhang, D. Wang, Structure connectivity and substructure connectivity of bubble-sort star graph networks, Appl. Math. Comput., 363 (2019), 124632. https://doi.org/10.1016/j.amc.2019.124632
20. G. Zhang, D. Wang, The structure fault tolerance of arrangement graphs, Appl. Math. Comput., 400 (2021), 126039. https://doi.org/10.1016/j.amc.2021.126039
21. M. M. Zhang, J. X. Zhou, On g-extra connectivity of folded hypercubes, Theoret. Comput. Sci., 593 (2015), 146-153. https://doi.org/10.1016/j.tcs.2015.06.008

AIMS Press
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

