Research article Special Issues

A new look of interval-valued intuitionistic fuzzy sets in ordered AG-groupoids with applications

  • Received: 19 September 2022 Revised: 05 December 2022 Accepted: 19 December 2022 Published: 29 December 2022
  • MSC : 03E72, 08A72, 91B06

  • The main purpose of this article is to utilize mathematical tools to rank alternatives for a decision making problem. In this regard, we developed different types of interval-valued intuitionistic fuzzy (IVIF) score ideals through unit-valued score (accuracy) functions. We used IVIF-score left (right) ideals to characterize an intra-regular class of an ordered Abel-Grassmann's-grououpoid (AG-groupoid) which is a semilattice of left simple AG-groupoids. We also established a connection between IVIF-score (0, 2)-ideals and IVIF-score left (right) ideals. Finally, we demonstrated how to use the interval valued intuitionistic fuzzy score $ (0, 2) $-ideals to identify the most suitable alternative in a decision making problem, and also explain how it can be applied to a problem of selecting a warehouse.

    Citation: Faisal Yousafzai, Muhammad Danish Zia, Mohammed M. Khalaf, Rashad Ismail. A new look of interval-valued intuitionistic fuzzy sets in ordered AG-groupoids with applications[J]. AIMS Mathematics, 2023, 8(3): 6095-6118. doi: 10.3934/math.2023308

    Related Papers:

  • The main purpose of this article is to utilize mathematical tools to rank alternatives for a decision making problem. In this regard, we developed different types of interval-valued intuitionistic fuzzy (IVIF) score ideals through unit-valued score (accuracy) functions. We used IVIF-score left (right) ideals to characterize an intra-regular class of an ordered Abel-Grassmann's-grououpoid (AG-groupoid) which is a semilattice of left simple AG-groupoids. We also established a connection between IVIF-score (0, 2)-ideals and IVIF-score left (right) ideals. Finally, we demonstrated how to use the interval valued intuitionistic fuzzy score $ (0, 2) $-ideals to identify the most suitable alternative in a decision making problem, and also explain how it can be applied to a problem of selecting a warehouse.



    加载中


    [1] T. Asif, F. Yousafzai, A. Khan, K. Hila, Ideal theory in ordered AG-groupoids based on double framed soft sets, J. Mult.-Valued Log. S., 33 (2019), 27–49.
    [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1007/978-3-7908-1870-3_1 doi: 10.1007/978-3-7908-1870-3_1
    [3] K. T. Atanassov, G. Gargov, Interval-valued intuitionistic fuzzy sets, Fuzzy Set. Syst., 31 (1989), 343– 349.
    [4] X. S. Cai, L. G. Han, Some induced Einstein aggregation operators based on the data mining with interval-valued intuitionistic fuzzy information and their application to multiple attribute decision making, J. Intell. Fuzzy Syst., 27 (2014), 331–338. https://doi.org/10.3233/IFS-131000 doi: 10.3233/IFS-131000
    [5] Z. T. Chen, X. D. Yang, Y. Y. Zhu, Approach to multiple attribute decision making with interval-valued intuitionistic fuzzy information and its application, J. Intell. Fuzzy. Syst., 29 (2015), 489–497. https://doi.org/10.3233/IFS-141201 doi: 10.3233/IFS-141201
    [6] D. H. Hong, C. H. Choi, Multicriteria fuzzy decision making problems based on vague set theory, Fuzzy Set. Syst., 114 (2000), 103–113. https://doi.org/10.1016/S0165-0114(98)00271-1 doi: 10.1016/S0165-0114(98)00271-1
    [7] H. Kamacı, S. Petchimuthu, E. Akçetin, Dynamic aggregation operators and Einstein operations based on interval-valued picture hesitant fuzzy information and their applications in multi-period decision making, Comput. Appl. Math., 40 (2021), 1–52.
    [8] H. Kamacı, Complex linear Diophantine fuzzy sets and their cosine similarity measures with applications, Complex Intell. Syst. 8 (2022), 1281–1305.
    [9] H. Kamacı, Linear Diophantine fuzzy algebraic structures, J. Amb. Intel. Hum. Comput., 12 (2021), 10353–10373.
    [10] M. S. Kamran, Structural properties of LA-semigroups, M. Phil Thesis, Quaid-i-Azam University, Pakistan, 1987.
    [11] M. A. Kazim, M. Naseeruddin, On almost semigroups, Port. Math., 2 (1972), 1–7.
    [12] M. Khan, F. Yousafzai, On fuzzy ordered Abel-Grassmann's groupoids, J. Math. Res., 3 (2011), 27–40. https://doi.org/10.5539/jmr.v3n2p27 doi: 10.5539/jmr.v3n2p27
    [13] M. Khan, Y. B. Jun, F. Yousafzai, Fuzzy ideals in right regular left almost semigroups, Hacet. J. Math. Stat., 44 (2015), 569–586.
    [14] S. Lajos, A note on completely regular remigroups, Acta Sci. Math. Szeged, 28 (1967), 261–265.
    [15] Q. Mushtaq, S. M. Yusuf, On LA-semigroups, Alig. Bull. Math., 8 (1978), 65–70.
    [16] M. Riaz, M. R. Hashmi, Linear Diophantine fuzzy set and its applications towards multi-attribute decision-making problems, J. Intel. Fuzzy Syst., 37 (2019), 5417–5439. https://doi.org/10.3233/JIFS-190550 doi: 10.3233/JIFS-190550
    [17] T. Saito, On semigroups which are semilattices of left simple semigroups, Math. Japon, 18 (1973), 95–97.
    [18] N. Stevanović, P. V. Protić, Composition of Abel-Grassmann's 3-bands, Novi Sad J. Math., 34 (2004), 175–182.
    [19] J. P. Xu, F. Shen, A new outranking choice method for group decision making under Atanassov's interval-valued intuitionistic fuzzy environment, Knowl-Based Syst., 70 (2014), 177–188. https://doi.org/10.1016/j.knosys.2014.06.023 doi: 10.1016/j.knosys.2014.06.023
    [20] S. Z. Xu, Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making, Control Decis., 22 (2007), 215–219.
    [21] R. P. Yager, Pythagorean fuzzy subsets, In Proceedings of the IFSA World Congress and NAFIPS Annual Meeting, Edmonton, AB, Canada, 2013, 57–61.
    [22] R. P. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2017), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [23] F. Yousafzai, N. Yaqoob, A. Ghareeb, Left regular $\mathcal{AG}$-groupoids in terms of fuzzy interior ideals, Afr. Math., 24 (2013), 577–587.
    [24] F. Yousafzai, N. Yaqoob, K. Hila, On fuzzy (2, 2)-regular ordered $\Gamma$ -AG**-groupoids, UPB Sci. Bull. Ser. A, 74 (2012), 87–104.
    [25] F. Yousafzai, A. Khan, V. Amjad, A. Zeb, On fuzzy fully regular ordered AG-groupoids, J. Intell. Fuzzy Syst., 26 (2014), 2973–2982. https://doi.org/10.3233/IFS-130963 doi: 10.3233/IFS-130963
    [26] F. Yousafzai, M. Khan, B. Davvaz, S. Haq, A note on fuzzy ordered AG-groupoids, J. Intell. Fuzzy Syst., 26 (2014), 2251–2261.
    [27] F. Yousafzai, N. Yaqoob, A. Zeb, On generalized fuzzy ideals of ordered AG-groupoids, Int. J. Mach. Learn. Cyb., 7 (2016), 995–1004.
    [28] F. Yousafzai, M. M. Khalaf, A. Ali, A. B. Saeid, Non-associative ordered semigroups based on soft sets, Commun. Algebra, 47 (2019), 312–327. https://doi.org/10.1080/00927872.2018.1476524 doi: 10.1080/00927872.2018.1476524
    [29] Z. L. Yue, Y. Y. Jia, A method to aggregate crisp values into interval-valued intuitionistic fuzzy information for group decision making, Appl. Soft Comput., 13 (2013), 2304–2317. https://doi.org/10.1016/j.asoc.2012.12.032 doi: 10.1016/j.asoc.2012.12.032
    [30] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1484) PDF downloads(99) Cited by(6)

Article outline

Figures and Tables

Figures(3)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog