The main purpose of this article is to utilize mathematical tools to rank alternatives for a decision making problem. In this regard, we developed different types of interval-valued intuitionistic fuzzy (IVIF) score ideals through unit-valued score (accuracy) functions. We used IVIF-score left (right) ideals to characterize an intra-regular class of an ordered Abel-Grassmann's-grououpoid (AG-groupoid) which is a semilattice of left simple AG-groupoids. We also established a connection between IVIF-score (0, 2)-ideals and IVIF-score left (right) ideals. Finally, we demonstrated how to use the interval valued intuitionistic fuzzy score $ (0, 2) $-ideals to identify the most suitable alternative in a decision making problem, and also explain how it can be applied to a problem of selecting a warehouse.
Citation: Faisal Yousafzai, Muhammad Danish Zia, Mohammed M. Khalaf, Rashad Ismail. A new look of interval-valued intuitionistic fuzzy sets in ordered AG-groupoids with applications[J]. AIMS Mathematics, 2023, 8(3): 6095-6118. doi: 10.3934/math.2023308
The main purpose of this article is to utilize mathematical tools to rank alternatives for a decision making problem. In this regard, we developed different types of interval-valued intuitionistic fuzzy (IVIF) score ideals through unit-valued score (accuracy) functions. We used IVIF-score left (right) ideals to characterize an intra-regular class of an ordered Abel-Grassmann's-grououpoid (AG-groupoid) which is a semilattice of left simple AG-groupoids. We also established a connection between IVIF-score (0, 2)-ideals and IVIF-score left (right) ideals. Finally, we demonstrated how to use the interval valued intuitionistic fuzzy score $ (0, 2) $-ideals to identify the most suitable alternative in a decision making problem, and also explain how it can be applied to a problem of selecting a warehouse.
[1] | T. Asif, F. Yousafzai, A. Khan, K. Hila, Ideal theory in ordered AG-groupoids based on double framed soft sets, J. Mult.-Valued Log. S., 33 (2019), 27–49. |
[2] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1007/978-3-7908-1870-3_1 doi: 10.1007/978-3-7908-1870-3_1 |
[3] | K. T. Atanassov, G. Gargov, Interval-valued intuitionistic fuzzy sets, Fuzzy Set. Syst., 31 (1989), 343– 349. |
[4] | X. S. Cai, L. G. Han, Some induced Einstein aggregation operators based on the data mining with interval-valued intuitionistic fuzzy information and their application to multiple attribute decision making, J. Intell. Fuzzy Syst., 27 (2014), 331–338. https://doi.org/10.3233/IFS-131000 doi: 10.3233/IFS-131000 |
[5] | Z. T. Chen, X. D. Yang, Y. Y. Zhu, Approach to multiple attribute decision making with interval-valued intuitionistic fuzzy information and its application, J. Intell. Fuzzy. Syst., 29 (2015), 489–497. https://doi.org/10.3233/IFS-141201 doi: 10.3233/IFS-141201 |
[6] | D. H. Hong, C. H. Choi, Multicriteria fuzzy decision making problems based on vague set theory, Fuzzy Set. Syst., 114 (2000), 103–113. https://doi.org/10.1016/S0165-0114(98)00271-1 doi: 10.1016/S0165-0114(98)00271-1 |
[7] | H. Kamacı, S. Petchimuthu, E. Akçetin, Dynamic aggregation operators and Einstein operations based on interval-valued picture hesitant fuzzy information and their applications in multi-period decision making, Comput. Appl. Math., 40 (2021), 1–52. |
[8] | H. Kamacı, Complex linear Diophantine fuzzy sets and their cosine similarity measures with applications, Complex Intell. Syst. 8 (2022), 1281–1305. |
[9] | H. Kamacı, Linear Diophantine fuzzy algebraic structures, J. Amb. Intel. Hum. Comput., 12 (2021), 10353–10373. |
[10] | M. S. Kamran, Structural properties of LA-semigroups, M. Phil Thesis, Quaid-i-Azam University, Pakistan, 1987. |
[11] | M. A. Kazim, M. Naseeruddin, On almost semigroups, Port. Math., 2 (1972), 1–7. |
[12] | M. Khan, F. Yousafzai, On fuzzy ordered Abel-Grassmann's groupoids, J. Math. Res., 3 (2011), 27–40. https://doi.org/10.5539/jmr.v3n2p27 doi: 10.5539/jmr.v3n2p27 |
[13] | M. Khan, Y. B. Jun, F. Yousafzai, Fuzzy ideals in right regular left almost semigroups, Hacet. J. Math. Stat., 44 (2015), 569–586. |
[14] | S. Lajos, A note on completely regular remigroups, Acta Sci. Math. Szeged, 28 (1967), 261–265. |
[15] | Q. Mushtaq, S. M. Yusuf, On LA-semigroups, Alig. Bull. Math., 8 (1978), 65–70. |
[16] | M. Riaz, M. R. Hashmi, Linear Diophantine fuzzy set and its applications towards multi-attribute decision-making problems, J. Intel. Fuzzy Syst., 37 (2019), 5417–5439. https://doi.org/10.3233/JIFS-190550 doi: 10.3233/JIFS-190550 |
[17] | T. Saito, On semigroups which are semilattices of left simple semigroups, Math. Japon, 18 (1973), 95–97. |
[18] | N. Stevanović, P. V. Protić, Composition of Abel-Grassmann's 3-bands, Novi Sad J. Math., 34 (2004), 175–182. |
[19] | J. P. Xu, F. Shen, A new outranking choice method for group decision making under Atanassov's interval-valued intuitionistic fuzzy environment, Knowl-Based Syst., 70 (2014), 177–188. https://doi.org/10.1016/j.knosys.2014.06.023 doi: 10.1016/j.knosys.2014.06.023 |
[20] | S. Z. Xu, Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making, Control Decis., 22 (2007), 215–219. |
[21] | R. P. Yager, Pythagorean fuzzy subsets, In Proceedings of the IFSA World Congress and NAFIPS Annual Meeting, Edmonton, AB, Canada, 2013, 57–61. |
[22] | R. P. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2017), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005 |
[23] | F. Yousafzai, N. Yaqoob, A. Ghareeb, Left regular $\mathcal{AG}$-groupoids in terms of fuzzy interior ideals, Afr. Math., 24 (2013), 577–587. |
[24] | F. Yousafzai, N. Yaqoob, K. Hila, On fuzzy (2, 2)-regular ordered $\Gamma$ -AG**-groupoids, UPB Sci. Bull. Ser. A, 74 (2012), 87–104. |
[25] | F. Yousafzai, A. Khan, V. Amjad, A. Zeb, On fuzzy fully regular ordered AG-groupoids, J. Intell. Fuzzy Syst., 26 (2014), 2973–2982. https://doi.org/10.3233/IFS-130963 doi: 10.3233/IFS-130963 |
[26] | F. Yousafzai, M. Khan, B. Davvaz, S. Haq, A note on fuzzy ordered AG-groupoids, J. Intell. Fuzzy Syst., 26 (2014), 2251–2261. |
[27] | F. Yousafzai, N. Yaqoob, A. Zeb, On generalized fuzzy ideals of ordered AG-groupoids, Int. J. Mach. Learn. Cyb., 7 (2016), 995–1004. |
[28] | F. Yousafzai, M. M. Khalaf, A. Ali, A. B. Saeid, Non-associative ordered semigroups based on soft sets, Commun. Algebra, 47 (2019), 312–327. https://doi.org/10.1080/00927872.2018.1476524 doi: 10.1080/00927872.2018.1476524 |
[29] | Z. L. Yue, Y. Y. Jia, A method to aggregate crisp values into interval-valued intuitionistic fuzzy information for group decision making, Appl. Soft Comput., 13 (2013), 2304–2317. https://doi.org/10.1016/j.asoc.2012.12.032 doi: 10.1016/j.asoc.2012.12.032 |
[30] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. |