The major objectives of this research article are to introduce the notion of ($ \alpha, \psi $)-contraction in the context of $ \mathfrak{F} $-bipolar metric space and establish fixed point theorems. In this way, coupled fixed point results are obtained by applying the leading theorems. Some non-trivial examples are also furnished to show the validity of established results. As applications of the main result, we investigate the solution of an integral equation and a homotopy problem.
Citation: Amer Hassan Albargi. Fixed point theorems for generalized contractions in $ \mathfrak{F} $-bipolar metric spaces with applications[J]. AIMS Mathematics, 2023, 8(12): 29681-29700. doi: 10.3934/math.20231519
The major objectives of this research article are to introduce the notion of ($ \alpha, \psi $)-contraction in the context of $ \mathfrak{F} $-bipolar metric space and establish fixed point theorems. In this way, coupled fixed point results are obtained by applying the leading theorems. Some non-trivial examples are also furnished to show the validity of established results. As applications of the main result, we investigate the solution of an integral equation and a homotopy problem.
[1] | S. Banach, Sur les operations dans les ensembles abstracts ET leur applications aux equations integrals, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181 |
[2] | M. Frechet, Sur quelques points du calcul fonctionnel, Rend. Circ. Matem. Palermo, 22 (1906), 1–72. https://doi.org/10.1007/BF03018603 doi: 10.1007/BF03018603 |
[3] | I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26–37. |
[4] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostra., 1 (1993), 5–11. |
[5] | A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31–37. |
[6] | M. Jleli, B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 20 (2018), 128. https://doi.org/10.1007/s11784-018-0606-6 doi: 10.1007/s11784-018-0606-6 |
[7] | A. Hussain, T. Kanwal, Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, T. A Razmadze Math. In., 172 (2018), 481–490. https://doi.org/10.1016/j.trmi.2018.08.006 doi: 10.1016/j.trmi.2018.08.006 |
[8] | A. Mutlu, U. Gürdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., 9 (2016), 5362–5373. |
[9] | A. Mutlu, K. Ozkan, U. Gürdal, Coupled fixed point theorems on bipolar metric spaces, Eur. J. Pure Appl. Math., 10 (2017), 655–667. |
[10] | G. N. V. Kishore, D. R. Prasad, B. S. Rao, V. S. Baghavan, Some applications via common coupled fixed point theorems in bipolar metric spaces, J. Crit. Rev., 7 (2019), 601–607. |
[11] | G. N. V. Kishore, K. P. R. Rao, H. Isik, B. S. Rao, A. Sombabu, Covariant mappings and coupled fixed point results in bipolar metric spaces, Int. J. Nonlinear Anal. Appl., 12 (2021), 1–15. https://doi.org/10.22075/IJNAA.2021.4650 doi: 10.22075/IJNAA.2021.4650 |
[12] | B. S. Rao, G. N. V. Kishore, G. K. Kumar, Geraghty typecontraction and common coupled fixed point theorems in bipolar metric spaces with applications to homotopy, Int. J. Math. Trends Technol., 63 (2018), 25–34. |
[13] | U. Gürdal, A. Mutlu, K. Ozkan, Fixed point results for $\alpha $-$\psi $-contractive mappings in bipolar metric spaces, J. Inequal. Spec. Funct., 11 (2020), 64–75. |
[14] | G. N. V. Kishore, K. P. R. Rao, A. Sombabu, R. V. N. S. Rao, Related results to hybrid pair of mappings and applications in bipolar metric spaces, J. Math., 2019 (2019), 8485412. https://doi.org/10.1155/2019/8485412 doi: 10.1155/2019/8485412 |
[15] | G. N. V. Kishore, R. P. Agarwal, B. S. Rao, R. V. N. S. Rao, Caristi type cyclic contraction and common fixed point theorems in bipolar metric spaces with applications, Fixed Point Theory Appl., 2018 (2018), 21. https://doi.org/10.1186/s13663-018-0646-z doi: 10.1186/s13663-018-0646-z |
[16] | G. N. V. Kishore, H. Isik, H. Aydi, B. S. Rao, D. R. Prasad, On new types of contraction mappings in bipolar metric spaces and applications, J. Linear Topol. Algebra, 9 (2020), 253–266. |
[17] | C. G. Moorthy, G. Siva, Bipolar multiplicative metric spaces and fixed point theorems of covariant and contravariant mappings, Math. Anal. Convex Optim., 2 (2021), 39–49. https://doi.org/10.52547/maco.2.1.4 doi: 10.52547/maco.2.1.4 |
[18] | A. Mutlu, K. Ozkan, U. Gürdal, Some common fixed point theorems in bipolar metric spaces, Turk. J. Math. Comput. Sci., 14 (2022), 346–354. https://doi.org/10.47000/tjmcs.1099118 doi: 10.47000/tjmcs.1099118 |
[19] | K. Roy, M. Saha, Generalized contractions and fixed point theorems over bipolar cone tvs $b$-metric spaces with an application to Homotopy theory, Mat. Vesnik, 72 (2020), 281–296. |
[20] | S. Rawat, R. C. Dimri, A. Bartwal, $\mathfrak{F}$-Bipolar metric spaces and fixed point theorems with applications, J. Math. Comput. Sci., 26 (2022), 184–195. |
[21] | B. Alamri, Fixed point results in $\mathfrak{F}$-bipolar metric spaces with applications, Mathematics, 11 (2023), 2399. https://doi.org/10.3390/math11102399 doi: 10.3390/math11102399 |
[22] | B. Samet, C. Vetro, P. Vetro, Fixed point theorem for $\alpha-\psi$ contractive type mappings, Nonlinear Anal. Theor., 75 (2012), 2154–2165. |
[23] | A. Butt, I. Beg, A. Iftikhar, Fixed points on ordered metric spaces with application in homotopy theory, J. Fixed Point Theory Appl., 20 (2018), 21. https://doi.org/10.1007/s11784-018-0496-7 doi: 10.1007/s11784-018-0496-7 |
[24] | M. E. Ege, C. Alaca, Fixed point results and an application to homotopy in modular metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 900–908. |
[25] | Humaira, M. Sarwar, P. Kumam, Common fixed point results for fuzzy mappings on complex-valued metric spaces with Homotopy results, Symmetry, 11 (2019), 61. https://doi.org/10.3390/sym11010061 doi: 10.3390/sym11010061 |