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1. Introduction

Fixed point theory is one of the well-known and illustrious theories in functional analysis and has
broad applications in different fields. The Banach contraction principle [1] is the first theorem in this
theory in which a complete metric space (CMS) plays an important role that was naturally
accomplished by M. Frechet [2] in 1906. After that, various researchers have extended the notion of
the metric by either changing the domain and range or weakening the metric axioms of it. The famous
extension of metric space is b-metric space which has been done by Bakhtin [3] that was formally
defined by Czerwik [4] in 1993. Another generalization of metric space is rectangular metric space,
which was given by Branciari [S]. Recently, Jleli et al. [6] introduced a new metric space, which is
known as an F-metric space (F-MS) and proved the Banach contraction principle in this context. The
notion of F-MS is an interesting extension of the metric space, b-metric space and rectangular metric
space. Later on, Hussain et al. [7] used the notion of F-MS and established some theorems
for (a, ¥)-contractions.

In these generalizations of metric spaces, we consider the distance between points of a single set.
Thus, a question arises generally that how distance between elements of two different sets can be
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explored? These problems of finding distance can be discussed in different fields. On the other hand,
Mutlu et al. [8] introduced the concept of bipolar metric space (bip MS) to solve such problems. Also,
this new notion of bip MS leads to the evolution and advancement of fixed point theorems in this
theory. In due course, Mutlu et al. [9] established coupled fixed point results in the framework of bip
MS. Kishore et al. [10] extended the concept of the coupled fixed point to common coupled fixed
point and presented an application of it. Kishore et al. [11] genaralized the contractive inequality of
Mutlu et al. [9] and presented some contemporary coupled fixed point theorems. Rao et al. [12]
proved a common coupled fixed point result for Geraghty type contraction and applied their result to
the homotopy theory. Giirdal et al. [13] utilized the notion of bip MS to obtain fixed point theorems
for (a, y)-contractions. Later on, Kishore et al. [14] proved some related fixed point results to a hybrid
pair of mappings in bipolar metric space and investigated the solution of an integral equation.
Moreover, various significant problems have been solved for the existence of a fixed point of
single-valued and set-valued mappings in the context of bip MS (see [15-19]) and references therein).
In the recent past, Rawat et al. [20] unified the above two novel notions, specifically §-MS and bip
MS and established the notion of F-bipolar metric space ( F-bip MS) and obtained a fixed point result
in the background of ¥-MS. Very recently, Alamri [21] obtained fixed point theorems for Reich and
Fisher type contractions in the framework of §-bip MS.

In the present research work, we introduce the notion of (@, ¥)-contraction in the context of -
bip MS and establish fixed point results for covariant and contravariant mappings. In this way, we
derive coupled fixed point results by applying the leading theorems. Some non-trivial examples are also
furnished to show the validity of established results. The solution of integral equation and homotopy
problem is investigated as applications of the main theorem.

2. Preliminaries

The well-known Banach contraction principle [1] is given in this way.

Theorem 2.1. [I1] Let T be self mapping on CMS (X, d). If there exists a nonnegative constant 1 €
[0, 1) such that

d(Tx,Ty) < Ad(x,y),
forall x,y € X, then T has a unique fixed point.

Jleli et al. [6] introduced an engrossing generalization of a metric space as follows:
Let ¥ be the family of functions f : (0, +c0) — R satisfying the following assertions:

(1) f is non-decreasing,
(F2) for each sequence {1;} € R*, lim;o @; = 0 if and only if lim; ., f(e;) = —co.

Definition 2.1. /6] Let X # 0 andletd : XXX — [0, +00). Assume that there exist (f, 1) € F X [0, +00)
such that for all (x, y) € XXX,

(1) d(x,y) =01ifand only if x =y,
(i) d(x,y) = d(y, x),
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(ii1) for all p > 2 and (u,-)f'=1 C X along with (u;,u,) = (x,y), we have

p-1
d(x,y) > 0= f(d(x,) < f[Z d(u, m)] o,
i=1

where p € N. Then d is said to be an - metric on X and (X, d) is said to be an F-MS.
Example 2.1. /6] Let X=R, f(¢) = In(¢) and 7 = In(3). Define d : XxX — [0, +0) by

e (A
then (X,d) is an §-MS.
Mutlu et al. [8] introduced the notion of bip MS in such manner.
Definition 2.2. [8]Let X# 0,Y # Qandletd : X XY — [0, +o0) be a function satisfying the following

conditions

(biy) d(x,y) = 01if and only if x =y,

(biy) d(x,y) =d(y,x),if x,ye X NY,

(b13) d(x,Y) < d(x’y/) + d(x/’y/) + d(x/,Y),

for all (x,y), (x/,y') € X X Y. Then (X,Y, d) is called a bip MS.

Example 2.2. /8] Let X and Y be the class of all compact and singleton subsets of R accordingly.
Defined : X XY — [0, +0) by

d(x,E) = |x — inf (B)| + |x — sup ()|
for {x} € X and E C ¥, then (X,Y, d) is a complete bip MS.

Definition 2.3. /8] Let(X;,Y;,d;) and (X>, Y>,d,) be two bip MSs. A mapping T : (X, Y,d) = (X, Y,d)
is said to be a covariant mapping, if 7 (X;) € X, and T (Y;) € Y,. Similarly, a mapping T : (X;,Y})
2 (X3, Y,) is said to be a contravariant mapping, if 7 (X;) C Y, and T (X;) C Y;.

We symbolize the covariant mappings as 7 : (X;, Y1) = (X;,Y>) and contravariant mappings as
T :(X;,Y)) 2 (X5, 1) to generate the distinction between the mappings.

Rawat et al. [20] unified the two novel notions, ¥-MS and bip MS and introduced the notion of ¥-bip
MS in this way.

Definition 2.4. [20] Let X# 0, Y#0 and d : X XY — [0,+c0). Suppose that there exist (f,n) €
F X [0, +c0) such that for all (x,y) € X X Y,

(Dy) d(x,y) =0ifand only if x =y,
(Dy) d(x,y) = d(y, %), if x,y e XN Y,
(D) forall p > 2 and (), € X and (v;)}_, C Y along with (u;,v,) = (x,y), we have

p-l P
d(x,y) > 0= fd0ey) < f| D d Wi, v) + ) d v |+,
i=1 i=1

where p € N. Then d is said to be an §-bip metric on the pair (X, Y) and (X, Y, d) is said to be
an &-bip MS.
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Example 2.3. Let X={1,2}and Y = {2,7}. Defined : X X Y — [0, +00) by
d1,2) =6, d(1,7) =10,d2,7) =2, d(2,2) =0,

then d satisfies all the conditions of an §-bip metric with @ = 0 and f(t) = Int, for ¢ > 0. Thus (X, ¥, d)
is an §-bip MS but not bip MS.

Remark 2.1. [20] Taking Y = X, p = 2i, u;, = up,-; and v, = uy, in the above definition (2.4), we
2i
obtain a sequence (u J) | € X with (uy,uy;) = (x,y) such that condition (iii) of Definition 2.1 holds.

Thus every §-MS is an §-bip MS but every §-bip MS is not an F-MS.

Definition 2.5. [20] Let (X, Y, d) be an ¥-bip MS.

(1) A point x € XUY is called a right point if x € Y and a left point if x € X. And x is called a central
point if it is both left and right point.

(i1) (x;) on X is called a left sequence and (y;) on Y is considered as a right sequence.

(ii1) (x;) is called to converge to a point x, iff x is a left point, (x;) is a right sequence and
lim; ., d(x,x;) = 0, or x is a right point, (x;) is a left sequence and lim;,.d(x;,x) = 0. A
bisequence (x;,y;) on (X, Y,d) is a sequence on the set X X Y . If the sequences (x;) and (y;) are
convergent, then the bisequence (x;,y;) is also convergent, and if (x;) and (y;) converge to a common
element, then the bisequence (x;,y;) is said to be biconvergent.

(iv) A bisequence (x;, y;) in an F-bip MS (X, Y, d) is said to be a Cauchy bisequence, if for each € > 0,
there exist ip € N, such that d (xi, y,,) <e€, foralli,p > i.

Definition 2.6. [20] If every Cauchy bisequence in §-bip MS (X, Y, d) is convergent, then (X, Y, d) is
complete.

On the other hand, Samet et al. [22] introduced the notions a-admissible mapping
and (@, ¥)-contraction in this manner.

Definition 2.7. [22] Let ¥ be a family of functions ¢ : [0, +0c0) — [0, +00) satisfying the following
conditions
(1) ¢ is nondecreasing,

%) i Wi(t) < +oo, for all t > 0, where i/ is the i-th iterate of .
i=1
Lemma 2.1. [22]Ify € Y, then for each t > 0, Y(t) < t and Y(0) = 0.

Definition 2.8. /[22] Let @ : X X X— [0, +0o0) be any function. A mapping 7 : X — X is said to
be @-admissible if
a(x,y)>1 implies a (Tx, Ty) >1,

for all x,y € X.

Definition 2.9. [22] Let (X,d) be a MS. A mapping T : X — X is said to be («, ¢)-contraction if there
exist some @ : X X X— [0, +00) and ¥ € ¥ such that

a(x,y)d(Tx,Ty) <y (d(x,y)),

for all x,y € X.
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3. Main results

Throughout this section, we consider (X, Y, d) as complete §-bip MS.

Definition 3.1. Let @ : X X Y— [0, +0c0) be any function. A mapping T : (X, Y,d) =3 (X, Y,d) is called
a covariant a-admissible if
a(x,y)>21 = a(Tx,Ty)>1, (3.1

for all (x,y) e X X Y.
Example 3.1. Let X=[0, +o0) and Y= (—00,0] and @ : X X Y— [0, +00) is defined as

| Lifx#y,
A covariant mapping T : (X, Y,d) = (X, Y, d) defined by T(x) = x is covariant a-admissible.

Definition 3.2. Let @ : X X Y— [0, +0c0) be any function. A mapping T : (X, Y,d) 2 (X, Y,d) is called
a contravariant a-admissible if there exist some @ : X X Y— [0, +00) such that

a(x,y)>21 = a(Ty, Tx)>1, (3.2)
for all (x,y) € X X Y.
Example 3.2. Let X=[0, +00) and Y=(—00,0] and @ : X X Y— [0, +c0) is defined as

1, if x #y,

cy(x,y):{ 0, if x =y.

A contravariant mapping 7 : (X, Y,d) 2 (X, Y, d) defined by T'(x) = —x is contravariant a-admissible.
Definition 3.3. A mapping 7 : (X,Y,d) =2 (X,Y,d) is called a covariant (@, {)-contraction if T is

covariant mapping and there exist some @ : X X Y— [0, +00) and ¢ € ¥ such that

a(x,y)d(Tx,Ty) <y (d(x,y)), (3.3)
for all (x,y) € X X Y.
Example 3.3. Let X =NU{0O}and Y = % U {0} forn € N. Defined : X XY — [0, +0) as

2, if (x,y) =2, 1)
|x —y|, otherwise.

dmw={

Then (X, Y, d) is complete F-bip MS for f(f) = In(¢) and 7 > 2. Define the covariant mapping 7 :
XUY > XUYby
| 0,ifxe X-{0,1}
T = { 1, ifxe?.

and @ : X X Y— [0, +0) by
a(x,y) =1
for all (x,y) € XxY. Then the covariant mapping 7 : (X, Y, d) =3 (X, Y, d) is covariant (a, /)-contraction.
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Definition 3.4. A mapping 7 : (X, Y,d) 2 (X, Y, d) is called a contravariant (a, {)-contraction if 7 is
contravariant and there exist some « : X X Y— [0, +00) and ¢ € ¥ such that

a(x,y)d(Ty,Tx) <y (d(x,y)), (3.4)

for all (x,y) € X X Y.

Remark 3.1. A mapping 7 : (X,Y,d) 2 (X,Y,d) satisfying the Banach contraction in ¥-bip
MS (X, Y, d) is convariant (a, ¥)-contraction with

a(x,y) =1

for all (x,y) € X X Y and ¥ () = kt, for some k € [0,1) and for r > 1. Same remark holds for
contravariant mapping 7 : (X, Y,d) 2 (X, Y,d).

Definition 3.5. Let a : X X Y— [0, +00) be a function. We say that a property (P) holds, if there exists
ze XNYsuchthata(x,z) > 1and a(z,y) = 1 forall (x,y) € X X Y.

Theorem 3.1. Let T : (X, Y,d) = (X, Y,d) be covariant (a,¥)-contraction. Assume that the following
assertions hold

(i) T is covariant a-admissible,

(ii) there exists xo € X, yo € Y such that a (xy,yo) > 1 and a (xy, Tyo) > 1,

(iii) T is continuous or , if (x;,y;) is a bisequence in (X, Y,d) such that a (x;,y;) > 1, foralli € N
with x; > w and y; = w, as i — o forw € XNY, then a(w,y;) > 1, forall i € N.

Then T has a fixed point. Furthermore, if the property (P) holds, then fixed point is unique.

Proof. Let xy € X and y, € Y and suppose that a (xo, yo) > 1 and @ (xg, Typ) > 1 by the assumption (ii).
Define the bisequence (x;, y;) in (X, Y, d) by

Xis1 = Tx; and yi =Ty,

for all i € N. As T is covariant a-admissible mapping by the hypothesis (i), so we have

v

a (xo, Yo) 1 implies that a (x1,y;) = @ (Txp, Tyo) > 1,

a(xg,y1) = a(xg,Tyo) > 1implies a (x1,y,) = a(Txg, Ty;) > 1

a(x;,y1) = a(Txy,Tyy) = 1implies @ (x3,y,) = @ (Tx,Ty;) > 1
a(x;,y2) = a(Txp,Ty;) > 1implies @ (x2,y3) = a(Tx,Ty,) > 1
a(xy,y;) = a(Tx,Ty)) > 1implies a (x3,y3) = @ (Tx2, Ty;) > 1.

Continuing in this way, we have
@ (X1, y1) 2 1 and @ (xi41, yiv1) 2 1, (3.5)
for all i € N. Now by (3.3) and (3.5), we have
d (xi,yir1) = d (Txi1, Ty;) < @ (X1, y) d (Txio1, Ty:) < ¢ (d (xim1,31)), (3.6)
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foralli € N. And

d (Xir1,yir1) = d(Tx;, Ty) < a(x;,y)d(Tx;, Ty;) <y (d(x;,y1), 3.7

for all i € N. By (3.6) and mathematical induction, we get

d (xi, yis1) S Y (d (it ¥0) S Y W (d (X, yie)) < e S Y (0, 01)) - (3.8)

Similarly, by (3.7) and mathematical induction, we have

d (Xis1, Yir1) S Y (d (53, ¥)) S Y @ (d (i1, yi-0) < e < YA (0, 0)) (3.9)

for all i € N. Let (f,m) € F X [0, o0) be such that (D) is satisfied. Let € > 0 be fixed. By (%»), there
exists 6 > 0 such that

O0<t<do= f(t) < f(e) —m. (3.10)
Let there exists € > 0 and i(¢€) € N such that
l' 6
IRAUCEHESS
i>i(€)

and

DU o) < 5.

i>i(e)

Now for p > i > i(e), by applying (D3), we have that d (xi, yp) > 0 implies

£ (d (7))

IA

d (xi, Yie1) + d (Xis1, Yie1) + d (X1, Yis2) + ]
f +7

e+ d(x,,_l,yp_l) + d(xp—l’yp)

IA
~

p-1 p-2
Zd(xj,yjﬂ) + Zd(xj+1’yj+l)) 4+

= j=i
-1

p—2
D WAy + ) ' (d (x, yo))] +7

j=i j=i

T o~

IA
~

IA

f Z ' (d (x0,y1)) + Z v (d (xo,yo))) +7

i>i(€) i2i(e)

< flo.

for all j € N. Similarly, for i > p > i(e), by applying (Ds), we have that d (x,-, yp) > 0 implies

IA

f(d (xi’yp)) f( d(xp’ yp) + d(xpa yp+1) + d(xp+1,y,,+1) + ) .

vt d (X, Y1) +d (X3, 5)

f[z A1)+ jd(xj,yjH)J i

J=p J=i

IA
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IA

f [Z ' (d (x0,¥0)) + Z v (d (xo,y1))] +7
J=p j=p

IA

f[z ' (d (x0,¥0)) + Z Y (d (Xo,)ﬁ))] +

i>i(€) i>i(€)

< f(e),

for all j € N. Then by (%), d(xl-,yp) < €, for all p,i > iy. Thus (x;,y;) is a Cauchy bisequence
in -bip MS (X, Y,d). Since (X, Y,d) is complete, thus (x;,y;) biconverges to a point w € X N Y.
So (x;) = w, (y;) = w. Also since T is continuous, SO

(x;) = w 1mplies that (x;;1) = (Tx;)) = Tow.

Also since (y;) has a unique limit w in X N Y. Hence Tw = w. So T has a fixed point.

Now since a bisequence (x;,y;) in (X, Y,d) is such that o (x;,y;) > 1, forall i € N with x; - w
and y; = w, asi — oo for w € X N Y, then by the hypothesis (iii), we have a (w,y;) > 1, forall i € N.
Now by (3.4), we have

fA(Tw,w) < fATw,Ty)+d(Tx;,Ty;)+d(Tx;,w))+7n
< fla(w,y)d(Tw,Ty) +a(x,y) (Tx, Ty) +d(xiy1,w) + 7
< fWd(w,y)) +yd(x,y) +d(xi,w) + 7
f W(d ((U, yl)) + 7T

+J (d (xj, w) + d (W, W) + d (W, ) + d (Xis1, W)

Taking the limit as i — oo and using the continuity of f and ¢ at ¢t = 0, we have d (Tw,w) = O.
Thus Tw = w. Hence T has a fixed point.

Now if @ is another fixed point of 7, then Tw = @ implies that @ € X N Y such that w # @. Then
by the property (P), there exists z € X N Y such that

a(w,z) > 1and a(z,@) > 1. 3.11)
Since T 1s covariant a-admissible mapping, so by (3.11), we have
@(w,TZ) 2 1and o (T'z.@) 2 1 (3.12)

for all i € N. Now by (&) and (3.3), we have

fld(w.77) < f(d(Tw.T(T'2)))
< flo(w.77'2)d(Tw, TT™'z))
< (w( (w.772)))
< L2 f(Wdwa)). (3.13)

Similarly, we have

fla(r=w) < slafr(rs).7o)
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IA

f(a(rzo)a(r (1), 7a)
f(w(a (12 @)))
< (W (d(T72@))). (3.14)

IA

IA

Letting i — +o00 in (3.13) and (3.14) and using the continuity of f and ¥, we have

lim f (d (w, T'z)) = —oo (3.15)

i—o0

and
lim f (d (T'z. @) = —oo. (3.16)

i—o0

Thus from (3.15) and (3.16) by (¥,), we have
T7—-wand Tz » @

that is contradiction because the limit is unique. Hence w = w € X N Y. m|

Example 3.4. Let X = N U {0} and ¥ = 1 U {0} for n € N. Define d : X x ¥ — [0, +o0) as

2, if (x,y)=2,1)
|x —y|, otherwise.

dmw:{

Then (X, Y, d) is complete F-bip MS for f(#) = In(¢) and n > 2. Define the covariant mapping 7 :
XUY - XUY by

[0, ifxeX—{0,1}
T(x)‘{ I, ifxe?.

and @ : X X Y- [0, +0) by

a(x,y) =1
for all (x,y) € X x Y. Then all the conditions of Theorem 3.1 are satisfied with ¢ (¢) = %t. Hence, by
Theorem 3.1, T must have a unique fixed point, which is 1 € XNY.

Corollary 3.1. Let T : (X, Y,d) 3 (X, Y,d) be a covariant and continuous mapping. Assume that there
exists W € Y such that

d(Tx,Ty) <y (d(x,y)),

forall (x,y) e XX Y.
Then T has a unique fixed point.

Proof. Take @ : X X Y— [0,+00) by @ (x,y) = 1, for x € X and y € Y in Theorem 3.1. O

Corollary 3.2. Let T : (X, Y,d) =3 (X, Y,d) be a covariant and continuous mapping. Assume that there
exists 0 < k < 1 such that
d(Tx,Ty) < kd(x,y),

forall (x,y) e XX Y.
Then T has a unique fixed point.
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Proof. Define ¢ : [0, +00) — [0, +00) by ¢(t) = kt, where O < k < 1 in Theorem 3.1. |

Theorem 3.2. Let T : (X,Y,d) 2 (X,Y,d) be contravariant (a,)-contraction. Assume that the
following assertions hold

(i) T is contravariant a-admissible,

(ii) there exists xo € X such that a (xy, Txy) > 1,

(iii) T is continuous or , if (x;,y;) is a bisequence in (X, Y,d) such that a (x;,y;) > 1, for alli € N
with x; > wand y; — w, asi — oo forw € X NY, then a (x;,w) > 1, foralli € N.

Then T has a fixed point. Furthermore, if the property (P) holds, then fixed point is unique.

Proof. Let xy € X and y, € Y and suppose that a (x9, Txy) > 1 by the hypothesis (ii). Define the
bisequence (x;,y;) in (X, Y, d) by
yi = T)Cl' and Xivr1 = Tyl',

for all i € N. As T is contravariant @-admissible mapping by the assumption (i), so we have

a(xp,y0) = a(xg, Txp) > 1implies @ (x1,y9) = @ (Tyg, Txp) > 1
a(x;,y0) > 1implies @ (x1,y1) = @ (Tyy, Tx;) > 1
a(x;,y;) = 1implies @ (x,y1) = a(Ty;, Txy) > 1
a(xy,y;) = 1implies @ (xp,y;) = a(Ty,Tx;) > 1.

Continuing in this way, we have
a(x;,y) > 1and a(x;1,y) > 1 (3.17)
for all i € N. Now by (3.4) and (3.17), we have
d(x;,y) =d Ty, Tx) < @ (xp,yi-) d(Tyir, Tx) < ¢ (d (i, yi-1)), (3.18)
for all i € N. And
d(xip1,y) = d(Ty;, Tx) < a(x;, ) d (Tyi, Tx;) <y (d (xi, 1)), (3.19)
for all i € N. By (3.18) and (3.19) and mathematical induction, we get
d (xi,y)) <Y (d (3, 3i-1)) <@ W (d (X215 i2)) < o S YH(d (x1,30)) (3.20)
and

d (Xiv1,y0) S W (d (i 30)) < (W (d (Ko, yie1) < e S 1 (0, 30)) (3.21)

for all i € N. Let (f,m) € ¥ X [0, 00) be such that (Ds) is satisfied. Let € > 0 be fixed. By (&), there
exists 0 > 0 such that
O<t<d= f(t) < f(e) —m. (3.22)

Let there exists € > 0 and i(¢€) € N such that

PRACIEBDOESS

i>i(e)
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and

DU o) < 5.

i>i(e)

Now for p > i > i(€), by applying (D3), we have that d (xi, yp) > () implies

f(d () <

IA

IA

IA

<

f

d (xi,yi) +d (xis1,y) + d (Xip1, yis1) + ) g
et d(xp,yp_l) + d(xp,yp)

)4 -l
f Zd(xj,yj) + Zd(xj+1,yj)] +7

j=i j=i

)4 p-1
f Z U (d (x1,y0)) + Z v (d (Xo,}’o))) +7

=i =

f Z W' (d (x1,0)) + Z vt (d (Xo,)’o))] +7
i2i(€e) i>i(€)
f(e).

for all j € N. Similarly, Now for i > p > i(e), by applying (D3), we have that d (x,-, yp) > (0 implies

(i) =

IA

IA

IA

<

f

d(xi,yi-1) +d (xi-1,yic1) +d (xi-1, yi2) + ] o
e d(xp,yp_l) + d(xp,yp)

i-1 i
Zd(xj’yj) + Z d(xj,yj_l)] + T
J=p J=i

-1
2 W (d (x1,0))

J=pr

f . + 7
+ 2 ™ (d (%0, 0))
J=p
.g(: ) W/t (d (x0, 0))
M+ 2 v |
fe,

for all j € N. Then by (&), d(xi,yp) < ¢, for all p,i > i,. Thus (x;,y;) is a Cauchy bisequence
in (X,Y,d). Since (X, Y,d) is complete, thus (x;,y;) biconverges to a point w € X N Y. So (x;) —
w, (y;) = w. Also since T is continuous, SO

(x;) = w 1mplies that (y;) = (Tx;) = Tw.

Also since (y;) has a unique limit w in X N Y. Hence Tw = w. So T has a fixed point. Now since a
bisequence (x;,y;) in (X, Y, d) is such that @ (x;,y;) > 1, forall i € N with x; > wandy; > w, asi — o
for w € X N'Y, then by the hypothesis (ii1), we have a (x;, w) > 1, for all i € N. Now by (3.4), we have

fATw,w) < fATw,Tx)+d(Ty;,Tx;))+d(Ty;,w))+n

AIMS Mathematics

Volume 8, Issue 12, 29681-29700.



29692

IA

fla(x,wdTw,Tx)+a(x,y)d(Ty,Tx)+d(xy,w)+7w
FWdx,w)+ydx,y) +d(xi,w) +n
f( ¥ (d (x;, )

IA

1 (d (5 ) + d (@, 0) +d (@,y) +d (xiap.w) |

Taking the limit as i — oo and using the continuity of f and ¢ at t = 0, we have d (Tw,w) = 0.
Thus Tw = w. Hence T has a fixed point. Uniqueness of the fixed point is same as given in
Theorem 3.1. O

Example 3.5. Let X={9, 10, 18,20} and Y=({3,5, 11, 18}. Define the usual metric d : X X Y— [0,00)
by
d(x,y) = 2",

Then (X, Y, d) is complete F-bip MS. Define the contravariant mapping 7 : XU Y — X U Y by

] 18, if x € XU {11}
T(x) = { 9,  otherwise.

Then all the conditions of Theorem 3.2 are satisfied with (1) = %t. Hence, by Theorem 3.2, T must
have a unique fixed point, which is 1 € XNY.

Corollary 3.3. Let T : (X, Y,d) 2 (X, Y,d) be a contravariant and continuous mapping. Assume that
there exists Y € Y such that

d(Ty, Tx) <y (d(x,y)),

forall (x,y) e X xY.
Then T has a unique fixed point.

Proof. Take @ : X X Y— [0,+00) by a (x,y) = 1, for x € X and y € Y in Theorem 3.2. m]

Corollary 34. Let T : (X,Y,d) 2 (X, Y,d) be a contravariant and continuous mapping. Assume that
there exists 0 < k < 1 such that
d(Ty,Tx) < kd(x,y),

forall (x,y) e XX Y.
Then T has a unique fixed point.

Proof. Define ¢ : [0, +c0) — [0, +00) by Y(¢) = kt, where 0 < k < 1 in Theorem 3.2. O
Now, we derive coupled fixed point theorems from the our obtained results.

Definition 3.6. Let R : (XXY, YxX) =3 (X, Y) be a covariant mapping. A point (a,b) € XxY is said to
be a coupled fixed point of R if
R(a,b) = aand R(b,a) = b.

Lemma 3.1. Let R : (XXY,YxX) =3 (X,Y) be a covariant mapping. If we define a covariant
mapping N : (XXY, YxX) 3 (XXY, YxX) by

N,y =R(xy),R»,x),

for all (x,y) € XXY, then (x,y) is a coupled fixed point of R if only if (x,y) is a fixed point of .
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We state a property (P/) which is required in our result.

(P/) there exists (z1,2) € (XxY) N (YxX) such that

a((xy), (@1, 22) 2 1, a((z2,20), (v, ) 2 1,

and
a((u,v),(z1,22) 2 1, a((z2,21), (u,v)) 2 1,

for all (x,y) € XXY and (u,v) € Y'xX.

Theorem 3.3. Let R : (XXY,YXX) =3 (X,Y) be a covariant mapping. Assume that there exist a :
(XXY)X(XXY)—> [0,+00) and Y € ¥ such that

(3.23)

d(x,u) + d(v,y))

a((x,y),w,v)dR(x,y),Ru,v) < slf( 2

forall (x,y),(u,v) € X XY, and the following hypotheses also hold
(i) @ ((x,y), (u,v)) > 1 implies
a (R, ), RG, ), (R, v),R(v,u)) = 1,
(ii) there exists (xo,yo) € X X Y such that
@ ((xo, y0) » (R (o, Xo) , R (x0, ¥0))) = 1,

and
a (R (x0,¥0) » R (yo, X0)) » (x0,¥0)) = 1,

(iii) R is continuous or, if (x;,y;) is a bisequence in (X, Y, d) such that
a ((x;,y1) s Qis1s Xix1)) = 1,

and
@ (YVir1, Xiv1) , (xi,y0) = 1,

foralli € N with x; - xand y; = y,as i — oo for (x,y) € XNY, then
a((x;,y) . (x, ) = 1 and @ ((x,y), (x;,y:)) = 1,

forallieN.
Then R has a coupled fixed point. Furthermore, if the property (P') holds, then the coupled fixed
point is unique.

Proof. Let L=X XY and H = YXX and
0((x,y), w,v)) =d(x,u) +d(v,y),
for all (x,y) € L and (4,v) € H. Then (L, H, ) is a complete F-bipolar metric space. By (3.23), we

have
d(x,u) + d(v,y))

> (3.24)

a((x,y),u,v)dR(x,y),Ru,v)) < lﬂ(

AIMS Mathematics Volume 8, Issue 12, 29681-29700.



29694

and

d(x,u) +d (v, y)) ' (3.25)

a((x,y),u,v)dR(x,y),Ru,v)) < lﬂ( >

Combining (3.24) and (3.25), we obtain

BGe,0)d(Rx,Ro) <y (6(%,0)),

for all % = (x%,,%,) € L and o = (01,02) € H. And the function 8 : L X H — [0, +00) is defined as

B (%,0) = min{a ((%1,%2),(01,02)) , @ ((02,01) , (%2, %1))}

and N : (L, H) =3 (L, H) is defined by

N,y =R(xy),R@,x).

Then N is continuous and covariant (3, y)-contraction. Now we suppose that 8 (x,0) > 1. Then by (i),
we have 8 (Nx, 8p) > 1. By condition (ii), there exists (xg, yg) € L (or (yo, X9) € H) such that

B ((x0,y0) » N (x0,¥0)) = 1,

(or B(N (x0,¥0), (¥, X0,)) = 1). Since N is continuous, so N has a fixed point. Now if (x;,y;) is a
bisequence in L = X X Y and (y;, x;) be a bisequence in H = YXX such that & ((x;, ;) , (Viz1, Xi+1)) = 1
and (x;,y;) = (x,y) as n — oo. Then by (iii), we have a ((x;,y;), (¥, x)) > 1. Thus all the conditions of
Theorem 3.1 are satisfied and N has a fixed point. Hence by Lemma (3.1), R has a coupled fixed point.
Now since the property (P/) holds, thus R has a unique coupled fixed point. i

Example 3.6. Let L,(R) and U,(R) be the sets of all n X n lower and upper triangular matrices on set
of real numbers R, respectively. Define d : U,(R) X L,(R) — R" by

d(E,F) =" |t; -

ij=1

forall E = (¢;) € Upy®)and F = (i) € Ly(R). Then (U,(R), L,(R),d) is complete F-bip MS.

nx nx
Now we define

R (Uy(R) X L,(R), L,(R) X U,(R)) 3 (Un(R), L,(R))
by
gij + hij
- (1222)

where (E = (&j)nxn JF = (hif)an) € U,(R)*> U L,(R)>. Then R is a covariant mapping which is
continuous. Now we define

@ : (Un(R) X Ly(R)) X (Ly(R) X Up(R)) — [0, +00)

by
1, if&j > h,‘j,K,‘j 2 Gij
0, otherwise.

a((E.F),(E',F)) = {
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Then, we have

d (R(E, F),RE', F/ ))

d Cij + Tyj (Kij+§ij)
5 n><n, 5 nxn

n

-3

ij=1

ij + Nij — Kij — Sij
5

n

2,

ij=1

gij_Kij

5

hijj — Gij
5

IA

forall E = (&) F = () € Uy®R)and E/ = (ky) F' = () € Ly(R). Thus the

inequality (3.23) is satisfied for ¥ (1) = %t, for t > 0. Furthermore, the assumptions (i) and (ii) of

Theorem are also satisfied for (xo,yo) = (I,,1,). Hence R has a coupled fixed point, that is,
(0,501, 050) € U, (R) N L,(R), where (0,,x,, 0,ix,) 1 a null matrix.

4. Discussion

In this section, we show that our established results are generalization of some previous results of
literature.

Remark 4.1. If we define @ : X X Y— [0, +c0) by @ (x,y) = 1 and ¥(¢) = kt, where 0 < k < 1 in
Theorem 3.1, then we deduce the principal result of Rawat et al. [20].

Remark 4.2. Taking f(¢#) = In(¢), for ¢t > 0 and 7 = 0 in Definition 2.4, then F-bip MS is reduced to
bip MS. Thus the main result of Giirdal et al. [13] is direct consequence of above result.

Remark 4.3. If we take X = Y in Definition 2.4, then F-bip MS is reduced to §-MS and we derive the
leading result of Hussain et al. [7] from above Corollary.

Remark 4.4. Taking a ((x,y),(u,v)) = 1 and y(¢) = kt, where O < k < 1 in Theorem 3.3, we can get
the leading result of Mutlu et al. [9].

5. Application

5.1. Integral equations

The metric fixed point theory is a distinguished and influential mechanism used to examine
differential and integral equations. Keeping in mind that most of real-life problems can be
transformed into the problem of differential and integral equations, we can conclude the significance
of the metric fixed point theory in qualitative science and technology. Specifically, differential and
integral equations appear in various scientific concerns to include the different developments in
engineering, economy, game theory, optimal control, and so on. In the present section, we discuss the
existence and uniqueness of solution of an integral equation.
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Theorem 5.1. Considering an integral equation

o(x) = g(x) + fx YK(x,y,w(X))dy, (5.1)

where X U 'Y is considered as Lebesgue measurable set. Suppose that
(i) K : (X2 U ¥2) X [0, 00) — [0,00) and f € L (X) U L™ (Y),
(ii) there is a continuous function T : X> U Y? — [0, 00) such that

1
IK(x,y, 0(3) = K(x, 3. M) < 5T (1, 9) [¢() = Ol

forall x,y € (XZU Yz),

(iii) || [y X 3 dy|| < 1, that is. sup ey fo, 1T (e p)ldy < 1.
Then the integral equation (5.1) possesses a unique solution in L= (X) U L (Y).

Proof. Let 2 = L%(X) and ® = L% (Y) be normed linear spaces, where X and Y are Lebesgue
measureable sets and m (X U Y) < oco. Consider d : E X ® — [0, o0) to be defined by

d(&, 9 =1I§ -l

for all £, € E X ©. Then (&, ©, d) is a complete §-bip MS. Define the mapping / : EUB® — ZU O by

I(p(x)) = g(x) + f K(x,y, p(x))dy

Xuy

for x € X U Y. Now we have

d (I (p(x), I ($(x))) 1 (@(x)) = I ()|

K(x,y, p())dy - f K(x,y. 6(0)dy

Xuy Xuy

< f IK(x,y,0(x)) — K(x,y, p(x))| dy
XUY
1
< f ST (1) 190) - ¢l dy
XUY
1
< 5|I¢(y)—90(y)|| 1T (x, )| dy
XUY
1
< 16—l sup f 7Gx, )l dy
xeXUY JXUY
1
< 5|I¢—90||
= Y, 9).

Define ¢ : [0, +00) — [0, +0c0) by y(¢) = %t, for + > 0. Hence by using Theorem 3.1, I possesses a
unique fixed point in Z U ©. O
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5.2. Homotopy theory

Homotopy theory is an elementary and primitive section of algebraic topology where topological
objects are considered to be homotopy equivalence. In the past five decades, some solid connections
have arises between this theory and various other fields of mathematics. For example, this trend plays
an outstanding aspect in making more powerful ties between the homotopy theory and fixed point
theory, which have received substantial consideration in the last few years, (see [23-25]).

Theorem 5.2. Let (X,Y,d) be a complete §-bip MS. Suppose that & be an open subset of X and
® be an open subset of Y and (E,@) be a closed subset of (X,Y) and (E,0) C (E,@). Suppose
S: (EU@) X [0,1] = X U Y satisfies

(homl) x # S (x, q)_for eaﬁh x€0EU 00 and q € [0,1],

(hom2) forall x € Z, y € ® and q € [0, 1]

d(S(.9).S(x.q) <y d(x,y),

where y € P,
(hom3) there exists M > 0 such that

d(S(x,r),S,0) <M|r-o|,

forall x € =, y € Oandr,o€ [0,1].
Then S (-, 0) has a fixed point iff S (-, 1) has a fixed point.

Proof. Let G, = {t€[0,1]:x=8(x,7),x€Z} and G; = {0o€[0,1]:y=8(,0),y € O}.
Since S (-,0) has a fixed point in E U O, then we get 0 € G; N G,. Thus G; N G, # 0. Now, we shall
prove that G; N G, is both open and closed in [0, 1] and so, by connectedness, G; = G, = [0, 1].
Let ({r}2)),({oi}2)) <€ (Gy1,Gy) with (15,0) — (u,p) € [0,1] as i — oo. We also claim
that u € G; N G,. Since (1,0;)) € Gy N Gy, for i € N U {0}. Hence there exists a
bisequence (x;,y;) € (E,®) such that y; = S (x;, 7;) and x;11 = S (y;,0;) . Also, we get

d(xi1,y) = d(S©i,0),S(xi, 7))
W (d (x;,y:) -

IA

And,
d(x,y) = d(S©Yi-1,0i-1),S(x;, 1))
U (d(xi,yi-1)) .

Doing the similar process as we did in Theorem 3.1, one can easily show that (x;,y;) is a Cauchy
bisequence in (=, ®). Since (E,®) is complete, so there exists y; € E N O such that lim;_,, (x;) =
lim, ., (v;) = u;. Now, we have

fd (S, 0),y))

IA

fd (S, 0),S8 (x;, 7))
J W (d (xi, 1)) = —0,

whenever i — oco. Hence by (%;), we get d (S (u1,0),u1;) = 0, which implies that S (u;,0) = .
Similarly, S (u;, 7) = vi. Thus T = 0 € G| N G,, and evidently G| N G, is closed set in [0, 1].

IA
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Next, we have to prove that G; N G, is open in [0, 1]. Suppose (79, 09) € (G1,G»), then there is a
bisequence (xo, yo) so that xo = S (x9,70), Yo = S (39, 09) . Since E U O is open, so there exists r > 0 so
that B, (xp,r) CEU® and B, (r,y9) € ZU ©O. Choose 7 € (09 — €,09 + €) and 0 € (19 — €, T + €) such
that

|T—00|<i < <
M2
M2
and
|T0—00|SL.<E.
M2

Hence, we have

Y € Bg,ug, (x0,7) ={y : yo € © : d(x0,y) <1 +d(x0,¥0)},
and

x € Bg,ug, (r,y0) = {x: x0 € E:d(x,y0) < r+d(x0,y0)} .

Moreover, we have

d(S(x,7),0) d(S(x,7),S (Yo, 00))
d(S(x,7),S(y,00))
+d (S (x0,7) , S (¥, 00))
+d (S (x0,7) , S (y0, 00))

2M |t — o9l + d (S (x0,7),S (y,00))
+ ¥ (d (x0,y))

IA

IA

IA

Mi-1

2
U1 +d (xp,y).

IA

Letting i — oo, we get
d(S(x,7),y0) <d(x0,y) < r+d(xp,Y0).

By similar way, we get
d (x0, S (y,0)) < d(x,y0) <1+ d(x0,¥0) -

But

d (S (x0,70) , S (o, 00))

M|T0—00| <

d (.X(), )’0)

-0

IA

Mi-1

as i — oo, which implies that x, = yy. Therefore, for each fixed 0, 0 = 7 € (0y — €, 09 + €) and

S (-, 1) : Bg,ue, (x0,1) = Bg,ug, (X0, 7).

Since all the hypothesis of Theorem 3.1 hold, S (-, 7) has a fixed point in N ®, which must be in 2N ©.
Then 7 = 0 € G{NG, foreach o € (0y — €, 00 + €) . Hence (0y — €, 0 + €) € G;NG, which gives GiNG,
is open in [0, 1]. The proof of the converse can be established by doing the similar procedure. O
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6. Conclusions

In the present research article, we have defined the notion of (a, {)-contraction in the setting of -
bipolar metric and established fixed point results. In this way, the major results of Giirdal et al. [13],
Rawat et al. [20], Hussain et al. [7] and Mutlu et al. [8] are derived. Some non-trivial examples are
also provided to show the validity of the established results. The solution of an integral equation and
homotopy problem is also investigated.

For future work, the obtained theorems in this article can be expanded to fuzzy mappings and
multivalued mappings in the setting of F-bip MS. Furthermore, one can prove common fixed point
results for (a,y)-contractions. As applications of these results in the setting of F-bip MS, some
differential and integral inclusions can be investigated.
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