Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

On a SEIR-type model of COVID-19 using piecewise and stochastic differential operators undertaking management strategies

  • In this work, an epidemic model of a susceptible, exposed, infected and recovered SEIR-type is established for the distinctive dynamic compartments and epidemic characteristics of COVID-19 as it spreads across a population with a heterogeneous rate. The proposed model is investigated using a novel approach of fractional calculus known as piecewise derivatives. The existence theory is demonstrated through the establishment of sufficient conditions. In addition, result related to Hyers-Ulam stability is also derived for the considered model. A numerical method based on modified Euler procedure is also constructed to simulate the approximate solutions of the proposed model by employing various values of fractional orders. We testified the numerical results by using real available data of Japan. In addition, some results for the SEIR-type model are also presented graphically using the stochastic process, and the obtained results are discussed.

    Citation: Mdi Begum Jeelani, Kamal Shah, Hussam Alrabaiah, Abeer S. Alnahdi. On a SEIR-type model of COVID-19 using piecewise and stochastic differential operators undertaking management strategies[J]. AIMS Mathematics, 2023, 8(11): 27268-27290. doi: 10.3934/math.20231395

    Related Papers:

    [1] Qi Xiao, Jin Zhong . Characterizations and properties of hyper-dual Moore-Penrose generalized inverse. AIMS Mathematics, 2024, 9(12): 35125-35150. doi: 10.3934/math.20241670
    [2] Waleed Mohamed Abd-Elhameed, Amr Kamel Amin, Nasr Anwer Zeyada . Some new identities of a type of generalized numbers involving four parameters. AIMS Mathematics, 2022, 7(7): 12962-12980. doi: 10.3934/math.2022718
    [3] Faik Babadağ . A new approach to Jacobsthal, Jacobsthal-Lucas numbers and dual vectors. AIMS Mathematics, 2023, 8(8): 18596-18606. doi: 10.3934/math.2023946
    [4] Changsheng Luo, Jiagui Luo . Complete solutions of the simultaneous Pell equations (a2+1)y2x2=y2bz2=1. AIMS Mathematics, 2021, 6(9): 9919-9938. doi: 10.3934/math.2021577
    [5] Cencen Dou, Jiagui Luo . Complete solutions of the simultaneous Pell's equations (a2+2)x2y2=2 and x2bz2=1. AIMS Mathematics, 2023, 8(8): 19353-19373. doi: 10.3934/math.2023987
    [6] Faik Babadağ, Ali Atasoy . A new approach to Leonardo number sequences with the dual vector and dual angle representation. AIMS Mathematics, 2024, 9(6): 14062-14074. doi: 10.3934/math.2024684
    [7] Elahe Mehraban, T. Aaron Gulliver, Salah Mahmoud Boulaaras, Kamyar Hosseini, Evren Hincal . New sequences from the generalized Pell pnumbers and mersenne numbers and their application in cryptography. AIMS Mathematics, 2024, 9(5): 13537-13552. doi: 10.3934/math.2024660
    [8] Bin Zhou, Xiujuan Ma, Fuxiang Ma, Shujie Gao . Robustness analysis of random hyper-networks based on the internal structure of hyper-edges. AIMS Mathematics, 2023, 8(2): 4814-4829. doi: 10.3934/math.2023239
    [9] Waleed Mohamed Abd-Elhameed, Anna Napoli . New formulas of convolved Pell polynomials. AIMS Mathematics, 2024, 9(1): 565-593. doi: 10.3934/math.2024030
    [10] Ümit Tokeşer, Tuğba Mert, Yakup Dündar . Some properties and Vajda theorems of split dual Fibonacci and split dual Lucas octonions. AIMS Mathematics, 2022, 7(5): 8645-8653. doi: 10.3934/math.2022483
  • In this work, an epidemic model of a susceptible, exposed, infected and recovered SEIR-type is established for the distinctive dynamic compartments and epidemic characteristics of COVID-19 as it spreads across a population with a heterogeneous rate. The proposed model is investigated using a novel approach of fractional calculus known as piecewise derivatives. The existence theory is demonstrated through the establishment of sufficient conditions. In addition, result related to Hyers-Ulam stability is also derived for the considered model. A numerical method based on modified Euler procedure is also constructed to simulate the approximate solutions of the proposed model by employing various values of fractional orders. We testified the numerical results by using real available data of Japan. In addition, some results for the SEIR-type model are also presented graphically using the stochastic process, and the obtained results are discussed.



    Dual numbers were first given by Clifford (1845–1879), and some properties of those were studied in the geometrical investigation, and Kotelnikov [1] introduced their first applications. Study applied to line geometry and kinematics dual numbers and dual vectors [2]. He demonstrated that the directed lines of Euclidean 3-space and the points of the dual unit sphere in D3 have a one-to-one relationship. Field theory also relies heavily on these numbers [3]. The most intriguing applications of dual numbers in field theory are found in a number of Wald publications [4]. Dual numbers have contemporary applications in kinematics, dynamics, computer modeling of rigid bodies, mechanism design, and kinematics [5,6,7].

    Complex numbers have significant advantages in derivative computations. However, the second derivative computations lost these advantages [8]. J. A. Fike developed the hyper-dual numbers to solve this issue [9]. These numbers may be used to calculate both the first and second derivatives while maintaining the benefits of the first derivative using complex numbers. Furthermore, it is demonstrated that this numerical approach is appropriate for open kinematic chain robot manipulators, sophisticated software, and airspace system analysis and design [10].

    In the literature, sequences of integers have an important place. The most famous of these sequences have been demonstrated in several areas of mathematics. These sequences have been researched extensively because of their complex characteristics and deep connections to several fields of mathematics. The Fibonacci and Lucas sequences and their related numbers are of essential importance due to their various applications in biology, physics, statistics, and computer science [11,12,13]. Many authors were interested in introducing and investigating several generalizations and modifications of Fibonacci and Lucas sequences. The authors investigated two classes that generalize Fibonacci and Lucas sequences, and they utilized them to compute some radicals in reduced forms. Panwar [14] defined the generalized k-Fibonacci sequence as

    Fk,n=pkFk,n1+qFk,n2,

    with initial conditions Fk,0=a and Fk,1=b. If a=0,k=2,p=q=b=1, the classic Pell sequence and for a=b=2,k=2,p=q=1, Pell-Lucas sequences appear.

    The Pell numbers are the numbers of the following integer sequence:

    0,1,2,5,12,29,70,169,408,985,2378,...

    The sequence of Pell numbers, which is denoted by Pn is defined as the linear reccurence relation

    Pn=2Pn1+Pn2,P0=0,P1=1,  n2.

    The integer sequence of Pell-Lucas numbers denoted by Qn is given by

    2,2,6,14,34,82,198,478,1154,2786,6726,...,

    with the same reccurence relation

    Qn=2Qn1+Qn2,Q0=Q1=2,  n2.

    The characteristic equation of these numbers is x22x1=0, with roots α=1+2 and β=12 and the Binet's forms of these sequences are given as[15,16,17,18],

    Pn=αnβnαβ (1.1)

    and

    Qn=αn+βn. (1.2)

    The set of dual numbers is defined as

    D={d=a+εaa,aR,ε2=0,ε0}.

    The set of hyper-dual numbers is

    ˜D={γ=γ0+γ1ε+γ2ε+γ3εεγ0,γ1,γ2,γ3R},

    or can be rewritten as

    ˜D={γ=d+εdd,dD},

    where ε, ε and εε are hyper-dual units that satisfy

    (ε)2=(ε)2=0,εε0,εε=εε.

    This set forms commutative and associative algebra over both the dual and real numbers [8,9,10].

    The square root of a hyper-dual number γ can be defined by

    γ=γ0+γ12γ0ε+γ22γ0ε+(γ32γ0γ1γ24γ0γ0)εε. (1.3)

    A hyper-dual vector is any vector of the form

    γ=γ0+γ1ε+γ2ε+γ3εε,

    where γ0,γ1,γ2,γ3 are real vectors, this vector can be rewritten as γ=d+εd, where d and d are dual vectors. Let γ and δ be hyper-dual vectors, then their scalar product is defined as

    γ,δHD=γ0,δ0+(γ0,δ1+γ1,δ0)ε+(γ0,δ2+γ2,δ0)ε+(γ0,δ3+γ1,δ2+γ2,δ1+γ3,δ0)εε, (1.4)

    which continents inner products of real vectors.

    Let f(x0+x1ε+x2ε+x3εε) be a hyper-dual function, then

    f(x0+x1ε+x2ε+x3εε)=f(x0)+x1f(x0)ε+x2f(x0)ε+(x3f(x0)+x1x2f(x0))εε. (1.5)

    Suppose γ, δ and Φ be unit hyper-dual vectors and hyper-dual angle respectively then by using (1.5) the scalar product can be written as

    γ,δHD=cosΦ=cosϕεϕsinϕ=(cosψεψsinψ)εϕ(sinψ+εψcosψ), (1.6)

    where ϕ and ψ are, respectively, dual and real angles.

    The norm of a hyper-dual vector γ is given by

    γHD=γ0+γ0,γ1γ0ε+γ0,γ2γ0ε+(γ0,γ3γ0+γ1,γ2γ0γ0,γ1γ0,γ2γ03)εε,

    for γ00. If γHD=1 that is γ0=1 and γ0,γ1=γ0,γ2=γ0,γ3=γ1,γ2=0, then γ is a unit hyper-dual vector.

    In this paper, we introduce the hyper-dual Pell and the hyper-dual Pell-Lucas numbers, which provide a natural generalization of the classical Pell and Pell-Lucas numbers by using the concept of hyper-dual numbers. We investigate some basic properties of these numbers. We also define a new vector and angle, which are called hyper-dual Pell vector and angle. We give properties of these vectors and angles to exert in the geometry of hyper-dual space.

    In this section, we define the hyper-dual Pell and hyper-dual Pell-Lucas numbers and then demonstrate their fundamental identities and properties.

    Definition 2.1. The nth hyper-dual Pell HPn and hyper-dual Pell-Lucas HQn numbers are defined respectively as

    HPn=Pn+Pn+1ε+Pn+2ε+Pn+3εε (2.1)

    and

    HQn=Qn+εQn+1+εQn+2+εεQn+3, (2.2)

    where Pn and Qn are nth Pell and Pell-Lucas numbers.

    The few hyper-dual Pell and hyper-dual Pell-Lucas numbers are given as

    HP1=1+2ε+5ε+12εε,HP2=2+5ε+12ε+29εε,...

    and

    HQ1=2+6ε+14ε+34εε,HQ2=6+14ε+34ε+82εε,...

    Theorem 2.1. The Binet-like formulas of the hyper-dual Pell and hyper-dual Pell-Lucas numbers are given, respectively, by

    HPn=φnφ_ψnψ_φψ (2.3)

    and

    HQn=φnφ_+ψnψ_, (2.4)

    where

    φ_=1+φε+φ2ε+φ3εε,ψ_=1+ψε+ψ2ε+ψ3εε. (2.5)

    Proof. From (2.1) and the Binet formula of Pell numbers, we obtain

    HPn=Pn+Pn+1ε+Pn+2ε+Pn+3εε=φnψnφψ+φn+1ψn+1φψε+φn+2ψn+2φψε+φn+3ψn+3φψεε=φn(1+φε+φ2ε+φ3εε)φψψn(1+ψε+ψ2ε+ψ3εε)φψ=φnφ_ψnψ_φψ.

    On the other hand, using (2.2) and the Binet formula of Pell-Lucas numbers we obtain

    HQn=Qn+Qn+1ε+Qn+2ε+Qn+3εε=(φn+ψn)+(φn+1+ψn+1)ε+(φn+2+ψn+2)ε+(φn+3+ψn+3)εε=φn(1+φε+φ2ε+φ3εε)+ψn(1+ψε+ψ2ε+ψ3εε)=φnφ_+ψnψ_.

    The proof is completed.

    Theorem 2.2. (Vajda-like identities) For non-negative integers m, n, and r, we have

    HPmHPnHPmrHPn+r=(1)n+1PmnrPr(1+2ε+6ε+12εε),HQmHQnHQmrHQn+r=(1)nQmn(1)n+rQmn2r(1+2ε+6ε+12εε).

    Proof. By using the Binet-like formula of hyper-dual Pell numbers, we obtain

    HPmHPnHPmrHPn+r=(φmφ_ψmψ_φψ)(φnφ_ψnψ_φψ)(φmrφ_ψmrψ_φψ)(φn+rφ_ψn+rψ_φψ)=(φrψr)(φnψmrψnφmr)(φψ)2φ_ψ_=(φmnrψmnr)(φrψr)(φψ)2φ_ψ_,

    and by using (1.1), we obtain

    HPmHPnHPmrHPn+r=(1)n+1PmnrPr(1+2ε+6ε+12εε).

    Similarly for hyper-dual Pell-Lucas numbers, we can obtain

    HQmHQnHQmrHQn+r=(φmφ_+ψmψ_)(φnφ_+ψnψ_)(φmrφ_+ψmrψ_)(φn+rφ_+ψn+rψ_)=φ_ψ_(φmn+ψmnφmn2rψmn2r).

    Using (1.2) and (2.5),

    HQmHQnHQmrHQn+r=(1)nQmn(1)n+rQmn2r(1+2ε+6ε+12εε).

    Thus, we obtain the desired results.

    Theorem 2.3. (Catalan-like identities) For non negative integers n and r, with nr, we have

    HPnrHPn+rHP2n=(1)nrP2r(1+2ε+6ε+12εε),HQnrHQn+rHQ2n=8(1)nrP2r(1+2ε+6ε+12εε).

    Proof. From (2.3), we obtain

    HPnrHPn+rHP2n=(φnrφ_ψnrψ_φψ)(φn+rφ_ψn+rψ_φψ)(φnφ_ψnψ_φψ)2=φnψn8φ_ψ_(2ψrφrψrφr)=(1)nrφ_ψ_(φrψrφψ)2,

    and by using (1.1) and (2.5), we will have

    HPnrHPn+rHP2n=(1)nrP2r(1+2ε+6ε+12εε).

    On the other hand, from (2.4) and (2.5) we obtain

    HQnrHQn+rHQ2n=(φnrφ_+ψnrψ_)(φn+rφ_+ψn+rψ_)(φnφ_+ψnψ_)2=φ_ψ_(φnrψn+r+φn+rψnr2ψnφn)=8(1)nrφ_ψ_(φrψrφψ)2=8(1)nrP2r(1+2ε+6ε+12εε).

    Corollary 2.1. (Cassini-like identities) For non-negative integer n, we have

    HPn1HPn+1HP2n=(1)n1(1+2ε+6ε+12εε),HQn1HQn+1HQ2n=8(1)n1(1+2ε+6ε+12εε).

    Proof. We can get the result by taking r=1 in Theorem 2.3.

    Theorem 2.4. (d'Ocagne-like identities) For non-negative integers n and m,

    HPm+1HPnHPmHPn+1=(1)mPnm(1+2ε+6ε+12εε),HQm+1HQnHQmHQn+1=8(1)nPmn(1+2ε+6ε+12εε).

    Proof. Using (1.1), (2.3), and (2.5), we have

    HPm+1HPnHPmHPn+1=(φm+1φ_ψm+1ψ_φψ)(φnφ_ψnψ_φψ)(φmφ_ψmψ_φψ)(φn+1φ_ψn+1ψ_φψ)=(φψ)(φnψmφmψn)φ_ψ_=(1)mPnm(1+2ε+6ε+12εε).

    Using (1.2), (2.4) and (2.5), we have

    HQm+1HQnHQmHQn+1=8(1)nPmn(1+2ε+6ε+12εε).

    In this section, we introduce hyper-dual Pell vectors and hyper-dual Pell angle. We will give geometric properties of them.

    Definition 3.1. The nth hyper-dual Pell vector is defined as

    HPn=Pn+Pn+1ε+Pn+2ε+Pn+3εε,

    where Pn=(Pn,Pn+1,Pn+2) is a real Pell vector. The hyper-dual Pell vector HPn can be rewritten in terms of dual Pell vectors Pn and Pn as

    HPn=(Pn+Pn+1ε)+(Pn+2+Pn+3ε)ε=Pn+εPn.

    Theorem 3.1. The scalar product of hyper-dual Pell vectors HPn and HPm is

    HPn,HPm=7Qn+m+28(1)mQnm8+(7Qn+m+34(1)mQnm4)ε+(7Qn+m+443(1)mQnm4)ε+(7Qn+m+523(1)mQnm2)εε. (3.1)

    Proof. By using (1.4), we can write

    HPn,HPm=Pn,Pm+(Pn,Pm+1+Pn+1,Pm)ε+(Pn,Pm+2+Pn+2,Pm)ε+(Pn,Pm+3+Pn+1,Pm+2+Pn+2,Pm+1+Pn+3,Pm)εε. (3.2)

    Now we calculate the above inner products for real Pell vectors Pn and Pm by using Binet's formula of Pell numbers as

    Pn,Pm=PnPm+Pn+1Pm+1+Pn+2Pm+2=(φnψnφψ)(φmψmφψ)+(φn+1ψn+1φψ)(φm+1ψm+1φψ)+(φn+2ψn+2φψ)(φm+2ψm+2φψ)=φn+m+ψn+m(φψ)2+φn+m+2+ψn+m+2(φψ)2+φn+m+4+ψn+m+4(φψ)2(φnψm+φmψn)φmψm(φψ)2φmψm=18(Qn+m+Qn+m+2+Qn+m+4+(1)mQnm)=7Qn+m+28(1)mQnm8.

    Similarly,

    Pn,Pm+1=7Qn+m+38+(1)mQnm18,Pn+1,Pm=7Qn+m+38(1)mQnm+18,Pn,Pm+2=7Qn+m+48(1)mQnm28,Pn+2,Pm=7Qn+m+48(1)mQnm+28,Pn,Pm+3=7Qn+m+58+(1)mQnm38,Pn+1,Pm+2=7Qn+m+58(1)mQnm18,Pn+2,Pm+1=7Qn+m+58+(1)mQnm+18,Pn+3,Pm=7Qn+m+58(1)mQnm+38.

    By substituting these equalities in (3.2), we obtain the result.

    Example 3.1. Let HP1=(1,2,5)+(2,5,12)ε+(5,12,29)ε+(12,29,70)εε and HP0=(0,1,2)+(1,2,5)ε+(2,5,12)ε+(5,12,29)εε be the hyper-dual Pell vectors. The scalar product of HP1 and HP0 are

    HP1,HP0=7Q3Q18+7Q4Q14ε+7Q53Q14ε+7Q63Q12εε=12+59ε+142ε+690εε.

    By the other hand

    HP1,HP0=P1,P0+(P1,P1+P2,P0)ε+(P1,P2+P3,P0)ε+(P1,P3+P2,P2+P3,P1+P4,P0)εε=12+(30+29)ε+(72+70)ε+(174+173+174+169)εε=12+59ε+142ε+690εε.

    The results are the same as we expected.

    Corollary 3.1. The norm of HPn is

    HPn2=HPn,HPn=7Q2n+28(1)n4+(7Q2n+34(1)n2)ε+(7Q2n+443(1)n2)ε+(7Q2n+523(1)n)εε. (3.3)

    Proof. The proof is clear from taking m=n in (3.1).

    Example 3.2. Find the norm of HP1=(1,2,5)+(2,5,12)ε+(5,12,29)ε+(12,29,70)εε.

    If we take n=1 in (3.3) and use (1.3), then we will get

    HP1=7Q48+14+(7Q54+12)ε+(7Q64+32)ε+(7Q72+3)εε=30+144ε+348ε+1676εε=30+7230ε+17430ε+734530εε.

    From (1.6) and (3.1), the following cases can be given for the scalar product of hyper-dual Pell vectors HPn and HPm.

    Case 3.1. Assume that cosϕ=0 and ϕ0, then ψ=π2, ψ=0, therefore

    HPn,HPm=εϕ=(7Qm+n+443(1)mQnm4)ε+(7Qm+n+523(1)mQnm2)εε,

    then, we get

    ϕ=(1)m(32+ε)74(Qm+n+4+2εQm+n+5)

    and corresponding dual lines d1 and d2 are perpendicular such that they do not intersect each other; see Figure 1.

    Figure 1.  Geometric representation of hyper-dual angle between the directed dual lines d1 and d2.

    Case 3.2. Assume that ϕ=0 and ϕ0, then we obtain

    HPn,HPm=cosϕ=(7Qm+n+28(1)mQnm8)+(7Qm+n+34(1)mQnm4)ε,

    therefore

    ϕ=arccos((7Qm+n+28(1)mQnm8)+(7Qm+n+34(1)mQnm4)ε),

    and corresponding dual lines d1 and d2 intersect each other; see Figure 2.

    Figure 2.  Intersection of dual lines d1 and d2.

    Case 3.3. Assume that cosϕ=0 and ϕ=0, then ψ=π2 and ψ=0, therefore

    HPn,HPm=0,

    and dual lines d1 and d2 intersect each other at a right angle; see Figure 3.

    Figure 3.  Perpendicular intersection of dual lines d1 and d2.

    Case 3.4. Assume that ϕ=0 and ϕ=0, then

    HPn,HPm=1,

    in this case corresponding dual lines d1 and d2 are parallel; see Figure 4.

    Figure 4.  Parallel of dual lines d1 and d2.

    In the present study, we introduce two families of hyper-dual numbers with components containing Pell and the Pell-Lucas numbers. First, we define hyper-dual Pell and Pell-Lucas numbers. Afterwards, by means of the Binet's formulas of Pell and Pell-Lucas numbers, we investigate identities such as the Binet-like formulas, Vajda-like, Catalan-like, Cassini-like, and d'Ocagne-like identities. After that, we define hyper-dual Pell vector and angle with some properties and geometric applications related to them. In the future it would be valuable to replicate a similar exploration and development of our findings on hyper-dual numbers with Pell and Pell-Lucas numbers. These results can trigger further research on the subjects of the hyper-dual numbers, vector, and angle to carry out in the geometry of dual and hyper-dual space.

    Faik Babadağ and Ali Atasoy: Conceptualization, writing-original draft, writing-review, editing. All authors have read and approved the final version of the manuscript for publication.

    The authors declare that they have no conflict of interest.



    [1] Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Fractal-fractional order dynamical behavior of an HIV/AIDS epidemic mathematical model, Eur. Phys. J. Plus, 136 (2021), 36. https://doi.org/10.1140/epjp/s13360-020-00994-5 doi: 10.1140/epjp/s13360-020-00994-5
    [2] M. M. Amirian, Y. Jamali, The concepts and applications of fractional order differential calculus in modeling of viscoelastic systems: a primer, Crit. Rev. Biomed. Eng., 47 (2019), 249–276. https://doi.org/10.1615/CritRevBiomedEng.2018028368 doi: 10.1615/CritRevBiomedEng.2018028368
    [3] A. J. Arenas, G. Gonzalez-Parra, B. M. Chen-Charpentier, Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order, Math. Comput. Simulat., 121 (2016), 48–63. https://doi.org/10.1016/j.matcom.2015.09.001 doi: 10.1016/j.matcom.2015.09.001
    [4] M. Arfan, K. Shah, A. Ullah, Fractal-fractional mathematical model of four species comprising of prey-predation, Phys. Scripta, 96 (2021), 124053. DOI 10.1088/1402-4896/ac2f37 doi: 10.1088/1402-4896/ac2f37
    [5] J. K. K. Asamoah, M. A. Owusu, Z. Jin, F. T. Oduro, A. Abidemi, E. O. Gyasi, Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana, Chaos Soliton. Fract., 140 (2020), 110103. https://doi.org/10.1016/j.chaos.2020.110103 doi: 10.1016/j.chaos.2020.110103
    [6] J. K. K. Asamoah, E. Okyere, A. Abidemi, S. E. Moore, G. Q. Sun, Z. Jin, et al., Optimal control and comprehensive cost-effectiveness analysis for COVID-19, Results Phys., 33 (2022), 105177. https://doi.org/10.1016/j.rinp.2022.105177 doi: 10.1016/j.rinp.2022.105177
    [7] J. K. K. Asamoah, Z. Jin, G. Q. Sun, B. Seidu, E. Yankson, A. Abidemi, et al., Sensitivity assessment and optimal economic evaluation of a new COVID-19 compartmental epidemic model with control interventions, Chaos Soliton. Fract., 146 (2021), 110885. https://doi.org/10.1016/j.chaos.2021.110885 doi: 10.1016/j.chaos.2021.110885
    [8] J. K. K. Asamoah, C. S. Bornaa, B. Seidu, Z. Jin, Mathematical analysis of the effects of controls on transmission dynamics of SARS-CoV-2, Alex. Eng. J., 59 (2020), 5069–5078. https://doi.org/10.1016/j.aej.2020.09.033 doi: 10.1016/j.aej.2020.09.033
    [9] J. K. K. Asamoah, Fatmawati, A fractional mathematical model of heartwater transmission dynamics considering nymph and adult amblyomma ticks, Chaos Soliton. Fract., 174 (2023), 113905. https://doi.org/10.1016/j.chaos.2023.113905 doi: 10.1016/j.chaos.2023.113905
    [10] J. K. K. Asamoah, E. Okyere, E. Yankson, A. A. Opoku, A. Adom-Konadu, E. Acheampong, et al., Non-fractional and fractional mathematical analysis and simulations for Q fever, Chaos Soliton. Fract., 156 (2022), 111821. https://doi.org/10.1016/j.chaos.2022.111821 doi: 10.1016/j.chaos.2022.111821
    [11] J. K. K. Asamoah, Fractal-fractional model and numerical scheme based on Newton polynomial for Q fever disease under Atangana-Baleanu derivative, Results Phys., 34 (2022), 105189. https://doi.org/10.1016/j.rinp.2022.105189 doi: 10.1016/j.rinp.2022.105189
    [12] A. Atangana, S. I. Araz, Nonlinear equations with global differential and integral operators:existence, uniqueness with application to epidemiology, Results Phys., 20 (2021), 103593. https://doi.org/10.1016/j.rinp.2020.103593 doi: 10.1016/j.rinp.2020.103593
    [13] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.48550/arXiv.1602.03408 doi: 10.48550/arXiv.1602.03408
    [14] M. A. Abdulwasaa, M. S. Abdo, K. Shah, T. A. Nofal, S. K. Panchal, S. V. Kawale, et al., Fractal-fractional mathematical modeling and forecasting of new cases and deaths of COVID-19 epidemic outbreaks in India, Results Phys., 20 (2021), 103702. https://doi.org/10.1016/j.rinp.2020.103702 doi: 10.1016/j.rinp.2020.103702
    [15] R. P. Agarwal, S. Arshad, D. Regan, V. Lupulescu, A Schauder fixed point theorem in semilinear spaces and applications, Fixed Point Theory Appl., 2013 (2013), 306. https://doi.org/10.1186/1687-1812-2013-306 doi: 10.1186/1687-1812-2013-306
    [16] A. Atangana, S. I. Araz, New concept in calculus: piecewise differential and integral operators, Chaos Soliton. Fract., 145 (2021), 110638. https://doi.org/10.1016/j.chaos.2020.110638 doi: 10.1016/j.chaos.2020.110638
    [17] A. J. Arenas, G. González-Parra, B. M. Chen-Charpentier, Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order, Math. Comput. Simulat., 121 (2016), 48–63. https://doi.org/10.1016/j.matcom.2015.09.001 doi: 10.1016/j.matcom.2015.09.001
    [18] M. S. Arshad, D. Baleanu, M. B. Riaz, M. Abbas, A novel 2-stage fractional Runge-Kutta method for a time fractional logistic growth model, Discrete Dyn. Nat. Soc., 2020 (2020), 1020472. https://doi.org/10.1155/2020/1020472 doi: 10.1155/2020/1020472
    [19] S. Boccaletti, W. Ditto, G. Mindlin, A. Atangana, Modeling and forecasting of epidemic spreading: The case of Covid-19 and beyond, Chaos Soliton. Fract., 135 (2020), 109794. https://doi.org/10.1016/j.chaos.2020.109794 doi: 10.1016/j.chaos.2020.109794
    [20] S. Banihashemi, H. Jafari, A. Babaei, A stable collocation approach to solve a neutral delay stochastic differential equation of fractional order, J. Comput. Appl. Math., 403 (2022), 113845. https://doi.org/10.1016/j.cam.2021.113845 doi: 10.1016/j.cam.2021.113845
    [21] I. I. Bogoch, A. Watts, A. Thomas-Bachli, C. Huber, M. U. Kraemer, K. Khan, Pneumonia of unknown aetiology in Wuhan, China: potential for international spread via commercial air travel, J. Travel Med., 27 (2020), taaa008. https://doi.org/10.1093/jtm/taaa008 doi: 10.1093/jtm/taaa008
    [22] C. Celauro, C. Fecarotti, A. Pirrotta, A. C. Collop, Experimental validation of a fractional model for creep/recovery testing of asphalt mixtures, Constr. Build. Mater., 36 (2012), 458–466. https://doi.org/10.1016/j.conbuildmat.2012.04.028 doi: 10.1016/j.conbuildmat.2012.04.028
    [23] Y. Chen, F. Liu, Q. Yu, T. Li, Review of fractional epidemic models, Appl. Math. Model., 97 (2021), 281–307. https://doi.org/10.1016/j.apm.2021.03.044 doi: 10.1016/j.apm.2021.03.044
    [24] A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum mechanics, Vienna: Springer, 1997. https://doi.org/10.1007/978-3-7091-2664-6
    [25] C.T. Deressa, G. F. Duressa, Analysis of Atangana-Baleanu fractional-order SEAIR epidemic model with optimal control, Adv. Differ. Equ., 2021 (2021), 174. https://doi.org/10.1186/s13662-021-03334-8 doi: 10.1186/s13662-021-03334-8
    [26] Z. Dai, Y. Peng, H. A. Mansy, R. H. Sandler, T. J. Royston, A model of lung parenchyma stress relaxation using fractional viscoelasticity, Med. Eng. Phys., 37 (2015), 752–758. https://doi.org/10.1016/j.medengphy.2015.05.003 doi: 10.1016/j.medengphy.2015.05.003
    [27] Z. J. Fu, Z. C. Tang, H. T. Zhao, P. W. Li, T. Rabczuk, Numerical solutions of the coupled unsteady nonlinear convection-diffusion equations based on generalized finite difference method, Eur. Phys. J. Plus, 134 (2019), 272. https://doi.org/10.1140/epjp/i2019-12786-7 doi: 10.1140/epjp/i2019-12786-7
    [28] A. B. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, P. van den Driessche, et al., Modelling strategies for controlling SARS out breaks, Proc. R. Soc. Lond. B., 271 (2004), 2223–2232. https://doi.org/10.1098/rspb.2004.2800 doi: 10.1098/rspb.2004.2800
    [29] E. F. D. Goufo, Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg-de Vries-Burgers equation, Math. Model. Anal., 21 (2016), 188–198. https://doi.org/10.3846/13926292.2016.1145607 doi: 10.3846/13926292.2016.1145607
    [30] D. S. Hui, E. I. Azhar, T. A. Madani, F. Ntoumi, R. Kock, O. Dar, et al., The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health–The latest 2019 novel coronavirus outbreak in Wuhan, China, B. Math. Biol., 91 (2020), 264–66. https://doi.org/10.1016/j.ijid.2020.01.009 doi: 10.1016/j.ijid.2020.01.009
    [31] S. Hussain, E. N. Madi, H. Khan, H. Gulzar, S. Etemad, S. Rezapour, et al., On the stochastic modeling of COVID-19 under the environmental white noise, J. Funct. Space., 2022 (2022), 4320865. doilinkhttps://doi.org/10.1155/2022/4320865 doi: 10.1155/2022/4320865
    [32] A. A. Hamou, E. Azroul, Z. Hammouch, A. L. Alaoui, On dynamics of fractional incommensurate model of Covid-19 with nonlinear saturated incidence rate, MedRxiv, 2021 (2021), 07, https://doi.org/10.1101/2021.07.18.21260711 doi: 10.1101/2021.07.18.21260711
    [33] M. T. Hoang, O. F. Egbelowo, Dynamics of a fractional-order hepatitis B epidemic model and its solutions by nonstandard numerical schemes, In: Mathematical modelling and analysis of infectious diseases, Cham: Springer, 2020,127–153. https://doi.org/10.1007/978-3-030-49896-2_5
    [34] G. Jumarie, Stochastic differential equations with fractional Brownian motion input, Int. J. Syst. Sci., 24 (1993), 1113–1131. https://doi.org/10.1080/00207729308949547 doi: 10.1080/00207729308949547
    [35] S. Kumar, A. Kumar, B. Samet, H. Dutta, A study on fractional host-parasitoid population dynamical model to describe insect species, Numer. Meth. Part. D. E., 37 (2021), 1673–1692. https://doi.org/10.1002/num.22603 doi: 10.1002/num.22603
    [36] M. M. Khalsaraei, An improvement on the positivity results for 2-stage explicit Runge-Kutta methods, J. Comput. Appl. Math., 235 (2010), 137–143. https://doi.org/10.1016/j.cam.2010.05.020 doi: 10.1016/j.cam.2010.05.020
    [37] R. Kahn, I. Holmdahl, S. Reddy, J. Jernigan, M. J. Mina, R. B. Slayton, Mathematical modeling to inform vaccination strategies and testing approaches for voronavirus disease 2019 (COVID-19) in nursing homes, Clin. Infect. Dis., 74 (2022), 597–603. https://doi.org/10.1093/cid/ciab517 doi: 10.1093/cid/ciab517
    [38] M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alex. Eng. J., 59 (2020), 2379–2389. https://doi.org/10.1016/j.aej.2020.02.033 doi: 10.1016/j.aej.2020.02.033
    [39] M. A. Khan, A. Atangana, E. Alzahrani, E. Fatmawati, The dynamics of COVID-19 with quarantined and isolation, Adv. Differ. Equ., 2020 (2020), 425. https://doi.org/10.1186/s13662-020-02882-9 doi: 10.1186/s13662-020-02882-9
    [40] A. M. Lopes, J. T. Machado, Fractional order models of leaves, J. Vib. Control, 20 (2014), 998–1008. https://doi.org/10.1177/1077546312473323 doi: 10.1177/1077546312473323
    [41] R. Li, S. Zhong, C. Swartz, An improvement of the Arzela-Ascoli theorem, Topol. Appl., 159 (2012), 2058–2061. http://doi.org/10.1016/j.topol.2012.01.014 doi: 10.1016/j.topol.2012.01.014
    [42] R. Lewandowski, Z. Pawlak, Dynamic analysis of frames with viscoelastic dampers modelled by rheological models with fractional derivatives, J. Sound Vib., 330 (2011), 923–936. https://doi.org/10.1016/j.jsv.2010.09.017 doi: 10.1016/j.jsv.2010.09.017
    [43] B. Li, H. Liang, L. Shi, Q. He, Complex dynamics of Kopel model with nonsymmetric response between oligopolists, Chaos Soliton. Fract., 156 (2022), 111860. https://doi.org/10.1016/j.chaos.2022.111860 doi: 10.1016/j.chaos.2022.111860
    [44] F. Liu, K. Burrage, Novel techniques in parameter estimation for fractional dynamical models arising from biological systems, Comput. Math. Appl., 62 (2011), 822–833. https://doi.org/10.1016/j.camwa.2011.03.002 doi: 10.1016/j.camwa.2011.03.002
    [45] B. Li, H. Liang, Q. He, Multiple and generic bifurcation analysis of a discrete Hindmarsh-Rose model, Chaos Soliton. Fract., 146 (2021), 110856. https://doi.org/10.1016/j.chaos.2021.110856 doi: 10.1016/j.chaos.2021.110856
    [46] J. Mondal, S. Khajanchi, Mathematical modeling and optimal intervention strategies of the COVID-19 outbreak, Nonlinear Dyn., 109 (2022), 177–202. https://doi.org/10.1007/s11071-022-07235-7 doi: 10.1007/s11071-022-07235-7
    [47] J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027
    [48] F. C. Meral, T. J. Royston, R. Magin, Fractional calculus in viscoelasticity: an experimental study, Commun. Nonlinear Sci., 15 (2010), 939–945. https://doi.org/10.1016/j.cnsns.2009.05.004 doi: 10.1016/j.cnsns.2009.05.004
    [49] R. L. Magin, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng., 32 (2004), 1–104. https://doi.org/10.1615/critrevbiomedeng.v32.i1.10 doi: 10.1615/critrevbiomedeng.v32.i1.10
    [50] R. L. Magin, Fractional Calculus in bioengineering, Redding: Begell House, 2006.
    [51] F. Mainardi, An historical perspective on fractional calculus in linear viscoelasticity, Fract. Calc. Appl. Anal., 15 (2012), 712–717. https://doi.org/10.2478/s13540-012-0048-6 doi: 10.2478/s13540-012-0048-6
    [52] I. Nesteruk, Statistics based predictions of coronavirus 2019-nCoV spreading in mainland China, MedRxiv, 4 (2020), 1988–1989. https://doi.org/10.1101/2020.02.12.20021931 doi: 10.1101/2020.02.12.20021931
    [53] O. A. Omar, R. A. Elbarkouky, H. M. Ahmed, Fractional stochastic modelling of COVID-19 under wide spread of vaccinations: Egyptian case study, Alex. Eng. J., 61 (2022), 8595–8609. https://doi.org/10.1016/j.aej.2022.02.002. doi: 10.1016/j.aej.2022.02.002
    [54] J. C. Pedjeu, G. S. Ladde, Stochastic fractional differential equations: Modeling, method and analysis, Chaos Soliton. Fract., 45 (2012), 279–293. https://doi.org/10.1016/j.chaos.2011.12.009 doi: 10.1016/j.chaos.2011.12.009
    [55] A. Y. Rossikhin, M. V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl. Mech. Rev., 50 (1997), 15–67. https://doi.org/10.1115/1.3101682 doi: 10.1115/1.3101682
    [56] A. Radulescu, C. Williams, K. Cavanagh, Management strategies in a SEIR-type model of COVID 19 community spread, Sci. Rep., 10 (2020), 21256. https://doi.org/10.1038/s41598-020-77628-4 doi: 10.1038/s41598-020-77628-4
    [57] Y. B. Sang, Critical Kirchhoff-Choquard system involving the fractional p-Laplacian operator and singular nonlinearities, Topol. Method. Nonl. An., 58 (2021), 233–274. https://doi.org/10.12775/TMNA.2020.070 doi: 10.12775/TMNA.2020.070
    [58] K. Shah, R. Din, W. Deebani, P. Kumam, Z. Shah, On nonlinear classical and fractional order dynamical system addressing COVID-19, Results Phys., 24 (2021), 104069. https://doi.org/10.1016/j.rinp.2021.104069 doi: 10.1016/j.rinp.2021.104069
    [59] M. Shimizu, W. Zhang, Fractional calculus approach to dynamic problems of viscoelastic materials, JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 42 (1999), 825–837. https://doi.org/10.1299/jsmec.42.825 doi: 10.1299/jsmec.42.825
    [60] Y. B. Sang, S. H. Liang, Fractional Kirchhoff-Choquard equation involving Schrodinger term and upper critical exponent, J. Geom. Anal., 32 (2022), 5. https://doi.org/10.1007/s12220-021-00747-5 doi: 10.1007/s12220-021-00747-5
    [61] L. Stella, A. P. Martínez, D. Bauso, P. Colaneri, The role of asymptomatic infections in the COVID-19 epidemic via complex networks and stability analysis, SIAM J. Control Optim., 60 (2022), S119–S144. https://doi.org/10.1137/20M1373335 doi: 10.1137/20M1373335
    [62] D. Valério, J. T. Machado, V. Kiryakova, Some pioneers of the applications of fractional calculus, Fract. Calc. Appl. Anal., 17 (2014), 552–578. https://doi.org/10.2478/s13540-014-0185-1 doi: 10.2478/s13540-014-0185-1
    [63] Y. Wang, Z. Wei, J. Cao, Epidemic dynamics of influenza-like diseases spreading in complex networks, Nonlinear Dyn., 101 (2020), 1801–1820. https://doi.org/10.1007/s11071-020-05867-1 doi: 10.1007/s11071-020-05867-1
    [64] J. T. Wu, K. Leung, G. M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study, Lancet, 395 (2020), 689–697. https://doi.org/10.1016/S0140-6736(20)30260-9 doi: 10.1016/S0140-6736(20)30260-9
    [65] B. Wang, L. Li, Y. Wang, An efficient nonstandard finite difference scheme for chaotic fractional-order Chen system, IEEE Access, 8 (2020), 98410–98421. https://doi.org/10.1109/ACCESS.2020.2996271 doi: 10.1109/ACCESS.2020.2996271
    [66] G. C. Wu, M. Luo, L. L. Huang, S. Banerjee, Short memory fractional differential equations for new memristor and neural network design, Nonlinear Dyn., 100 (2020), 3611–3623. https://doi.org/10.1007/s11071-020-05572-z doi: 10.1007/s11071-020-05572-z
    [67] A. Zeb, A. Atangana, Z. A. Khan, S. Djillali, A robust study of a piecewise fractional order COVID-19 mathematical model, Alex. Eng. J., 61 (2022), 5649–5665. https://doi.org/10.1016/j.aej.2021.11.039 doi: 10.1016/j.aej.2021.11.039
    [68] S. Zhao, Q. Lin, J. Ran, S. S. Musa, G. Yang, W. Wang, et al., Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak, Int. J. Infect. Dis., 92 (2020), 214–217. https://doi.org/10.1016/j.ijid.2020.01.050 doi: 10.1016/j.ijid.2020.01.050
    [69] S. Zhao, S. S. Musa, Q. Lin, J. Ran, G. Yang, W. Wang, et al., Estimating the unreported number of novel coronavirus (2019-nCoV) cases in China in the first half of January 2020: A data-driven modelling analysis of the early outbreak, J. Clin. Med., 9 (2020), 388. http://doi.org/10.3390/jcm9020388 doi: 10.3390/jcm9020388
    [70] P. Zhou, X. L. Yang, X. G. Wang, B. Hu, L. Zhang, W. Zhang, et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, 579 (2020), 270–273. https://doi.org/10.1038/s41586-020-2012-7 doi: 10.1038/s41586-020-2012-7
    [71] Y. Zhang, H. Sun, H. H. Stowell, M. Zayernouri, S. E. Hansen, A review of applications of fractional calculus in Earth system dynamics, Chaos Soliton. Fract., 102 (2017), 29–46. https://doi.org/10.1016/j.chaos.2017.03.051 doi: 10.1016/j.chaos.2017.03.051
    [72] Naming the coronavirus disease (COVID-19) and the virus that causes it, Available from: World Health Organization (WHO), 2019. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it.
    [73] World Health Organization, Japan situation, 2020. Available from: https://covid19.who.int/region/wpro/country/jp.
    [74] Japan COVID coronavirus statistics, 2023. Available from: https://www.worldometers.info/coronavirus/country/japan/.
    [75] Japan COVID cases, 2021. Available from: https://www.nytimes.com/interactive/2021/world/japan-covid-cases.html.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1537) PDF downloads(58) Cited by(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog