Research article Special Issues

The generalized Kloosterman's sums and its fourth power mean

  • Received: 01 August 2023 Revised: 24 August 2023 Accepted: 29 August 2023 Published: 18 September 2023
  • MSC : 11L03, 11L05

  • The main purpose of this article is to study the calculating problem of one kind fourth power mean of the generalized Kloosterman's sums and provide an accurate calculating formula for it utilizing analytical methods and character sums' properties. Simultaneously, the work also provides a fresh and valuable approach for researching the related power mean problem.

    Citation: Junfeng Cui, Li Wang. The generalized Kloosterman's sums and its fourth power mean[J]. AIMS Mathematics, 2023, 8(11): 26590-26599. doi: 10.3934/math.20231359

    Related Papers:

  • The main purpose of this article is to study the calculating problem of one kind fourth power mean of the generalized Kloosterman's sums and provide an accurate calculating formula for it utilizing analytical methods and character sums' properties. Simultaneously, the work also provides a fresh and valuable approach for researching the related power mean problem.



    加载中


    [1] T. M. Apostol, Introduction to Analytic Number Theory, New York: Springer-Verlag, 1976.
    [2] J. H. H. Chalk, R. A. Smith, On Bombieri's estimate for exponential sums, Acta Arith., 18 (1971), 191–212.
    [3] T. Estermann, On Kloosterman's sums, Mathematics, 8 (1961), 83–86.
    [4] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, New York: Springer-Verlag, 1982.
    [5] H. Iwaniec, Topics in classical automorphic forms, Am. Math. Soc., 17 (1997), 61–63.
    [6] N. M. Katz, Estimates for nonsingular multiplicative character sums, Int. Math. Res. Not., 7 (2002), 333–349.
    [7] N. M. Katz, Gauss Sums, Kloosterman Sums, and Monodromy Groups, New Jersey: Princeton University Press, 1988.
    [8] H. D. Kloosterman, On the representation of numbers in the form $ax^2 + by^2 + cz^2 + dt^2$, Acta Math., 49 (1926), 407–464.
    [9] J. H. Li, Y. N. Liu, Some new identities involving Gauss sums and general Kloosterman sums, Acta Math. Sin., 56 (2013), 413–416.
    [10] A. V. Malyshev, A generalization of Kloosterman sums and their estimates, Vestnik Leningrad Univ., 15 (1960), 59–75.
    [11] H. Sali$\acute{e}$, Uber die Kloostermanschen Summen $S(u, v; q)$, Math. Z., 34 (1931), 91–109.
    [12] W. M. Schmidt, Equations over Finite Field an Elementary Approach, New York: Springer-Verlag, 1976.
    [13] W. P. Zhang, On the fourth power mean of the general Kloosterman sums, Indian J. Pure Ap. Math., 35 (2004), 237–242.
    [14] W. P. Zhang, On the general Kloosterman sums and its fourth power mean, J. Number Theory, 104 (2004), 156–161.
    [15] W. P. Zhang, S. M. Shen, A note on the fourth power mean of the generalized Kloosterman sums, J. Number Theory, 174 (2017), 419–426.
    [16] W. P. Zhang, The fourth and sixth power mean of the classical Kloosterman sums, J. Number Theory, 131 (2011), 228–238.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(977) PDF downloads(68) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog