Research article

Randers metrics on two-spheres of revolution with simple cut locus

  • Received: 06 July 2023 Revised: 18 August 2023 Accepted: 18 August 2023 Published: 13 September 2023
  • MSC : 53C22, 53C60

  • In the present paper, we study the Randers metric on two-spheres of revolution in order to obtain new families of Finsler of Randers type metrics with simple cut locus. We determine the geodesics behavior, conjugate and cut loci of some families of Finsler metrics of Randers type whose navigation data is not a Killing field and without sectional or flag curvature restrictions. Several examples of Randers metrics whose cut locus is simple are shown.

    Citation: Rattanasak Hama, Sorin V. Sabau. Randers metrics on two-spheres of revolution with simple cut locus[J]. AIMS Mathematics, 2023, 8(11): 26213-26236. doi: 10.3934/math.20231337

    Related Papers:

  • In the present paper, we study the Randers metric on two-spheres of revolution in order to obtain new families of Finsler of Randers type metrics with simple cut locus. We determine the geodesics behavior, conjugate and cut loci of some families of Finsler metrics of Randers type whose navigation data is not a Killing field and without sectional or flag curvature restrictions. Several examples of Randers metrics whose cut locus is simple are shown.



    加载中


    [1] D. Bao, C. Robles, Ricci and flag curvatures in Finsler geometry, In: A sampler of finsler geometry, Cambridge: Cambridge University Press, 50 (2004), 197–259.
    [2] D. Bao, C. Robles, Z. Shen, Zermelo navigation on Riemannian manifolds, J. Differential Geom., 66 (2004), 377–435.
    [3] D. Bao, S. S. Chern, Z. Shen, An introduction to Riemann Finsler geometry, Springer Science & Business Media, 2000.
    [4] A. L. Bess, Manifolds all of whose Geodesics are Closed, In: Ergebnisse des Mathematik und ihrer Grenzgebiete, Berlin: Springer-Verlag, 1978.
    [5] B. Bonnard, J. B. Caillau, R. Sinclair, M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1081–1098. https://doi.org/10.1016/j.anihpc.2008.03.010 doi: 10.1016/j.anihpc.2008.03.010
    [6] P. Foulon, V. S. Matveev, Zermelo deformation of Finsler metrics by Killing vector fields, Electron. Res. Announc. Math. Sci., 25 (2018), 1–7. https://doi.org/10.3934/era.2018.25.001 doi: 10.3934/era.2018.25.001
    [7] R. Hama, J. Kasemsuwan, S. V. Sabau, The cut locus of a Randers rotational 2-sphere of revolution, Publ. Math. Debrecen, 93 (2018), 387–412.
    [8] R. Hama, S. V. Sabau, The geometry of a Randers rotational surface with an arbitrary direction wind, Mathematics, 8 (2020), 2047. https://doi.org/10.3390/math8112047 doi: 10.3390/math8112047
    [9] R. Miron, D. Hrimiuc, H. Shimada, S. V. Sabau, The geometry of Hamilton and Lagrange spaces, Springer Science & Business Media, 2001.
    [10] G. Randers, On an asymmetric metric in the four-space of general relativity, Phys. Rev., 59 (1941), 195–199. https://doi.org/10.1103/PhysRev.59.195 doi: 10.1103/PhysRev.59.195
    [11] C. Robles, Geodesics in Randers spaces of constant curvature, Trans. Amer. Math. Soc., 359 (2007), 1633–1651.
    [12] S. V. Sabau, M. Tanaka, The cut locus and distance function from a closed subset of a Finsler manifold, Houston J. Math., 42 (2016), 1157–1197.
    [13] Z. Shen, Finsler metrics with K = 0 and S = 0, Canad. J. Math., 55 (2003), 112–132.
    [14] K. Shiohama, T. Shioya, M. Tanaka, The geometry of total curvature on complete open surfaces, Cambridge: Cambridge University Press, 2003.
    [15] R. Sinclair, M. Tanaka, The cut locus of a two-sphere of revolution and Toponogov's comparison theorem, Tohoku Math. J., 59 (2007), 379–399. https://doi.org/10.2748/tmj/1192117984 doi: 10.2748/tmj/1192117984
    [16] M. Tanaka, T. Akamatsu, R. Sinclair, M. Yamaguchi, A new family of latitudinally corrugated two-spheres of revolution with simple cut locus, Tokyo J. Math., 46 (2023), 33–45. https://doi.org/10.3836/tjm/1502179366 doi: 10.3836/tjm/1502179366
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(854) PDF downloads(61) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog