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1. Introduction

A two-sphere of revolution is a compact Riemannian surface (M, h), which is homeomorphic to the
sphere S2 ⊂ R3. If this manifold is endowed with a Randers metric F = α + β, or more generally, with
an arbitrary positive defined Finsler metric F, then (M, F) is called a Randers or Finsler two-sphere of
revolution, respectively.

One of the major problems in Differential Geometry (see [14, 15]) and Optimal Control (see [5]) is
the study of geodesics, conjugate points and cut points of Riemannian or Finsler manifolds. We recall
that a vector field J along a unit speed geodesic γ : [0, a]→ M is said to be a Jacobi field if it satisfies
the well-known Jacobi equation (see for instance [3], Chapter 7 for details). A point p is said to be
conjugate to q := γ(0) along γ if there exists a non-zero Jacobi field J along γ which vanishes at p and
q. The set of conjugate points of q along all curves γ starting at q is called the conjugate locus of q.

If γ : [0, l] → M is a minimal geodesic on a such manifold, then its end point γ(l) ∈ M is called
the cut point of the initial point q = γ(0) ∈ M, in the sense that any extension of γ beyond γ(l) is not
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a minimizing geodesic from q anymore. The cut locus Cut(q) is defined as the set of cut points of q,
and on Riemannian or Finslerian surfaces, it has the structure of a local tree. Moreover, the cut points
p ∈ Cut(q) of q are characterized by the property that the distance d(q, ·) from q is not smooth any
more at p (see [12] for details). The cut points p along a geodesic γ emanating from the point q = γ(0)
can appear either before or at the first conjugate point of q along γ, but not after that (see [3]).

To determine the precise structure of the cut locus on a Riemannian or Finsler manifold is not
an easy task. The majority of known results concern Riemannian or Randers surfaces of revolution
(see [15, 16] for the Riemannian, and [7, 8] for the Randers case).

A Randers metric F = α+β is a special Finsler metric obtained by the deformation of a Riemannian
metric α by a one-form β whose Riemannian α-length is less than one in order to assure that F is
positively defined ( [10]). These Finsler metrics are intuitive generalizations of the Riemannian ones
having most of the geometrical objects relatively easy to compute (see [3]).

An equivalent characterization of Randers metrics is through the Zermelo’s navigation problem. We
recall that a Finsler metric F is characterized by its indicatrix {(x, y) ∈ T M : F(x, y) = 1} (see [3]). In
particular, a Randers metric indicatrix is obtained as the rigid translation of the unit sphere {y ∈ TxM :
h(x, y) = 1} of a Riemannian metric (M, h) by a vector field W ∈ X(M) whose Riemannian length is
less than one. The pair (h,W) will be called the navigation data of the Randers metric F = α + β.
Conversely, the Randers metric F = α + β will be called the solution of Zermelo’s navigation problem
(h,W). In the case when W is an h-Killing field, provided h is not flat, the geodesics, conjugate points
and cut points of the Randers metric F = α+ β can be obtained by the translation of the corresponding
geodesics, conjugate points and cut points, of the Riemannian metric h by the flow of W, respectively
(see [8, 11]). More generally, new Finsler metrics F can be obtained by the rigid translation of the
indicatrix of a given Finsler metric F0 by a vector field W, such that F0(−W) < 1 (see [6, 13]). In this
case, the pair (F0,W) will be called the general navigation data of F.

Another case when the Randers geodesics can be easily related to the Riemannian ones is when the
deformation one-form β is closed. Indeed, the Randers metric F = α+β is projectively equivalent to the
underlying Riemannian metric α if and only if dβ = 0. In this case, the α-geodesics, conjugate points
and cut points coincide with the F-geodesics, cut points and conjugate points, respectively (see [3]).

We combine these two cases of Randers metrics in order to obtain new families of Finsler of Randers
type with simple cut locus (see Section 2 for the definition). The originality of our paper lies in the
followings:

(i) We determine the geodesics behavior, conjugate and cut loci of some families of Finsler metrics
of Randers type whose navigation data do not necessarily include a Killing field.

(ii) We show that the structure of the cut locus of these families can be determined without any
sectional or flag curvature restrictions. These are generalizations of the results in [16] to the
Randers case.

(iii) We construct a sequence of Randers metrics whose cut locus structure is simple.

(iv) We extend some classical results from the case of Randers metrics to β-changes of Finsler metrics
and give new proofs to some known results.

If we start with a Riemannian two-sphere of revolution (M ' S2, h) and the vector fields V0,V,W ∈
X(M). Then the following construction gives the Randers metric F0, F1 and F2 as solutions of the
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Zermelo’s navigation problem with data (h,V0), (F0,V) and (F1,W), respectively,

- - -(M, h) (M, F0 = α0 + β0) (M, F1 = α1 + β1) (M, F2 = α2 + β2),
V0 V W

which are positively defined provided ‖V0‖h < 1, F0(−V) < 1, and F1(−W) < 1, respectively. If we
impose conditions that V0 and V to be h- and F0-Killing fields, respectively, and dβ2 = 0, then the
geodesics, conjugate and cut loci of F2 can be determined.

Remarkably, a shortcut of this construction would be to simply impose ‖V0 + V + W‖h < 1, that
guarantees F2 is positively defined, and V0 + V + W to be h-Killing. In this case, F2 is also with simple
cut locus having the same structure with the cut locus of h. Obviously, the cut loci of these metrics are
slightly different as set of points on M.

This construction can be extended to a sequence of Randers metrics {Fi = αi + βi}i=1...,n whose cut
loci are simple (see Remark 3.3).

Here is the structure of our paper.
In Section 2, we review the geometry of Riemannian two-spheres of revolution from [15] and [16].
In Section 3, we describe the geometry of some families of Randers metrics obtained as

generalizations to the Finslerian case of the Riemannian metrics in [16]. We use the Hamiltonian
formalism for giving and proving some basic results to be used later in the section. Lemma 3.1 is an
important result that generalizes a well-known result [9] for Randers metrics to more general Finsler
metrics obtained by β-changes. The relation with F-Killing fields are given in Lemma 3.2 and the basic
properties of our family of Randers metrics are in Lemma 3.3. Some of these results are indirectly
suggested in [6], but here we clarify all the basic aspects and prove them in our specific formalism.
Lemma 3.4 gives the concrete expressions of α̃ and β̃ in the families of our Randers metric, formulas
that provide a better understanding of the positive definiteness of these metrics.

Lemma 3.5 gives the behavior of geodesics, conjugate and cut points of the β-change of a Randers
metric generalizing the results in [11]. Lemma 3.6 gives the conditions for the one-form β to be closed
in terms of the navigation data. Finally, we sum up the results in all these lemmas in Theorem 3.1,
which is the main result of the present paper. In Remark 3.3, we show how an infinite sequence of such
Randers metrics can be obtained.

In Section 4, we construct one example of the Randers metric on the two-sphere of revolution that
satisfies the conditions in Theorem 3.1.

2. Two-spheres of revolution

Classically, surfaces of revolution are obtained by rotating a curve (c) in the xz plane around the z
axis. More precisely, if the profile curve (c) is given parametrically

(c) :

x = ϕ(u)
z = ψ(u)

, ϕ > 0, u ∈ I ⊂ R, (2.1)

then, in the case (ϕ′(u))2 + (ψ′(u))2 , 0, for all u ∈ I, the curve can be written explicitly x = f (z) or
implicitly by Φ(x, z) = 0, where ′ is the derivative with respect to u.
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In the case of the parametric representation (2.1) one obtains an R3-immersed surface of revolution
ψ : Ω ⊂ R2 → R3, given by

ψ(u, v) = (ϕ(u) cos v, ϕ(u) sin v, ψ(u)) , u ∈ I, v ∈ [0, 2π). (2.2)

Remark 2.1. The immersed surface of revolution (2.2) is called of elliptic type, while

ψ(u, v) = (ϕ(u) cosh v, ϕ(u) sinh v, ψ(u))

is called a hyperbolic type. Since we are interested in compact surfaces of revolution, only the elliptic
case will be considered hereafter, leaving the hyperbolic type for a future research.

Even though the representation (2.2) is quite intuitive, it has two major disadvantages:

(1) it leads to quite complicated formulas for the induced Riemannian metric, geodesic equations,
Gauss curvature, etc.,

(2) it excludes the case of abstract surfaces of revolution which cannot be embedded in R3.

The first disadvantage can be easily fixed by taking the curve (c) to be unit speed parameterized in
the Euclidean plane xz, i.e.,

[ϕ′(u)]2 + [ψ′(u)]2 = 1,

which leads to the warped Riemannian metric

ds2 = du2 + ϕ2(u)dv2.

This simplification suggests the following definition (which also fixes the second disadvantage).

Definition 2.1. [15] Let (M, h) be a compact Riemannian surface homeomorphic to S2. If M admits
a pole p ∈ M, and for any two points q1, q2 ∈ M, such that dh(p, q1) = dh(p, q2), there exists an
Riemannian isometry i : M → M for which

i(q1) = q2, i(p) = p,

then (M, h) is called a two-sphere of revolution. Here dh is the distance function associated to the
Riemannian metric h.

Remark 2.2. One example of compact surface of revolution that cannot be embedded in R3 is the real
projective space RP2. It is compact being homeomorphic to S2/∼, where S2 is the unit sphere in R3

and ∼ is the equivalence relation x ∼ −x, for all x ∈ S2. It is a surface of revolution because it can be
obtained by rotating the Möbius strip along its center line.

Finally, it cannot be embedded in R3 because it is non-orientable. More generally, it is known
that any embedding of a non-orientable surface in R3 must create self-intersections and this is not
allowed. Nevertheless, RP2 can be immersed in R3, and therefore can be locally embedded in R3, but
not globally (see [4] for properties of projective spaces).

Another example is the so-called Lorentz surface, obtained by rotating the hyperbola x2 − y2 = 1
around the x-axis. This surface is orientable but cannot embedded inR3 because it has a self-intersection
at origin.
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This definition allows to introduce the geodesic polar coordinates (r, θ) ∈ (0, 2a)× [0, 2π) around p,
such that the Riemannian metric is given as

h = dr2 + m2(r)dθ2

on M \ {p, q}, where q is the unique cut point of p and

m(r) =

√
h
(
∂

∂θ
,
∂

∂θ

)
(see [14] or [15] for details).

Moreover, the functions m(r) and m(2a − r) can be extended to smooth odd function around r = 0,
where dh(p, q) = 2a, m′(0) = 1 = −m′(2a).

It is well-known that any pole p ∈ M must have a unique cut point q ∈ M, and that any geodesic
starting from p contains q.

For the sake of simplicity, we consider a = π
2 , that is m : [0, π] → [0,∞) will satisfy m(0) = 0,

m′(0) = 1, m(π − r) = m(r) > 0, for all r ∈ (0, π), see Figure 1.

Figure 1. A two-sphere of revolution.

Recall (see [14]) that the equations of an h-unit speed geodesic γ(s) := (r(s), θ(s)) of (M, h) are
d2r
ds2 − mm′

(
dθ
ds

)2

= 0,

d2θ

ds2 + 2
m′

m

(
dr
ds

) (
dθ
ds

)
= 0,

where s is the arclength parameter of γ with the h-unit speed parameterization condition(
dr
ds

)2

+ m2
(
dθ
ds

)2

= 1.

It follows that every profile curve, or meridian, {θ = θ0} with θ0 constant is an h-geodesic, and that
a parallel {r = r0}, with r0 ∈ (0, 2a) constant, is geodesic if and only if m′(r0) = 0. We observe that the
geodesics equations implies

dθ(s)
ds

m2(r(s)) = ν, where ν is constant,

that is, the quantity dθ
ds m2 is conserved along the h-geodesics.
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Lemma 2.1. (The Clairaut relation) Let γ(s) = (r(s), θ(s)) be an h-unit speed geodesic on (M, h).
There exists a constant ν such that

m(r(s)) cos Φ(s) = ν

holds for any s, where Φ(s) denotes the angle between the tangent vector of γ(s) and profile curve.

The constant ν is called the Clairaut constant of γ.
Several characterization of the cut locus of a Riemannian two-sphere of revolution are known

(see [5, 15, 16]).
We recall the following important result from [16].

Proposition 2.1. Let h : [0, π] → R be a smooth function that can be extended to an odd smooth
function on R. If

(c1) h(π − r) = π − h(r), for any r ∈ [0, π];

(c2) h′(r) > 0, for any r ∈
[
0, π2

)
;

(c3) h′′(r) > 0, for any r ∈
(
0, π2

)
,

then

(i) the function m : [0, π] → R given by m(r) := a sin h(r), where a = 1
h′(0) , is the warp function of a

two-sphere of revolution M.

(ii) Moreover, if h′′(r) > 0 on
(
0, π2

)
, then the cut locus of a point q = (r0, 0) ∈ M coincides with a

subarc of the antipodal parallel r = π − r0.

Proof. We give only the proof outline here, for details please consult [16]. It can be seen that conditions
(c1), (c2) imply that the function m : [0, π] → R is positive, and m(0) = 0, m′(0) = 1, m(π − r) =

m(r) > 0 for r ∈ (0, π), hence the two surface of revolution is well-defined.
Moreover, if (c3) holds good, then it can be proved that the half period function

ϕm(ν) := 2
∫ π

2

m−1(ν)

ν

m(r)
√

m2(r) − ν2
dr

is decreasing, where ν is the Clairaut constant, hence the conclusion follows (see Lemma 1 and
Proposition 1 in [16]). �

Remark 2.3. Observe that h(0) = 0, h
(
π
2

)
= π

2 , h(π) = π, and the graph of h looks like in Figure 2.

Definition 2.2. A Riemannian (or Finsler) two-sphere of revolution whose cut locus is a subarc of a
parallel will be called with simple cut locus.
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π

π
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0

π
π

2

Figure 2. The outline of the graph of h.

Remark 2.4. This naming is related to graph theory in the sense that simple cut locus means that the
cut locus is a simple graph with 2 vertices and one edge.

We recall some examples given in [16].

Example 2.1. (i) If h(r) = r − α sin(2r), for any α ∈
(
0, 1

2

)
, one can see that

m(r) = a sin(r − α sin(2r)).

It follows that

m′(r) = a cos(r − α sin(2r))[1 − 2α cos(2r)],
m′′(r) = a cos(r − α sin(2r))[−4α cos(2r)] − a[1 − 2α cos(2r)] sin(r − α sin(2r))[1 − 2α cos(2r)].

Observe that the Gaussian curvature is

G(r) = −
m′′(r)
m(r)

=
1

a sin(r − α sin(2r))
{−a cos(r − α sin(2r))[−4α cos(2r)]

+a[1 − 2α cos(2r)] sin(r − α sin(2r))[1 − 2α cos(2r)]}
= 4α cos(2r) cot(r − α sin(2r)) + [1 − 2α cos(2r)]2,

which clearly is not monotone on [0, π], see Figure 3. On the other hand, it is easy to check that
this h satisfies conditions (c1), (c2), (c3) in Proposition 2.1, hence it results that the Riemannian
surface of revolution with the warp function m has simple cut locus.
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y

r0

Figure 3. The graph of G(r) in Example 2.1 (i), r ∈ (0, π), where α = 1
4 .

(ii) If h(r) = arcsin sin r
√

1+λ cos2 r
, for any λ ≥ 0, it follows that

m(r) = a sin
(
arcsin

sin r
√

1 + λ cos2 r

)
=

a sin r
√

1 + λ cos2 r
,

therefore

m′(r) =
a

1 + λ cos2 r

[
cos
√

1 + λ cos2 r +
λ cos r sin2 r
√

1 + λ cos2 r

]
=

a(1 + λ) cos r
(1 + λ cos2 r)3/2 ,

m′′(r) =
a(1 + λ)

(1 + λ cos2 r)3

[
−(1 + λ cos2 r)3/2 sin r + 3λ cos2 r sin r(1 + λ cos2 r)1/2

]
=

a(1 + λ)
(1 + λ cos2 r)5/2

[
− sin r(1 + 2λ cos2 r + λ2 cos4 r) + 3λ cos2 r sin r

]
=

a(1 + λ) sin r
(1 + λ cos2 r)5/2

[
−1 + λ cos2 r − λ2 cos4 r

]
.

We obtain the Gaussian curvature as follows

G(r) = −
m′′(r)
m(r)

=
(1 + λ)(1 − λ cos2 r + λ2 cos4 r)

(1 + λ cos2 r)2

which again is not monotone on [0, π], see Figure 4.
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r

y

0

Figure 4. The graph of G(r) in Example 2.1 (ii), r ∈ (0, π), where λ = 1.

This second example also satisfies the conditions (c1), (c2), (c3) in Proposition 2.1. Hence it
provides a two-sphere of revolution with simple cut locus.

Remark 2.5. A more complicated sequence of functions hn(r) with simple cut locus is constructed
in [16], Theorem 1.

3. Randers two-spheres of revolution

We will show the existence of Randers two-spheres of revolution with simple cut locus using the
following basic construction:

(M, h)

?

(M, F0 = α0 + β0) - (M, F1 = α1 + β1)

6

(M, F2 = α2 + β2)

V0, ‖V0‖h < 1

V0: h-Killing

V, F0(−V) < 1
V: F0-Killing

W, F1(−W) < 1

dβ2 = 0

Navigation data: (h,V0) Navigation data: (h,V0 + V)

Navigation data: (h,V0 + V + W)

where (M, h) is a Riemannian manifold, and V0,V,W ∈ X(M) are vector fields on M.
It is known that in general, the navigation data (h,V), where (M, h) is a Riemannian metric and V a

vector field on M such that ‖V‖h < 1, induces the Randers metric

F = α(x, y) = β(x, y) =

√
λ‖y‖2h + h(y,V)

λ
−

h(y,V)
λ

.

Here λ := 1 − ‖V‖2h and h(y,V) = hi jV iy j is the h-inner product of the vectors V and y.
Conversely, the Randers metric F = α + β, where α =

√
ai j(x)yiy j is a Riemannian metric and

β = bi(x)yi a linear one-form on T M, induces the navigation data (h,V) given by

h2 = ε(α2 − β2), V = −
1
ε
β#.
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Here h2 = hi j(x)yiy j, ε := 1 − ‖b‖2α, and β# is the Legendre transform of β, i.e.,

β# = biyi = ai jbiy j

(see [1, 2, 11] for details).
We recall some definitions for later use.
A vector field X on T ∗M is called Hamiltonian vector field if there exists a smooth function f :

T ∗M → R, (x, p) 7→ f (x, p) such that

X f =
∂ f
∂pi

∂

∂xi −
∂ f
∂xi

∂

∂pi
.

For instance, we can consider the Hamiltonian vector fields of the lift W∗ := W i(x)pi of W = W i ∂
∂xi

to T ∗M, or of the Hamiltonian K(x, p), the Legendre dual of any Finsler metric F(x, y) on M (see [9]).
Indeed, on a Finsler manifold (M, F), for any y ∈ TxM \ {0} one can define

p(y) :=
1
2

d
dt

[
F2(x, y + tv)

] ∣∣∣
t=0
, v ∈ TxM,

and obtain in this way the map

L : T M → T ∗M,

(x, y) 7→ (x, p),

called the Legendre transformation of F.
The curve γ̂(t) = (x(t), p(t)) : [a, b] → T ∗M is called the integral curve (or sometimes the flow) of

a Hamiltonian vector field X f ∈ X(T ∗M) if

dγ̂(t)
dt

= X f |γ̂(t).

More precisely, the mapping φ : R× T ∗M → T ∗M, (t, (x, p)) 7→ φ(t, (x, p)), denoted also by φt(x, p) or
φ(x,p)t, satisfying the properties

(i) φ(0, (x, p)) = (x, p), for any (x, p) ∈ T ∗M;

(ii) φs ◦ φt = φs+t, for all s, t ∈ R;

(iii)
dφ(x,p)t

dt
|t=0 = X|(x,p),

is called the one-parametric group, or simply the flow, of the vector field X ∈ X(T ∗M). A given
one-parametric group always induces a vector field X ∈ X(T ∗M). Conversely, a given vector field
X ∈ X(T ∗M) induces only locally a one-parametric group, sometimes called the local flow of X.

A smooth vector field X ∈ X(M) on a Finsler manifold (M, F) is called F-Killing field if every
local one-parameter transformation group {ϕt} of M generated by X consists of local isometries of
F. The vector field X is F-Killing if and only if LX̂F = 0, where L is the Lie derivative, and X̂ :=

Xi ∂

∂xi + y j∂Xi

∂x j

∂

∂yi is the canonical lift of X to T M, or, locally Xi| j + X j|i + 2Cp
i jXp|qyq = 0, where “ | ” is

the h-covariant derivative with respect to the Chern connection.
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Moreover, in the Hamiltonian formalism, the vector field X on M is Killing field with respect to F
if and only if

{K ,W∗} = 0,

where K is the Legendre dual of F (see [9]), W∗ = W i(x)pi and {·, ·} is the Poisson bracket.

Lemma 3.1. Generalization of Hrimiuc-Shimada’s result, see [9]. Let (M, F̃ = α̃ + β̃) be a Randers
metric with general navigation data (F = α + β,W), F(−W) < 1. Then the Legendre dual of F̃ is
K̃ : T ∗M → R, K̃ = K + W∗, where K is the Legendre dual of F and W∗ = W i(x)pi.

Proof. Indeed, let F = α + β be a positive defined Randers metric on a differentiable manifold M with
indicatrix

∑
F(x) = {y ∈ TxM : F(x, y) = 1} ⊂ TxM, and let W ∈ X(M) be a vector field such that

F(−W) < 1.
Let us denote by

∑̃
(x) :=

∑
F(x) + W(x) the rigid translation of ΣF(x) by W(x), i.e.,∑̃

(x) := {y = u + W ∈ TxM : F(u) = 1}.

Firstly, observe that by rigid translation, the tangent vectors to
∑

F and
∑̃

remain parallel, i.e., there
exists a smooth function c(u) , 0 such that

Ỹu+Wx = c(u)(Fx)∗,u, (3.1)

where Ỹu+Wx is the tangent vector to
∑̃

at u + Wx, and (Fx)∗,y : Ty(TxM)→ TR ≡ R is the tangent map
of Fx : TxM → [0,∞), see Figure 5.

W
u

u + W

ΣF(x)

Σ̃
Ỹ

(Fx)∗
TxM

Figure 5. The rigid translation of the indicatrix.

The solution of the Zermelo’s navigation problem with data (F,W) is a Finsler metric F̃ such that

F̃x(u + Wx) = 1,

where u ∈ TxM, F(x, u) = 1, and F̃x is the restriction of F̃ to TxM. Since
∑̃

is the rigid translation of∑
such a Finsler metric must exist.
Second, with these notations, observe that in T ∗x M we have

LF̃(u + Wx) = c(u)LF(u), (3.2)

where LF̃ and LF are the Legendre transformations of F̃ and F, respectively. This formula follows
directly from (3.1) and the definition of the Legendre transformation.
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Since relation (3.2) is between one-forms, actually this is a relation between linear transformations
of the tangent space TxM. If we pair (3.2) with Wx and u, we get

〈LF̃(u+Wx),Wx〉 = c(u)〈LF(u),W〉 (3.3)

and
〈LF̃(u+Wx), u〉 = c(u)〈LF(u), u〉 = c(u), (3.4)

respectively, where we have used the fact that F(u) = 1 is equivalent to 〈LF(u), u〉 = 1. Here, 〈·, ·〉
denotes the usual pairing of a one-form with a vector field.

Therefore, by the same reason, since F̃(u + W) = 1 we have

1 = 〈LF̃(u + Wx), u + Wx〉 = 〈LF̃(u + Wx), u〉 + 〈LF̃(u + Wx),Wx〉 = c(u) + c(u)〈LF(u),W〉,

where we use (3.3), (3.4). By the way, observe that

c(u) =
1

1 + 〈LF(u),W〉
=

1
1 + 〈u,Wx〉gx(u)

,

where 〈·, ·〉gx(u) is the inner product in TxM by gx(u), i.e. 〈X,Y〉gx(u) = gi j(x, u)XiY j.
Next, let us denote by K̃ and K the Legendre dual metrics of F̃ and F, respectively. It follows that

1 = K̃[LF̃(u + Wx)] = c(u)K̃(LF(u)),

and thus

K̃(LF(u)) =
1

c(u)
= 1 + 〈LF(u),W〉 = K(LF(u)) + 〈LF(u),W〉.

If we denote LF(u) = ωx = (x, p) ∈ T ∗M, then

K̃x(p) = Kx(p) + ωx(W), (3.5)

where Kx is the L-dual of F = α + β.
Therefore, if F̃ is the solution of the Zermelo’s navigation (i.e. it is the rigid translation of the

indicatrix
∑

F by W) with navigation data (F,W), then

K̃x(p) = Kx(p) + W∗
x(p), (3.6)

where K̃ and K are the Hamiltonians of F̃ and F, respectively, and W∗ = W i(x)pi. �

Lemma 3.2. Let (M, F = α + β) be a Randers metric, the vector field W ∈ X(M) with flow ψt. Then
the Hamiltonian vector field XK on T ∗M is invariant under the flow ψt,∗ of XW∗ if and only if W is an
F-Killing field, where K is the Legendre dual of F.

Proof. Indeed, the invariance condition ψt,∗(XK ) = XK is equivalent to LXW∗XK = 0 by definition,
hence [XW∗ , XK ] = 0, i.e. X{W∗,K} = 0. This shows that W is actually F-Killing field. �

Lemma 3.3. Let (M, F) be a Randers metric and W ∈ T M a vector field on M. Then
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(i) The navigation data of F̃ is (h,V + W), where (h,V) is the navigation data of F = α + β, and F̃
is the solution of Zermelo’s navigation problem for (F,W).

(ii) The Randers metric F̃ = α̃ + β̃ is positive defined if and only if F(−W) < 1.

Proof. (i) Recall that (see [2, 11]) the indicatrix of F is obtained by a rigid translation of the h-unit
sphere

∑
h(x) by V , i.e. for any x ∈ M∑

F(x) =
∑

h(x) + V(x),

where
∑

F(x) = {y ∈ TxM : F(x, y) = 1},
∑

h(x) = {y ∈ TxM, ‖y‖h = 1}, and ‖V‖h < 1. Then, if F̃
is the solution of the Zermelo’s navigation problem for (F,W), we have∑

F̃(x) =
∑

F(x) + W(x) =
∑

h(x) + V(x) + W(x),

i.e., navigation data of F̃ is (h,V + W).

(ii) If we use (i), then F̃ is positive defined Randers metric if and only if ‖V + W‖h < 1. Observe that

α2(−W) = α2(W) = ai jW iW j =
1
λ

hi jW iW j +

(Vi

λ
W i

)2

=
1
λ
‖W‖2h +

1
λ2 〈V,W〉

2
h,

where λ = 1 − ‖V‖2h > 0, and

β(−W) = −β(W) = −biW i =
Vi

λ
W i =

1
λ
〈V,W〉h.

It follows that

F(−W) =

√
1
λ
‖W‖2h +

1
λ2 〈V,W〉

2
h +

1
λ
〈V,W〉h,

hence F(−W) < 1 is equivalent to√
λ‖W‖2h + 〈V,W〉2h + 〈V,W〉h < λ,

where we use λ > 0 due to the fact that F is positive defined Randers metric. Therefore, we
successively obtain

λ‖W‖2h + 〈V,W〉2h < {λ − 〈V,W〉h}
2,

λ‖W‖2h + 〈V,W〉2h < λ
2 − 2λ〈V,W〉h + 〈V,W〉2h,

λ‖W‖2h < λ
2 − 2λ〈V,W〉h,

‖W‖2h < λ − 2〈V,W〉h,
‖W‖2h < 1 − ‖V‖2h − 2〈V,W〉h,

which is equivalent to ‖V + W‖ < 1, hence F̃ is positive defined. The converse implication is
trivial.

�
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Lemma 3.4. If F̃ = α̃ + β̃ is the Randers metric obtained in Lemma 3.3, then we have

α̃2 =
1
η

(α2 − β2) + 〈
W̃
η
, y〉α,

β̃ = −〈
W̃
η
, y〉,

where

η := [1 + F(W)][1 − F(−W)],

W̃i := Wi − bi[1 + β(W)], and Wi = ai jW j.

Proof. Since the Zermelo’s navigation data for F̃ is (h,U := V +W), as shown in Lemma 3.3, it follows
(see [1, 11])

ãi j =
1
σ

hi j +
Ui

σ

U j

σ
, b̃i = −

Ui

σ
, (3.7)

where
Ui = hi jU j = hi j(V i + W i), σ := 1 − ‖V + W‖2h.

Recall that the navigation data (h,V) of a Randers metric F = α + β can be computed by

hi j = ε(ai j − bib j), V i = −
bi

ε
,

where ε := 1 − ‖b‖2α, bi = ai jb j (see [1], p. 233). Observe that as value ε = 1 − ‖b‖2α = 1 − ‖V‖2h = λ.
We have

〈V,W〉h = hi jV iW j = ε(ai j − bib j)
(
−

bi

ε

)
W j

= −(ai jbiW j − bibib jW j) − (b jW j − ‖b‖2αb jW j)
= −(β(W) − ‖b‖2αβ(W)) = −εβ(W),

i.e.,
〈V,W〉h = −εβ(W)

and
‖W‖2h = ε(ai j − bib j)W iW j = ε{α2(W) − β2(W)}.

It results

σ = 1 − ‖U‖2h = 1 − ‖V‖2h − 2〈V,W〉h − ‖W‖2h
= ε + 2εβ(W) − ε{α2(W) − β2(W)}
= ε{1 + 2β(W) + β2(W) − α2(W)}
= ε{[1 + β(W)]2 − α2(W)}
= ε[1 + β(W) + α(W)][1 + β(W) − α(W)]
= ε[1 + F(W)][1 − F(−W)],

i.e.,
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σ = εη, (3.8)

where η = [1 + F(W)][1 − F(−W)].
Moreover, we have

Ui = hi jU j = hi j(V j + W j) = ε(ai j − bib j)V j + ε(ai j − bib j)W j

= ε(ai j − bib j)
(
−

b j

ε

)
+ ε(ai j − bib j)W j

= −[bi − bi‖b‖2α] + ε[Wi − biβ(W)]
= −εbi + ε[Wi − biβ(W)]

= ε{Wi − bi[1 + β(W)]} = εW̃i,

i.e., U = εW̃.
With these results, we compute

ãi j =
1
σ

hi j +
Ui

σ

U j

σ

=
1
εη
ε(ai j − bib j) +

εW̃i

εη

εW̃ j

εη

=
1
η

(ai j − bib j) +
W̃i

η

W̃ j

η

and

b̃i = −
Ui

σ
= −

εW̃i

εη
= −

W̃i

η
,

hence the conclusion follows. �

Remark 3.1. We observe that F̃ = α̃+ β̃ is positive defined if and only if ‖̃b‖α̃ < 1, i.e., σ = 1− ‖U‖2h =

1 − ‖̃b‖2
α̃
> 0.

On the other hand, (3.8) implies that

σ > 0 ⇔ ε[1 + F(W)][1 − F(−W)] > 0 ⇔ 1 − F(−W) > 0,

since ε > 0 due to the fact that F is assumed positive defined and F(W) > 0.
In other words, we have shown that

F(−W) < 1 ⇔ ‖̃b‖α̃ < 1,

that is another proof and more a intuitive explanation of positive definiteness condition F(−W) < 1
(compare to [6]).

We will show a generic result on geodesics, conjugate and cut loci of a Randers metric.

Lemma 3.5. Let (M, F = α+β) be a not flat Randers metric, let W ∈ X(M) be a vector field on M such
that F(−W) < 1 and let F̃ = α̃ + β̃ be the solution of navigation problem for (F,W). If W is F-Killing
field, then
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(i) the F̃-unit speed geodesics P̃ are given by

P̃(t) = ψt(P(t)),

where P is an F-unit speed geodesic and ψt is the flow of W;
(ii) the point P̃(l) is conjugate to q = P̃(0) along the F̃-geodesic P̃ : [0, l] → M if and only if the

point P(l) is conjugate to q = P(0) along the corresponding F-geodesic P(t) = ψ−t(P̃(t)), for
t ∈ [0, l];

(iii) the point p̂ is an F̃-cut point of q if and only if p = ψ−l( p̂) is an F-cut point of q,

where l = dF̃(q, p̂).

Proof. We will prove (i).
For simplicity, if we also denote by ψt : T ∗M → T ∗M the flow of XW∗ , then for a curve P(t) on T ∗M

we denote
P̂(t) = ψt(P(t)),

i.e., we map P(t) 7→ P̂(t) by the flow ψt.
By taking the tangent map

(ψt,∗)P(t) : TP(t)(T ∗M)→ TP̂(t)(T
∗M),

we have
X
∣∣∣
P(t)
7→ (ψt,∗)P(t)(X

∣∣∣
P(t)

) = (ψt,∗X)P̂(t),

for any vector field X on T ∗M.
If P(t) is an integral curve of the Hamiltonian vector field XK , i.e. dP(t)

dt = XK
∣∣∣
P(t)

, where K is the
Legendre dual of F, then the derivative formula of a function of two variables give

d
dt

(P̂(t)) =
d
dt
ψ(t,P(t)) = XW∗

∣∣∣
P(t)

+ ψt,∗

(
dP(t)

dt

)
= XW∗

∣∣∣
P̂(t)

+ ψt,∗

(
XK

∣∣∣
P(t)

)
= XW∗

∣∣∣
P̂(t)

+
(
ψt,∗XK

)
P̂(t)

= XW∗
∣∣∣
P̂(t)

+ (XK )P̂(t)

= (XW∗+K )P̂(t) =
(
X
K̃

)
P̂(t)

,

where we have used that the Legendre dual of F̃ is K̃ = K + W∗, and ψt,∗XK = XK (see Lemmas 3.1
and 3.2), hence (i) is proved.

Next, we will prove (ii).
If we denote by Ps : [0, l]→ M, −ε < s < ε a geodesic variation of the F-geodesic P, such that all

curves in the variation are F-geodesics, then we obtain the variation vector field

J :=
∂Ps

∂s

∣∣∣
s=0
,

which clearly is an F-Jacobi field.
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Taking now into account (i), which shows that

J̃ = ψ∗(J)

is a Jacobi vector field along P̃, hence the conjugate points along P and P̃ correspond each other under
the flow ψt of W, hence (ii) is proved.

Finally, we will prove (iii). From (ii) it is easy to see that since W is F-Killing field, the arclength
parameter of the F-geodesic P and of the F̃-geodesic P̃ coincide.

It can be seen, like in the Riemannian case, that the points where the distance function dF(p, ·) looses
its differentiability coinciding by the flow ψt to the points where the distance function dF̃(p, ·) looses its
differentiability (see [12], Theorem A for the characterization of cut points in terms of differentiability
of distance function). Hence, (iii) follows. �

Lemma 3.6. Let (M, F = α + β) be a Randers metric with navigation data (h,W). The followings are
equivalent

(i) dβ = 0,

(ii) dW# = d log λ ∧W#,

where the one-form W# is the h-Legendre transformation of W and λ = 1 − ‖W‖2h.

Proof. Indeed, observe that from the Zermelo’s navigation formulas we get (see for instance (3.7),
or [1, 2, 11]) we get

β = −
Wi

λ
dxi = −

1
λ

W#,

where W# = LhW. Here, Lh is the Legendre transform with respect to h.
By differentiation, we get

dβ = −d
(
1
λ

W#
)

= −

[
−

1
λ2 dλ ∧W# +

1
λ

dW#
]

= −
1
λ

[
−d log λ ∧W# + dW#

]
,

hence the desired equivalence follows. �

Summing up, here is our main result.

Theorem 3.1. Let (M, h) be a Riemannian manifold and let V0,V,W ∈ X(M) be vector fields on M. If
‖V0‖h < 1, we denote by F0 = α0 + β0 the positive defined Randers metric obtained as solution of the
Zermelo’s navigation problem (h,V0).

(i) (i.1) If F0(−V) < 1, then F1 = α1+β1 is a positive defined Randers metric, where F1 is the solution
of Zermelo’s navigation problem (F0,V).

(i.2) If F1(−W) < 1, then F2 = α2 + β2 is a positive defined Randers metric, where F2 is the
solution of Zermelo’s navigation problem (F1,W).

(ii)(ii.1) The Randers metric F1 = α1 + β1 is the solution of Zermelo’s navigation problem (h,V0 + V).

(ii.2) The Randers metric F2 = α2 + β2 is the solution of Zermelo’s navigation problem (h,V0 +

V + W).
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(iii) If the following conditions are satisfied

(C0) V0 is h-Killing,

(C1) V is F-Killing,

(C2) d(V0 + V + W)# = d log λ̃ ∧ (V0 + V + W),

where (V0 + V + W)# = Lh(V0 + V + W) is the Legendre transformation of V0 + V + W with respect
to h, and λ̃ := 1 − ‖V0 + V + W‖2h, then

(iii.1) The F0-unit speed geodesics P0, and the F1-unit speed geodesics P1 are given by

P0(t) = ϕt(ρ(t)),
P1(t) = ψt(P0(t)) = ψt ◦ ϕt(ρ(t)),

(3.9)

where ρ(t) is an h-unit speed geodesic and ϕt and ψt are the flows of V0, and V, respectively.

The F2-unit speed geodesic P2(t) coincides as points set with P1(t).

(iii.2) The conjugate points of q = P2(0) along the F2-geodesic P2 coincide to the conjugate points
of q = P1(0) along the F1-geodesic P1, up to parameterization. The point P1(l) is conjugate
to q = P1(0) along the F1-geodesic P1 : [0, l]→ M if and only if the point P0(l) is conjugate
to q = P0(0) along the corresponding F0-geodesic P0(t) = ψ−t(P1(t)), for t ∈ [0, l]. The
point P0(l) is conjugate to q = P0(0) along the F0-geodesic P0 : [0, l]→ M if and only if the
point ρ(l) is conjugate to q = ρ(0) along the corresponding h-geodesic ρ(t) = ϕ−t(P0(t)), for
t ∈ [0, l], where ϕt, and ψt are the flows of V0, and V, respectively.

(iii.3) The F2-cut locus of q coincide as points set with the F1cut locus of q, up to parameterization.

The point p̂1 is an F1-cut point of q, if and only if p̂0 = ψ−l( p̂1) is an F1-cut point of q, where
l = dF1(q, p̂1). The point p̂0 is an F0-cut point of q, if and only if p0 = ϕ−l( p̂0) is an h-cut
point of q, where l = dF0(q, p̂0).

Proof of (i), (ii). The proof of (i.1), (ii.1) follows immediately from Lemma 3.3 for (F0,V). Likewise,
(i.2) and (ii.2) follows from Lemma 3.3 for (F1,W).
Proof of (iii). The proof will be given in two steps.

Step 1. (Properties of F0, F1) With the notations in hypothesis, conditions (C0), (C1) imply that
the geodesics, conjugate points and cut points of the Randers metrics F0, F1 have the properties in (iii)
due to Lemma 3.5.

Step 2. (Properties of F2) By taking into account Lemma 3.6 one can see that condition (C2) is
actually equivalent to dβ̃ = 0, that is the Randers metrics F1 = α + β and F2 = α̃ + β̃ are projectively
related ( [3]), therefore having the same geodesics as non-parameterized curves, same conjugate points
and same cut points. Hence, the desired properties of F2 follows (see Figure 6). �
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q

{P2(t)} = {P1(t)}
P1(t) = ψt(P0(t)) = ψt ◦ ϕt(ρ(t))

P0(t) = ϕt(ρ(t))

W

ρ(t)

ψt

V

ϕt

V0

•

•

•

•

Figure 6. The unit-speed geodesics ρ, ρ0, ρ1 and P2 of h, F0, F1 and F2, respectively.

Remark 3.2. Under the hypotheses in the Theorem 3.1 we have

(i) conditions (C0), (C1) are equivalent to (C1), (C2)′, where

(C2)′: V is h-Killing;

(ii) if we replace conditions (C0), (C1), (C2) with

(C3): V0 + V + W is h-Killing,

then the F2-geodesics, conjugate locus and cut locus is obtained from the h-geodesics, conjugate locus
and cut locus deformed by the flow of V0 + V + W, respectively. Observe that in this case, the F2-
geodesics, conjugate locus and cut locus are different from these in Theorem 3.1.

Remark 3.3. The construction presented here can now be extended to a sequence of Finsler metrics.
Our sequence construction has two steps. Let (M, h) be a Riemannian two-sphere of revolution, and

V0,V1, . . . ,Vk−1,Wk, . . . ,Wn ∈ X(M), n = k − l, a sequence of vector fields on M.
Step 1. A sequence of vector fields: V0,V1, . . . ,Vk−1, such that all Vi are Fi-Killing fields, i ∈

{0, 1, . . . , k − 1},

- - -(M, h) (M, F1 = α1 + β2) (M, F2 = α2 + β2)
V0, ‖V0‖h < 1

h-Killing

V1, F1(−V1) < 1

F1-Killing

V2, F2(−V2) < 1

F2-Killing
. . .

. . . -
Vk−1, Fk−1(−Vk−1) < 1

Fk−1-Killing
(M, Fk = αk + βk);

Step 2. A sequence of vector fields: Wk. . . . ,Wl, such that each β j is closed one-form, for j ∈
{k, k + 1, . . . , l}.
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- -(M, Fk + αk + βk) (M, Fk+1 = αk+1 + βk+1)
dβk+1 = 0

(M, Fk+2 = αk+2 + βk+2)
dβk+2 = 0

Wk, Fk(−Wk) < 1 Wk+1, Fk+1(−Wk+1) < 1

. . . -
Wk+2, Fk+2(−Wk+2) < 1

. . . -
Wn−1, Fn−1(−Wn−1) < 1

(M, Fn = αn + βn).
dβn = 0

Theorem 3.1 can be naturally extended to the two-step construction above. Indeed, if we start with
a Riemannian structure (M, h) and a sequence of vector fields V0,V1, . . . ,Vk−1 ∈ X(M), the Zermelo’s
navigation problems for

(h,V0) with solution F1 = α1 + β1,

(F1,V1) with solution F2 = α2 + β2,

...

(Fk−1,Vk−1) with solution Fk = αk + βk,

will generate a sequence of positive defined Randers metrics provided ‖V0‖h < 1, Fi(−Vi) < 1, i ∈
{1, . . . , k − 1}. The Zermelo’s navigation data for Fi is also (h,V0 + . . . + Vi), for all i ∈ {1, . . . , k − 1},
hence Fk is positive defined if and only if ‖V0 + . . . + Vk−1‖h < 1.

Next, if we start with (M, Fk) and the sequence of vector fields Wk, . . . ,Wn−1 ∈ X(M) the Zermelo’s
navigation problems for

(Fk = αk + βk,Wk) with solution Fk+1 = αk+1 + βk+1,

(Fk+1 = αk+1 + βk+1,Wk+1) with solution Fk+2 = αk+2 + βk+2,

...

(Fn−1,Wn−1) with solution Fn = αn + βn,

will generate another sequence of positive defined Randers metrics provided Fk+ j(−Wk+ j) < 1, j ∈
{0, 1, 2, . . . , n − k − 1}.

Observe again that by combining these with the sequence of Randers metrics constructed at first
step, we can easily see that the Zermelo’s navigation data of Fk+ j, j ∈ {0, 1, . . . , n − k} is (h,V0 + . . . +

Vk−1 + Wk + . . . + Wk+ j), hence the final Randers metric Fn = αn + βn is positive defined if and only if∥∥∥∥∥∥∥
k−1∑
i=0

Vi +

n−k−1∑
j=0

W j+k

∥∥∥∥∥∥∥
h

< 1.

Moreover, if we impose conditions

(C0) V0 is h-Killing;
(C1i) Vi is Fi-Killing, i ∈ {1, . . . , k − 1};
(C2 j) Wk+ j is chosen such that dβk+ j = 0, j ∈ {0, . . . , n − k}.

Clearly the geodesics, conjugate and cut loci of Fn can be obtained from the geodesics, conjugate
locus, cut locus of h through the flow of V :=

∑k−1
i=0 Vi, respectively.
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Observe that condition (C2 j) are similar to (C2) in Theorem 3.1, but we prefer not to write them
here explicitly, for simplicity.

This is the generalization of Theorem 3.1 to the sequence of Finsler metrics {F1, . . . , Fn}.
Nevertheless, there is a shortcut in this construction in the spirit of Remark 3.2. Indeed, if V + W is

h-Killing, where V =
∑k−1

i=0 Vi, W =
∑n−k−1

j=0 Wk+ j, then the geodesics, conjugate and cut loci of Fn are
obtained from the geodesics, conjugate and cut loci of h through the flow of V + W, respectively.

4. Conclusions

We will consider a simple example of the construction described in Theorem 3.1.

- - -(M, h) (M, F0 = α0 + β0) (M, F1 = α1 + β1) (M, F2 = α2 + β2)

(h,V0) (h,V0 + V) (h,V0 + V + W)

V0 = µo
∂
∂θ

h-Killing

V = µ1
∂
∂θ

h-Killing

W

dβ2 = 0.

Let us start with the Riemannian two-sphere of revolution (M ' S2, h = dr2 + m2(r)dθ2) given in
Section 2, Proposition 2.1. The vector field V0 ∈ X(M) is h-Killing if and only if it is a rotation, i.e.,
V0 = µ0

∂
∂θ

, µ0 constant, where (r, θ) are the h-geodesic coordinates. In order that F0 is positive defined
we need the condition ‖V0‖h < 1, i.e. µ2

0m2(r) < 1.
Next, we consider the vector field V ∈ X(M) which is also h-Killing if and only if V = µ1

∂
∂θ

with
µ1 constant (see Remark 3.2). The Randers metric F1 = α1 + β1 is positive defined if and only if
(µ0 + µ1)2m2(r) < 1, i.e., we choose µ0, µ1 such that m(r) < 1

µ0+µ1
.

Finally, we construct a vector field W ∈ X(M) such that dβ = 0. For instance

W = A(r)
∂

∂r
− µ

∂

∂θ
,

where µ := µ0 + µ1 is an obvious choice. Observe that V0 + V + W = A(r) ∂
∂r , hence β2 = −

A(r)
1−A2(r)dr. If

we impose condition A2(r) < 1, then F2 is a positive defined Randers metric.
We obtain

Proposition 4.1. Let (M ' S2, h = dr2 + m2(r)dθ2) be the Riemannian two-sphere of revolution
described in Proposition 2.1. Let

V0 = µ0
∂

∂θ
, V = µ1

∂

∂θ
, W = A(r)

∂

∂r
− µ

∂

∂θ
,

be three vector fields on M, where µ = µ0 + µ1.

(i) If m(r) < 1
µ

for all r ∈ [0, π] and A : [0, π] → [0,∞) is smooth function such that A2(r) < 1,
then the Finsler metrics F0 = α0 + β0, F1 = α1 + β1, F2 = α2 + β2, obtained as solutions of
Zermelo’s navigation problem with data (h,V0), (F0,V) and (F1,W), respectively, are positive
defined Randers metrics.
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(ii) The Randers metrics F1 = α1 + β1 and F2 = α2 + β2 can be obtained as solutions of Zermelo’s
navigation problem with data

(
h, µ ∂

∂θ

)
and (h, A(r) ∂

∂r ), respectively.

(iii) iii.1 The unit speed F2-geodesics are given by

P(t) = ψt(ρ(t)),

where ρ are unit speed h-geodesics and ψt is the flow of Ṽ = V0 + V + W = A(r) ∂
∂r .

iii.2 The point p̂ = P(l) is conjugate to q̂ := P(0) along the F2-geodesic P : [0, l] → M if
and only if q = P(0) = ρ(0) is conjugate to p := ρ(l) along the corresponding h-geodesic
ρ(t) = ψ−t(P(t)), t ∈ [0, l].

iii.3 The cut locus of a point q ∈ (M, F2) is a subarc if the antipodal parallel displaced by the flow
ϕt.

One can describe the Finsler metric F2 in coordinates as follows. If h is given by ds2 = dr2 +

m2(r)dθ2 in the geodesic coordinates (r, θ) ∈ (0, π] × [0, 2π), then

α2
2 =

1

λ̃2(r)
dr2 +

m(r)

λ̃
ds2,

β2 = −
A(r)

λ̃(r)
dr, λ̃(r) := 1 − A2(r).

More precisely, if m(r) = 1
1−2α sin(r − α sin 2r) (see Example 2.1) , for any α ∈

(
0, 1

2

)
and A(r) :=

r
√

r2+1
, then λ̃ = 1

r2+1 hence the Finsler metric F2 is given by

α2
2 = (r2 + 1)2dr2 +

1
1 − 2α

(r − α sin 2r)(r2 + 1)dθ2,

β2 = −r
√

r2 + 1 dr, r ∈ (0, π], θ ∈ [0, 2π).

Other examples can be similarly constructed from the Riemannian examples in [16].

Remark 4.1. Observe that in order to construct Randers metric having same cut locus structure as the
Riemannian metric h, another condition is also possible. Indeed, choosing

V0 : = v0(r, θ)
∂

∂r
+ w0(r, θ)

∂

∂θ
,

V : = −v0(r, θ)
∂

∂r
+ [µ − w0(r, θ)]

∂

∂θ
,

will lead to V0+V = µ ∂
∂θ

which is h-Killing and combined with W = A(r) ∂
∂r−µ

∂
∂θ

the derived conclusion
follows, for any smooth functions v0,w0 and constant µ such that m(r) < 1

µ
.
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