Research article Special Issues

Region of variablity for Bazilevic functions

  • Received: 04 May 2023 Revised: 07 July 2023 Accepted: 03 August 2023 Published: 04 September 2023
  • MSC : 30C45, 30C80

  • Let $ \mathcal{H} $ be the family of analytic functions defined in an open unit disk $ \mathbb{U = }\left \{ z:|z| < 1\right \} $ and

    $ \mathcal{A} = \left \{ f\in \mathcal{H}:f(0) = f^{^{\prime}}(0)-1 = 0, { \ \ \ \ \ }(z\in \mathbb{U})\right \} . $

    For $ A\in \mathbb{C}, B\in \lbrack-1, 0) $ and $ \gamma \in \left(\frac{-\pi} {2}, \frac{\pi}{2}\right), $ a function $ h\in $ $ \mathcal{P}_{\gamma}[\xi, A;B] $ can be written as:

    $ h(z) = \cos \gamma \frac{1+A\omega(z)}{1+B\omega(z)}+i\sin \gamma, \qquad (\omega(0) = 0, \left \vert \omega(z)\right \vert <1, z\in \mathbb{U}), $

    where $ \xi = \omega^{\prime}\left(0\right) \in \overline{\mathbb{U}} $. The family $ \mathcal{B}_{\gamma}\left[\psi, \xi, \beta, A;B\right] $ contains analytic functions $ f $ in $ \mathbb{U} $ such that

    $ \frac{e^{i\gamma}zf^{\prime}(z)}{\left[ f\left( z\right) \right] ^{1-\beta}\left[ \psi(z)\right] ^{\beta}}\in \mathcal{P}_{\gamma}[\xi, A;B], $

    where $ \psi $ is a starlike function. In this research, we find the region of variability denoted by $ \mathcal{V}_{\gamma}[\psi, z_{0}, \xi, A;B] $ for $ f\left(z_{0}\right) $, where $ f $ is ranging over the family $ \mathcal{B}_{\gamma}\left[\psi, \xi, \beta, A;B\right] $ for any fixed $ z_{0}\in \mathbb{U} $ and $ \xi \in \overline{\mathbb{U}}. $

    Citation: Syed Zakar Hussain Bukhari, Abbas Kareem Wanas, Mohamed Abdalla, Sidra Zafar. Region of variablity for Bazilevic functions[J]. AIMS Mathematics, 2023, 8(11): 25511-25527. doi: 10.3934/math.20231302

    Related Papers:

  • Let $ \mathcal{H} $ be the family of analytic functions defined in an open unit disk $ \mathbb{U = }\left \{ z:|z| < 1\right \} $ and

    $ \mathcal{A} = \left \{ f\in \mathcal{H}:f(0) = f^{^{\prime}}(0)-1 = 0, { \ \ \ \ \ }(z\in \mathbb{U})\right \} . $

    For $ A\in \mathbb{C}, B\in \lbrack-1, 0) $ and $ \gamma \in \left(\frac{-\pi} {2}, \frac{\pi}{2}\right), $ a function $ h\in $ $ \mathcal{P}_{\gamma}[\xi, A;B] $ can be written as:

    $ h(z) = \cos \gamma \frac{1+A\omega(z)}{1+B\omega(z)}+i\sin \gamma, \qquad (\omega(0) = 0, \left \vert \omega(z)\right \vert <1, z\in \mathbb{U}), $

    where $ \xi = \omega^{\prime}\left(0\right) \in \overline{\mathbb{U}} $. The family $ \mathcal{B}_{\gamma}\left[\psi, \xi, \beta, A;B\right] $ contains analytic functions $ f $ in $ \mathbb{U} $ such that

    $ \frac{e^{i\gamma}zf^{\prime}(z)}{\left[ f\left( z\right) \right] ^{1-\beta}\left[ \psi(z)\right] ^{\beta}}\in \mathcal{P}_{\gamma}[\xi, A;B], $

    where $ \psi $ is a starlike function. In this research, we find the region of variability denoted by $ \mathcal{V}_{\gamma}[\psi, z_{0}, \xi, A;B] $ for $ f\left(z_{0}\right) $, where $ f $ is ranging over the family $ \mathcal{B}_{\gamma}\left[\psi, \xi, \beta, A;B\right] $ for any fixed $ z_{0}\in \mathbb{U} $ and $ \xi \in \overline{\mathbb{U}}. $



    加载中


    [1] B. Bhowmik, Regions of variability for a class of analytic and locally univalent functions defined by subordination, Proc. Math. Sci., 125 (2015), 511–519. https://doi.org/10.1007/s12044-015-0252-5 doi: 10.1007/s12044-015-0252-5
    [2] S. Chen, H. Aiwu, Region of variabilty for generalized $\alpha$-convex and $\beta$-stalike functions and their extreme points, Commun. Korean Math. Soc., 25 (2010), 557–569. https://doi.org/10.4134/CKMS.2010.25.4.557 doi: 10.4134/CKMS.2010.25.4.557
    [3] S. Dineen, The Schwarz lemma, Oxford: Clarendon Press, 1989.
    [4] P. L. Duren, Univalent functions, New York: Springer, 2001.
    [5] A. W. Goodman, Univalent functions, Vol. I & II, Washing, New Jersey: Polygonal Publishing House, 1983.
    [6] H. Grunsky, Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen, Math. Z., 45 (1939), 29–61. https://doi.org/10.1007/bf01580272 doi: 10.1007/bf01580272
    [7] D. J. Hallenbeck, A. E. Livingston, Applications of extreme point theory to classes of multivalent functions, Trans. Amer. Math. Soc., 221 (1976), 339–359. https://doi.org/10.1090/s0002-9947-1976-0407257-2 doi: 10.1090/s0002-9947-1976-0407257-2
    [8] S. Ponnusamy, Foundations of Complex Analysis, Math. Gaz., 83 (2005), 183–183. https://doi.org/10.2307/3618748
    [9] S. Ponnusamy, A. Vasudevarao, Region of variability for close-to-convex functions, Complex Var. Elliptic Equ., 53 (2008), 709–716. https://doi.org/10.1080/17476930801996346 doi: 10.1080/17476930801996346
    [10] S. Ponnusamy, A. Vasudevarao, Region of variability of two subclasses of univalent functions, J. Math. Anal. Appl., 332 (2007), 1323–1334. https://doi.org/10.1016/j.jmaa.2006.11.019 doi: 10.1016/j.jmaa.2006.11.019
    [11] S. Ponnusamy, A. Vasudevarao, Region of variability for functions with positive real part, Ann. Pol. Math., 99 (2010), 225–245. https://doi.org/10.4064/ap99-3-2 doi: 10.4064/ap99-3-2
    [12] S. Ponnusamy, A. Vasudevarao, M. Vuorinen, Region of variability for exponentially convex univalent functions, Complex Anal. Oper. Theory, 5 (2011), 955–966. https://doi.org/10.1007/s11785-010-0089-y doi: 10.1007/s11785-010-0089-y
    [13] S. Ponnusamy, A. Vasudevarao, M. Vuorinen, Region of variability for certain classes of univalent functions satisfying differential inequalities, Complex Var. Elliptic Equ., 54 (2009), 899–922. https://doi.org/10.1080/17476930802657616 doi: 10.1080/17476930802657616
    [14] S. Ponnusamy, A. Vasudevarao, H. Yanagihara, Region of variability for close-to-convex functions, Complex Var. Elliptic Equ., 53 (2008), 709–716. https://doi.org/10.1080/17476930801996346 doi: 10.1080/17476930801996346
    [15] S. Ponnusamy, A. Vasudevarao, H. Yanagihara, Region of variability of univalent functions $f$ for which $zf^{\prime}$ is spirallike, Houston J. Math., 34 (2008), 1037–1048.
    [16] M. Raza, W. Ul-Haq, S. Noreen, Region of Variability for Janowski Functions, Miskolc Math. Notes, 16 (2015), 1117–1127. https://doi.org/10.18514/mmn.2015.1344 doi: 10.18514/mmn.2015.1344
    [17] L. Spacek, Contribution a la theorie des fonctions univalentes (in Czech), Casop. Pest. Mat., 62 (1932), 12–19.
    [18] S. S. Varma, T. Rosy, Region of variability of subclasses of univalent functions, Asia Pac. J. Math., 1 (2014), 213–224.
    [19] W. Ul-Haq, Variability regions for janowski convex functions, Complex Var. Elliptic Equ., 59 (2014), 355–361. https://doi.org/10.1080/17476933.2012.725164 doi: 10.1080/17476933.2012.725164
    [20] M. Raza, W. Ul-Haq, J. L. Liu, S. Noreen, Regions of variability for a subclass of analytic functions, AIMS Mathematics, 5 (2020), 3365–3377. https://doi.org/10.3934/math.2020217 doi: 10.3934/math.2020217
    [21] H. Yanagihara, Regions of variability for functions of bounded derivatives, Kodai Math. J., 28 (2005), 452–462. https://doi.org/10.2996/kmj/1123767023 doi: 10.2996/kmj/1123767023
    [22] H. Yanagihara, Regions of variability for convex function, Math. Nachr., 279 (2006), 1723–1730. https://doi.org/10.1002/mana.200310449 doi: 10.1002/mana.200310449
    [23] H. Yanagihara, Variability regions for families of convex functions, Comptut. Methods Funct. Theory, 10 (2010), 291–302. https://doi.org/10.1007/bf03321769 doi: 10.1007/bf03321769
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1264) PDF downloads(178) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog