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Abstract: Let H be the family of analytic functions defined in an open unit disk U ={z : |z] < 1} and
ﬂ:{feﬂ:f(O):f’(O)—lzo, (ZEU)}.
ForAeC,Be[-1,0)andy € (‘7” g) , a function h € P,[£, A; B] can be written as:

1 +Aw(z)

1+Awz) . . _ |
1+ Bo) +isinvy, (w(0) = 0,|w(z)| < 1,z € V),

h(z) = cosy

where £ = w’ (0) € U. The family B, [y, &, B, A; B] contains analytic functions f in U such that

e"zf'(2)
[f @17 [y@F
where ¢ is a starlike function. In this research, we find the region of variability denoted by

Vyl¥, 20, &, A; B for f(z0), where f is ranging over the family B, [y, &, B, A; B for any fixed zo € U
and £ € U.

€ P,[¢, A; B,
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1. Introduction and definitions

For a fixed point £ in U, the set of values of log (%) as f ranging on the family of injective or
univalent mappings is always a closed disk. This useful and important fact was proved by Grunsky [6].
The region of variability for various subfamilies of univalent functions became a fascinating area of the
current research. Several authors have studied about such regions for certain subfamilies of analytic
functions. These regions for the functions of bounded derivative were discussed by Yanagihara in 2005
as seen in [21]. Functions in such a subfamily satisfy the conditions |f”"(z)|] < 1 and Re(f” (z)) > 0. Later
on, Ponnusamy discussed the region of variability for the Kaplan family of functions K as described
in [9]. Moreover, Yanagihara found the range of values for a subfamily of convex function, as seen
in [23]. Ponnusamy discussed these problems for subfamilies of §* and K, as found in [10]. In 2008,
see [15], Ponnusamy again considered these aspects for the spirallike functions. Vasudevarao discussed
similar results when f is ranging over the functions with positive real parts, for detail see [11].

Most of the authors have introduced new subfamilies and studied the region of variability for these
subfamilies of analytic and univalent functions. In 2010, Chen and Aiwu discussed these problems for
functions with bounded Mocanu variations as seen in [2]. In 2011, Ponnusamy et al. [12] investigated
these regions for the families of exponentially convex functions.

More useful and interesting results on these regions are also discussed by many authors. In 2014,
Sunil Varma et al. [18], also worked out these issues for the related subfamilies along with Bappaditya
who utilized the idea of subordination in his work as found in [1]. Also some related findings are seen
in [10, 14,16, 19,20].

Let H be the family of analytic functions defined in U ={z : |z] < 1} the open unit disk with the
center at origin O included in the z-plane and A c H. Then any function f € A takes the form:

f@=z+ ) ad zel. (1.1)

n=2

From (1.1), we note that f(0) = £ (0) — 1 = 0. The subfamily of univalent or injective mappings
is represented by S and obviously S c A. A holomorphic or analytic mapping is called univalent as it
never takes the same value twice. For example, in the unit disk U, f(z) = 1 + 2z + 7?2 eS. Formally,
we have:

A mapping f € A is univalent or injective in U, if from f(z;) = f(z2), we have z; = z,. On the
other hand, for a mapping f € Sin U, from z; # 7, we have f(z;) # f(z2). The Koebe function & (z) as
defined by

k(z) =z/(1-2)% z €T, (1.2)

+
et +ﬁ 0, B, u € C:vB—nu+ 0, are univalent. The family S is preserved
vZ+u

under basic transformations, for reference, see [5]. Furthermore, from the condition f’ (z9) # 0, we
have local univalence of f at z,.
Let # be the family of holomorphic mappings p : p (U) is the right half w-plane having series form

and the mapping M (z) =

p@=1 +Zcrjzj,z€U.

J=1
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Obviously p (0) = 1 and Re p(z) > 0. This and other related families have a significant role in the
recent development of the subject. Many subfamilies of S are connected with the class P. For p € P,
it may not be necessary that p € S. For example p(z) = 1 + z/ € P, but p(z) ¢ S for j > 2. Obviously,

the mapping L (z) so that
1+z

I_ZEP.

Ly (2) =

We take B as a family of analytic function w : U — U with |w(z)| < 1 and w(0) = 0. A function
f is subordinate to a function F and we write f < F, if there exists w € B such that f(z) = F(w(2)).
Particularly, if F € S, then f < F can be equivalently reformulated as f(0) = F(0) and f(U) c F(U).
For A € C, B € [-1,0), the function p € #,[A; B] can be written as:
1+Aw(2)

p(Z) = COS ’}/m + iSiIl’y (z € 10), (13)

where w € B. Moreover, we can defined the family #,[£, A; B] of analytic functions as:

P,l1€.A:B] = [p € P,[A: Bl : p'(0) = (A - B)é cos ). (14)

where p € P,[A, B] defined above by (1.3),y € (-%,%),A€ C,B€[-1,0),6 =/ (0) € Uand z € U.
The family S* contains starlike functions f such that f (U) is starlike about O in the w-plane. This
family has been extensively studied in the literature, as seen in [5].
Spacek [17] extended the family S* by using the logarithmic spirals besides the line segments. Let
y € (—’—5 ’%) The curve ¥, : R = C: 9, (t) = te”,t € R and its rotation ¢”,(r),0 € R are called
v-spirals. A domain D C C is known as y-spirallike about the origin, if the spiral has initial point at
the origin and terminal of the spiral is any other point of D. A function f € A is spirallike, if f (U) is

spirallike about the origin. The family of spirallike functions represented by S, is defined by
: Zf’(z)) }
S, = eﬂ:Re(e”— >0, zeUsp.
! {f f@)

For details, we refer [5]. A normalized analytic or holomorphic function f € C, iff zf” € S;. For
details see [16]. For g with Re 8 > 0, let B(y, ) be the family of functions f so that

Re ( 2f'(2)
f @17 [w@)f

These Bazilevic functions are obviously univalent in U. Let 8, (¢, 8) be the family of holomorphic
functions f in U such that

7 f/( ) *
Re {ey([f (Z;l_ﬁz[w(z)]ﬁ)} >0, ye€S and z€U.

These functions are called spirallike Bazilevic functions. Let A € C, B € [-1,0), 8 > 0 and
y €(-%.%). Then f € B, [v.£.5.A; B] if

evzf'(z) Y. 1+ Az
[f @] [w) 1+ Bz

)>O,weS*and zeU.

+isinvy,
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where ¥ is a starlike function.
In view of Herglotz form of Janowski functions, we write f € B, [y, &, 8, A; B] as

s

e"zf'(2) = Cos I(M
[f (Z)]l_ﬁ [lﬂ(Z)]ﬂ 1 + Bw(z)e

) du(t) + isinvy

-

or we note that

4@ i [ (Aw@e + 1 o
R { [ (Gogeey o+ i v}’

which can further take the form
SQ s f A + 1 B
F@1'"* P W@ e cosy Bw(z)e it + 1 dp(t) +isiny .

-
Integrating on both sides to have

Z

[f(;)]ﬁ _ f

0

T

% W@ e™ {cos yf (M) du(t) + isin )/H dz

Bw(z)e " + 1

-

which leads to

2 x _ 7
f2) = [ﬁ\!lz (W) e 7{cosyf(3w(z)en " 1)d,u(t) +zsmy} dz] . (1.5)
Suppose that
: f ()
P(Z)=e’7( 28 ) (1.6)
[f @I v
where
p € P,IA;B]: p'(0) = (A— B)écosy,é €T,
then for w € B, we see that
@ = cos (Aw(z) + 1) . isiny = cosy (1 + Aw(z)) + isiny(Bw(z) + 1)
PRI=COY\ Bo) + 1 - 1+ Bw(z) '
We can also write 4 B iy
P () = (Acosy + iBsiny)w(z) + e (1.7

1 + Bw(z)
which leads to
P () (1 + Bw(z)) = 7 + w(z) (Acosy + iBsiny)

or we see that
Bp (2) w(z) — (Acosy + iBsiny) w(z) = —p (z) + €7
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which on simplifications yields

e —p(2)

= = . 1.8

W(2) = wp(2) Bp (z) — (Acosy + iBsiny) (1.8)
In view of (1.6), on differentiating (1.7), we note that
(1 + Bw(z)) (Acosy + iBsiny)w'(z) — (A cosy + iBsiny) w(z) + €”)
"(2) =
i (1 + Bo())
which on simplifications proves that
W' (2)

"(2)=(A-B) (—) COS Y, 1.9

P (1 + Bw(2))? Y (19

Then by using classical Schwarz lemma [5] and a related result as seen in [4], we note that |w’(0)]| <
1. So we obtain
P’ (0) = (A - B)écosy,é = w,(0) € U.

Again on differentiating (1.9), we can write

[+ Boy@] o) -2 (w%(”)z] cosy

ﬂ@=m—m[ .
[1 + Bwp(z)]

where 5
p(0) = (4 - B (w(0) - 2 [, )] ) cos y
and 5
PO W(0)— 2 w, (0)
(A - B)cosy P (A - B)cosy
Also we see that " 0)
’” p 2
0)= ———— +2&°. 1.10
wp0) (A—B)cosy+ (1.10)
Now, we let
wp(Z)_é:Z
8(@) = { S :
0, €l =1
This shows that
7o, =1 |

Using Schwarz lemma for |£] < 1, we write |g(2)| < [z aid lg’ (0)] < 1. For equality, we see that
2(z) = €z, e € R. Now g’ (0)] < 1 shows that there is / € U : g’ (0) = L Thus by using (1.10) and

(1.11), we find that
1 p” (0) )
| =
Ay (2(A “Bycosy ¢ )

AIMS Mathematics Volume 8, Issue 11, 25511-25527.



25516

which shows that
p"(0)=2(1(1-£7) - £) (4 - B)cos .

It follows from (1.5) that for each fixed zy € U, the region of variability V., [y, zo, &, B, A; B] is a set
defined as:

V20, €. A; B = {£(20) : f € B, [0, £,8,A; B}, (1.12)
when f ranges over the family B, [y, &,8,A; B].

The region of variability problems provide accurate information about the family &, than theorems
about bounds on functions, their derivatives and rotation theorems. It typically refers to a range or
interval within which a certain variable can vary or fluctuate. It is commonly used in research to
describe the extent variation of region in a particular set. It is important to note that the region of
variability can vary depending on the context and the specific variable being analyzed. Different
methods and techniques can be used to determine and characterize the region of variability for
different types of sets. Here, we find the region of variability V,[y,z0,¢,8,A;B] for

1

20
f(zo) = [/3 f q(t)a’t] , where f ranges over the family B, [y, £, 8, A; B] is defined above by (1.7) and
0

1 + (Acosy + iBsiny) éze™™

_ 8
q(z) = (11 B&) v @],

where ¢ is described as a part of (1.5). As special cases, region of variability V., [y, 20, &, B, A; B]
can also described for different choices of parameters. As described above, Mohsan et al. [16] found
V, ¥, 20, €, B, A; B] for a certain related subfamily of holomorphic functions. Ponnusamy et al. [8, 9]
studied these regions for f € S. Yanagihara [22] determined such region for the family of convex

functions. For work on such regions, see [10,11,13-16,19,21] and others.
Forany p e N,weletS, = {f(2) = [/6(2)]": fo € S*}. Also f€C, &= zf" € S,

Lemma 1.1. Let f : f(z) =2/ +... €e A, CH, A, = A Then f € S, iff
2f'(z)

R
e(pf(z)

In the case that p = 1, f is starlike univalent. We refer to [21, 22] for the Lemma 1.2 given
subsequently.

Lemma 1.2. For f : f(z) = z” + ... such that Re(zjf,/;g)) > —1, we have f € S;,.

)>O, z€U. (1.13)

2. Main results

We initiate our investigations by studying certain properties of the family V., [y, zo, &, B, A; B] such
as compactness and convexity.

Theorem 2.1. (i) V,[y, 20, &,8,A; Bl is compact in C. (ii) V,[{, 20, &, 8, A; Bl is convex in C. (iii) If
|€] = 1 or zg = 0, then

1
B

1 + (Acosy + iBsiny) &re™ v ®OFde| V. (2.1)

t (1 + Bér)

Wyl 20,€,8,A; B] = [ﬁf
0

AIMS Mathematics Volume 8, Issue 11, 25511-25527.
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(iv) If |€]l < 1 and 7y # 0, then

=I—

1+(A iBsi iy
Vol 20,6,8.A: B] = {ﬁ [P o) a
0

has an interior point.

Proof. (i) Since P, [£,A; B] is a compact set of C. This shows that B, [w, &,B, A; B] is compact, which
leads to the compactness of the set V, [y, 2o, &, 5, A; B]. (ii) Now, we show that V., [y, 29, &, B, A; B] is
convex in C. For this end in view, we take q,, ¢, € P,[£,A; B], t € [0, 1] and note that

1q1 (z) + (1 - 1)g> (2) € Py[&, A; Bl.

Hence V, [y, 20, &, 8, A; B] is convex. (iii) For |£] =
w¢(z) = €z This leads to the function

= 1, using Schwarz lemma [3], we have

1
B

( {1+ (Acosy + iBsiny)}ue™ B
[ﬁf[ «(1+ Bu) ][W(M)] du] .
0

which proves (2.1). Since zg = 0, so V,[y,0,&,8,A; B] = {0} is trivially satisfied. (iv) For |£] < 1,
¢ € Uandy € U, we can write

qs (2) = A

and also we note that

Wie(2) = [,3 f

0

1
B

{1 +&lu+ (Acosy + iBsiny) (lu + f)} ue
vV du] 2.2)

u(1+ &+ B(lu+£)u)

as seen by the Eq (1.5) is in the family B, [y, &, 8, A; B]. Next, we claim that W, ¢(z) is a nonconstant
analytic function of [ for each fixed z, € U\{0} and ¢ € U. Put

! 0 [y w2
h = =
? (¢, A:Bye - B )(1—.52)(%( "f()) f(l g™ =

where ¢, (A; B) = Acosy + iBsinvy. It is easy to see that

'@ _, 2B ﬁzw’(z) __ 2 IBZl// (@)
h(2) 1+Bz "y 1+Bx = Y@’

1+

and since  is starlike, it follows that

Zh//(z)
Re(l + e ) >0
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By Lemma 1.2, there exists a function iy € 8" with h = h€+2. The univalence of Ay and /¢(0) = 0
implies that hy(z9) # O for all zo € U\{0}. Consequently, the mapping U 3/ — ¥, (z¢) is a nonconstant
function and hence it is an open mapping. Thus, V,[,z0,&,B8,A; B] contains the open set
{‘Pl,f(z) Dl < 1} .For [ =0, we get

Woe(2) = [,3 f
0

Wy (z0) 1s an interior point {‘I’Lg(z) ile U} C V, ¢, 20,¢, B, A; B]. Therefore, V, [y, z0,&,8,A; B] i1s a
simple closed domain bounded by a simple closed curve 0V, [y, zo, £, 8, A; Bl O

1

][w<uﬂﬁdu] :

1 + (Acosy + iBsiny) &ue™
u(l + Bu)

We now prove that for f € B, [, &,8,A; B], the [f(2)) is contained in some closed disk with center
X(£,7,2) and radius R.

Theorem 2.2. If f € B, [y, &, B, A; B), then

[f@F = x(& v, 2| <R, 2.3)

1

x(&,v,2) = fC(sb (z.6),¢1 @O W) 12 (1),

0

and
1
R} = fR(¢(Z,§),¢1 (2 O) W) I (@) dt,
0
where .
¢ (2.6 + 12 || 6129
C(¢ (Za é:) ) ¢1 (Z’ é:)) = ) ’
(1- 17 |[222])
LL 16 (2.6) + 61 (2.6)
R(¢ (Z’ f) ) ¢1 (Z’ f)) = - ) )
(1-1e7 222
and B
b(E) = 1 +&ze™ (Acosy + iBsin 7)’ b1 (2. ) = E+ze ™ (Acosy + iBsin y).

z(1 + B&z) ey —Z(ZB+E) el

Proof. Since f € B, [¥,&,,A; B]. Then by using Schwarz lemma [3] for w, € 8 with w), (0) = &, we
have

‘Up(Z) _
Z

] — g2l

Zz

<lzl. (2.4)

AIMS Mathematics Volume 8, Issue 11, 25511-25527.
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Now, by substituting w), (z) from (1.8) and after calculation we get

(1 +&ze™7 (A cos y+iBsiny))

p) 1+Béz <1l B+ &
(2) + E+ze V(Acosy+iBsiny) | < 1+ sz ’
p —(zB+€)
On substitution of p(z) from (1.6), we write
[@]ﬁ zf’(z) _ (1+§ze“7(A cos y+iBsin y))e‘i“/ _
v [ (1+B&7) <1l B+ ¢
[&]ﬁ ' () . (E+ze(Acosy+iBsiny))e ™ | 1 + Bz ’
@] R “5D)
or we obtain
[&]ﬂ & _ (1+§Ze”7(Acosy+iBsiny))e’i’/ _
v ] f@) (1+B¢2)z <1z B+ €&
[&]’B & (g+ze‘i7(A cos y+iB siny))e—i7 - 1+ BfZ :
y@ 1 f@ ~2(zB+é)
Now, by letting
1+ &ze™ (Acosy + iBsiny)
¢ (z,6) = , (2.5)
z(1 + B¢z)
and ~ .
+ze " (Acosy +iBsiny)
b (@6 =* v+ By, 2.6)
-2 (zB + g—‘)
we get
QP fo _ _
[wm] 7o~ $@8) ‘ <l B+ & o
QP @ N 1+ Béz| :
(221 L2 + ¢, (2. ) 3
After simplifying (2.7), we get
-2
ro (0O ¢ co)uep
1 2| B+& 2
[f (Z)] 1 -1 lz+BéZ
Il |5 | 16 2. ©) + ¢1 2. O [¥ Y|
= — : 2.8)
1= | Z|2 zB+¢&
1+B¢2

Thus, for a parametrized C I_curve ydefinedby z=2z(1#),0<¢r<1 : z(0) =0and z(1) = z9, we

may write

1
‘[f @F -8 f C (28,61 2E) WM IZ (1)l dt
0

1
<B|R(@ (8.0 @) W) I (1) d.
0
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On some calculations and simplification, we see that
C (¢ (Za 5) 5 ¢l (Za g))

2| 2B+¢
¢ (2,6 + I |15
<

2
¢1(z,6)

2

ZB+E
1+Bé¢z

1+ BgD) (1 +&2¢770, (A B)) e — (|2 I (1 = Bo) + 2 ze ™9, (A3 B) (€ + BE2))
) (1= 121 = B2 12 (2> — 1¢1°) + 2B(1 - o) Re £2) 2

2

and

R (¢ (Z, f) 5 ¢1 (Z, ‘f))
BN 16 (2,6) + d1 (2, €)|

1+Béz
2

zB+E
1+B¢z

B+ E|(1 - P Bez + (16 — 1) e 9, (4:B) + £2Be 9, (A B) (€ - 1)) e
. 1= P I = B 1P (1P - I6P) + 2B (1 - <) Re &2

1= e

where ¢, (A; B) = Acosy + iBsiny. The relation (2.3) occurs from (2.4) and the above relations.
Equality is attained in (2.3) when f (z) = W,u . (z), for some z € U. Conversely, if equality occurs in
(2.3) for some z € U\{0}, then equality must hold in (2.4). Thus, by applying Schwarz lemma, for
6 € R, we write w,(z) = z6(€“z, &), z € U. This shows [ (z) = P, ¢ (2). ]

The choice of ¢ = 0 in Theorem 2.2, leads to the following corollary:
Corollary 2.1. If f € B, [¢,0,8, A; B), then

Lf @V - x(0.7.2)| <R},

1

x0,7,2) = f C(¢(z,0), 61 (z,0) W)W |12 (1)l d1,

0

and |
Re = f R($ (z.0), 1 (2, 00) W) |2 (@)l dt,
0
where O -
C20), 1 (z,0) = L&D+ lf | ;m &3]
(1 — |z|” |z B| )
R(¢ (Z, O) , ¢1 (Z, O)) _ |ZB| |¢ (Z, O)2+ ¢12(Z, 0)|
(1- 1P 1z8P)
and

e (Acosy +iBsiny)
—zB )

1
¢ (z,6) = E,(pl (z,6) =

AIMS Mathematics Volume 8, Issue 11, 25511-25527.
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If we put 8 =1 and ¥ = z¢’, where ¢ € C, the class of convex function in Theorem 2.2, we get the
following result:

Corollary 2.2. If f € B, [y, &, 1,A; B, then
f(@) —x(€ v, D < R,

1

XE7,2) = f C6 (2 8), 81 ) |d )| I 0l d,

0
and
1
R = [Ro @000 oo ew) | ol
0
where .
¢ (28 + [ |[S5e| 128
C(¢ (Z’ 5) ) ¢] (Z’ é‘:)) = : ) s
(1-kr )
LL 6@ O + b (2.6
R(¢ (Z’ f)’gbl (Z’ f)) = : ) )
and —
b(E) = 1 +&ze™™ (Acosy + iBsin y)’ b1 (. 6) = &+ ze7 (A cos v+ iBsin y).
(1 + B&z) —(ZB+§)

We need the following lemma which ensures the existence of a normalized starlike function, useful
in the proof of next result.

Lemma 2.1. Let 0 be a real numbers and z belong to unit disk U. Then

61982

o= [ de,é < 1,
T (e ) ey

where H(0) = H' (0) = 0 and H(z) # 0 elsewhere in U. Moreover, there exists a starlike normalized
univalent function Hy € S*inU : H (z) = 1¢H3 (2).

This lemma is proved by Ponnusamy et al. as found in [8]. In the theorem below, we show that
W, £(z9) lies on the boundary of V, [y, 2y, &, 8, A; B.
Theorem 2.3. Let zp € U\ {0} and Y,oz(2) is given by (2.2). Then for 0 € (—n,n], we have

, Y. @
Wiog(z0) € OV, Y, 20,&, B8, A; Bl. Furthermore, if [f{)(j)l_ﬂ = v : v(f)}_ﬁ for f € B, [y,&,B,A; B, then
} Z 10 £(Z
f (@) =Yg (2)

AIMS Mathematics Volume 8, Issue 11, 25511-25527.
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Proof. Now (2.2) gives that

f {{1 + 6, (4:B) g (1) }} wwy, ]
uy ,

(1+ Bge (1) u) u

Y (2) = [/3

0

or

‘sz(Z) f { 1+ ¢y (A; B) q¢ (u) ue W}} wwy 2.9)
0

(1 + Bge (luy u) u

On differentiating (2.9), we get

¥ (@) {1+ 6, (4B g ()2 )

[v(F B z (1 + By (Iz) z)
From (2.5), it follows that
¥ (Pe@)
popr e
_ {1 + ¢, (A; B) q¢ (I2) ze‘iy} ~ (1 + Eze” "y (A; B))
(14 Bge()2)z (1+Bé)z
~ {1 * ¢y (4 B) ( 1li:rfz)ze_w} (1+&e9, (A; B))
) (1 +B(fi—§i)z)z (I +Bg2)z
{1+ &z o, (AB) Uz + O ze ) ) (1+&ze79, (A; B))
 (1+E&+BUz+9)2)z (1+Bé2)z
16,45 Brgc (1207 LB+, (AB)
(1+ Bge (1)2)z ~z(2B +¥)
1o | £+ e, (43B)
af)) s

{1+ g, A B Uz + O ze ™) L £+, (AB)
(1+&lz+ Blz+6)) 2z ~z(:B+E)

Moreover, we find that

¥, (Pre@) (1-1¢P) (¢, (A: B e - B) 122

vV o= 2(1+ (€1 + BE) 2+ BIZ2) (1 + Bg2)
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and

¥, (P (1-1¢P) (¢, As B e - B) 12
B + ¢1 (Z’ g) = — —.
[y (@)] z(1+ (&1 + BE)z+ BI?) (2B + &)

Therefore, we can write

W@ (Pe)

~CP@E) .61 2 0)
WP 1
FECTE) Z4 12 1z ltzﬁ_l
(A — g c.) - e [ (L 61 )
_ e |

Moreover, we see that

(1-1¢) (¢, (A: Bye™ = B) (1 + (&l + B) z + BIz?)
z(1+ (&1+ BE) 2+ BI2) (1 + BE&)
122 (¢, (4; By e — B) (1 + (&l + Bé) z + BI2?)
|z* (1 + (El + Bf) Z+ Blz2)2 .

Putting [ = ¢, we have

\P;ié? é_-(Z)
— — —C(¢(z8.¢ O
(Yore(@)
. (2.10)
R (6 (2.6).01 (.8 (0, (A: By = B)|(1 + (Ee” + Be) 2 + B[ [w )
(1+(Ze® + BE)z + Bei9z2) '
Thus i0
. YH
D =R (¢ (z,8),91(z,8) (¢y (A;B)e™ — ) [¥(2)f elH ((;) (2.11)
where € S* and Re(zﬁg)) > 0. By Lemma 1.2, we have H(z) = 27'¢“H} (z) € S;, where H is

starlike in U with Hy(0) = H(')(O) — 1 =0, for any zo € U\{0}, the line segment joining origin to Hy(zy)
lies in Hy(U). Assume that 7y, is defined by

Yo :z=2()=Hy' (tHy (z0)), 0 <t < 1.

It follows that H(z(1)) = 27'e"(Hy(z(1)))* = 27 'e®(tHy(z0))* = t*H(zo). Differentiation over ¢ gives
us H(z(t)) = tH (z¢) and hence,
H' (z() 7' (t) = 2tH (), (2.12)

so that

(e ™ W00 - € @ 0,601 . O WY )7 0
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25524

W) 12 () H(zo)
|H(z0)| '

=R (¢ (Z(t)’ é:) 5 ¢1 (Z(t), f)) (¢7 (A’ B) e—iy _ B)
Integrating the above equality yields the result

(P @) —x 0.

(¢, (A:B)e™ - B)H(zo)
= fo R (¢ (0, €) .1 (0, E) W(ze)P 1 (1) dz (2.13)

|H(zo)|
(@B e -B)HG)
- 1H (z0)| ¢

Or we see that .
(6,4 Bye™ = B)H(zo)

ﬁ p—
(Per @) —x 0r0,8) = B v, (2.14)
and so we have 5
(Yere(2) € 0U (¥ (70,8),RY).
Since 5 _
(e )) € Vyl0r,20,£,8,A; B € Ulx (70, &), RY),
we have 5
(Por @) € 0V, 20.£.8.A: B.
Now, we find that [ f (z)]ﬁ = (\Peie’g(Z))ﬁ for some f € P,[¢,A; B] and ¢ € JU. Let
v _ B 1-8
Fi(r) = |H (20)| f"(z (1)) = |H(z0)| C (¢ .(z(t),f) , 91 (2(2),6)) [l{/_gz ) [fz @] 20, (2.15)
(¢, (4 B) e — B) H(z0) [ £z ()]
and
H lP;iH ()
() = H(z0) O Cl8 .6, 0.6 |2 ),
(¢, (A:B) e — B) H(zo) | (,0(2)

where yy : z = z(¢), 0 < ¢t < 1. Thus F(?) is a continuous function of 7. As in [7], we see from (2.10),
(2.13) and (2.15) that

| £'@
|6, (A; By e — B| | f1#(2)

lF(0)] = - C (¢ 1),8), 1 @0, ) W@ | 1@,

or we can see that

|F1(0)] < , R(¢ (2(1),8),¢1 2(0), ) WP |2 (1)
1 |¢7 (A’ B) v _ B| ¢ ‘f ¢1 é: l/l
/ Wi (D .
From (2.13), we obtain (2.11) and (2.12). This proves that [f{ )(i)l_ﬁ = T < f);,_ﬁ on y,. On applying
z et £(Z
the identity theorem, we have f(z) = Wiz (2). O
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Theorem 2.4. Let zyp € U and Re 8 > 0. If zo = 0, then V., [y, 20, &, B, A; B] = {0}. The boundary is the
closed Jordan curve defined by 6 € (—m, m] =Y, £(20), where

Vie(2) = [ﬁ f

Moreover, if f(zo) = Yo £(20) for f € P&, A; B, then f(z) = Wi £(2).

Proof. Finally, suppose that the mapping 6 € dU — W, (z0) is not injective. Then there exists 6,
6, € AU with 8, # 6, such that ¥, £(20) = Wi £(20). Since W ioy ¢, Vo, o € P, [, A; B], we have Vo, , =
Wi, o from uniqueness. This contradicts ¢; # ¢,. For proof of the theorem, we combine the results of
Theorem 2.1 as well as Theorem 2.2 and it can be seen that a simple closed curve 0V, [y, 2, &, B, A; B]
obviously comprises of § € 0U —W,»,. As any simple closed curve cannot surrounds such a curve
other than itself. Therefore, 0V, [y, 20, &, B, A; B] is coincident with 6 € (=, 1] — Wi |

1 A;B l iy :
+ ¢, (A; B) g¢ (lu) ue™ }[lﬁ(u)] }du] . zeU (2.16)

(1+ Bge (lu u)

3. Concluding remarks

The region of variability problems are more useful for the family S, than the related classical
theorems about this family S. In this study, we discussed the region of variability V, [y, 20, ¢, 8, A; B]
for f(zo), where f ranges over the family 8B, [y, &, 8, A; B.
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