Research article Special Issues

Extremal solutions for fractional evolution equations of order $ 1 < \gamma < 2 $

  • Received: 11 June 2023 Revised: 07 August 2023 Accepted: 16 August 2023 Published: 04 September 2023
  • MSC : 34A08, 47H07, 47D09, 47H08

  • This manuscript considers a class of fractional evolution equations with order $ 1 < \gamma < 2 $ in ordered Banach space. Based on the theory of cosine operators, this paper extends the application of monotonic iterative methods in this type of equation. This method can be applied to some physical problems and phenomena, providing new tools and ideas for academic research and practical applications. Under the assumption that the linear part is an $ m $-accretive operator, the positivity of the operator families of fractional power solutions is obtained by using Mainardi's Wright-type function. By virtue of the positivity of the family of fractional power solution operators, we establish the monotone iterative technique of the solution of the equation and obtain the existence of extremal mild solutions under the assumption that the upper and lower solutions exist. Moreover, we investigate the positive mild solutions without assuming the existence of upper and lower solutions. In the end, we give an example to illustrate the applied value of our study.

    Citation: Qiang Li, Jina Zhao. Extremal solutions for fractional evolution equations of order $ 1 < \gamma < 2 $[J]. AIMS Mathematics, 2023, 8(11): 25487-25510. doi: 10.3934/math.20231301

    Related Papers:

  • This manuscript considers a class of fractional evolution equations with order $ 1 < \gamma < 2 $ in ordered Banach space. Based on the theory of cosine operators, this paper extends the application of monotonic iterative methods in this type of equation. This method can be applied to some physical problems and phenomena, providing new tools and ideas for academic research and practical applications. Under the assumption that the linear part is an $ m $-accretive operator, the positivity of the operator families of fractional power solutions is obtained by using Mainardi's Wright-type function. By virtue of the positivity of the family of fractional power solution operators, we establish the monotone iterative technique of the solution of the equation and obtain the existence of extremal mild solutions under the assumption that the upper and lower solutions exist. Moreover, we investigate the positive mild solutions without assuming the existence of upper and lower solutions. In the end, we give an example to illustrate the applied value of our study.



    加载中


    [1] A. Abdelouahed, A. Elhoussine, Monotone iterative technique for solving finite difference systems of time fractional parabolic equations with initial/periodic conditions, Appl. Numer. Math., 181 (2022), 561–593. http://dx.doi.org/10.1016/j.apnum.2022.04.022 doi: 10.1016/j.apnum.2022.04.022
    [2] Z. Abdollahi, M. Ebadi, A computational approach for solving fractional Volterra integral equations based on two-dimensional Haar wavelet method, Int. J. Comput. Math., 99 (2022), 1488–1504. http://dx.doi.org/10.1080/00207160.2021.1983549 doi: 10.1080/00207160.2021.1983549
    [3] R. Agarwal, D. O'Regan, S. Hristova, Monotone iterative technique for the initial value problem for differential equations with non-instantaneous impulses, Appl. Math. Comput., 298 (2017), 45–56. http://dx.doi.org/10.1016/j.amc.2016.10.009 doi: 10.1016/j.amc.2016.10.009
    [4] A. Ahmadova, I. Huseynov, N. Mahmudov, Perturbation theory for fractional evolution equations in a Banach space, Semigroup Forum, 105 (2022), 583–618. http://dx.doi.org/10.1007/s00233-022-10322-1 doi: 10.1007/s00233-022-10322-1
    [5] P. Alipour, The BEM and DRBEM schemes for the numerical solution of the two-dimensional time-fractional diffusion-wave equations, Authorea, Inc 2023. http://dx.doi.org/10.22541/au.168434997.72680538/v1
    [6] Z. Avazzadeh, Optimal study on fractional fascioliasis disease model based on generalized Fibonacci polynomials, Math. Methods Appl. Sci., 46 (2023), 9332–9350. http://dx.doi.org/10.1002/mma.9057 doi: 10.1002/mma.9057
    [7] J. Banas, K. Goebel, Measure of noncompactness in Banach spaces, Lect. Notes Pure Appl. Math., New York: Marcel Dekker, 1980.
    [8] E. Bazhlekova, Fractional evolution equations in Banach spaces, University Press Facilities, Eindhoven University of Technology, 2001.
    [9] A. Cabada, T. Kisela, Existence of positive periodic solutions of some nonlinear fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 50 (2017), 51–67. http://dx.doi.org/10.1016/j.cnsns.2017.02.010 doi: 10.1016/j.cnsns.2017.02.010
    [10] Y. Chang, A. Pereira, R. Ponce, Approximate controllability for fractional differential equations of sobolev type via properties on resolvent operators, Fract. Calc. Appl. Anal., 20 (2017), 963–987. http://dx.doi.org/10.1515/fca-2017-0050 doi: 10.1515/fca-2017-0050
    [11] F. Chatelin, Spectral approximation of linear operators, Compute science and applied mathematics, New York, 1983.
    [12] P. Chen, Y. Gao, Positive solutions for a class of nonlinear fractional differential equations with nonlocal boundary value conditions, Positivity, 22 (2018), 761–772. http://dx.doi.org/10.1016/j.jmaa.2011.11.065 doi: 10.1016/j.jmaa.2011.11.065
    [13] P. Chen, Y. Li, Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions, Z. Angew. Math. Phys., 65 (2014), 711–728. http://dx.doi.org/10.1007/s00033-013-0351-z doi: 10.1007/s00033-013-0351-z
    [14] P. Chen, Y. Li, X. Zhang, Existence and uniqueness of positive mild solutions for nonlocal evolution equations, Positivity, 19 (2015), 927–939. http://dx.doi.org/10.1007/s11117-015-0336-6 doi: 10.1007/s11117-015-0336-6
    [15] P. Chen, X. Zhang, Y. Li, Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators, Fract. Calc. Appl. Anal., 23 (2020), 268–291. http://dx.doi.org/10.1515/fca-2020-0011 doi: 10.1515/fca-2020-0011
    [16] C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order $1 < r < 2$, Math. Comput. Simulation, 190 (2021), 1003–1026. http://dx.doi.org/10.1016/j.matcom.2021.06.026 doi: 10.1016/j.matcom.2021.06.026
    [17] M. Feng, H. Chen, Positive solutions for a class of biharmonic equations: Existence and uniqueness, Appl. Math. Lett., 143 (2023), 108687. http://dx.doi.org/10.1016/j.aml.2023.108687 doi: 10.1016/j.aml.2023.108687
    [18] C. Gu, J. Zhang, G. Wu, Positive solutions of fractional differential equations with the Riesz space derivative, Appl. Math. Lett., 95 (2019), 59–64. http://dx.doi.org/10.1016/j.aml.2019.03.006 doi: 10.1016/j.aml.2019.03.006
    [19] H. Heinz, On the behaviour of measure of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., 7 (1983), 1351–1371. http://dx.doi.org/10.1016/0362-546X(83)90006-8 doi: 10.1016/0362-546X(83)90006-8
    [20] H. Henríquez, J. Mesquita, J. Pozo, Existence of solutions of the abstract Cauchy problem of fractional order, J. Funct. Anal., 281 (2021), http://dx.doi.org/10.1515/fca-2021-0060 doi: 10.1515/fca-2021-0060
    [21] T. Huseynov, Arzu Ahmadova, I. Mahmudov, Perturbation properties of fractional strongly continuous cosine and sine family operators, Electron. Res. Arch., 30 (2022), 2911–2940. http://dx.doi.org/10.3934/era.2022148 doi: 10.3934/era.2022148
    [22] G. Ladde, V. Lakshmikantham, A. Vatsala, Monotone iterative technique for nonlinear differential equations, Pittman Publishing Inc., London, 1985.
    [23] V. Lakshmikantham, B. Zhang, Monotone iterative technique for delay differential equations, Appl. Anal., 22 (1986), 227–233. http://dx.doi.org/10.1080/00036818608839620 doi: 10.1080/00036818608839620
    [24] C. Li, X. Luo, Y. Zhou, Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations, Comput. Math. Appl., 59 (2010), 1363–1375. http://dx.doi.org/10.1016/j.camwa.2009.06.029 doi: 10.1016/j.camwa.2009.06.029
    [25] Q. Li, Y. Li, Positive periodic solutions for abstract evolution equations with delay, Positivity, 25 (2021), 379–397. http://dx.doi.org/10.1007/s11117-020-00768-4 doi: 10.1007/s11117-020-00768-4
    [26] Q. Li, M. Wei, Monotone iterative technique for S-asymptotically periodic problem of fractional evolution equation with finite delay in ordered Banach space, J. Math. Inequal., 15 (2021), 521–546. http://dx.doi.org/10.7153/jmi-2021-15-39 doi: 10.7153/jmi-2021-15-39
    [27] K. Li, J. Peng, Fractional Abstract Cauchy Problems, Integr. Equ. Oper. Theory, 70 (2011), 333–361. http://dx.doi.org/10.1007/s00020-011-1864-5 doi: 10.1007/s00020-011-1864-5
    [28] K. Li, J. Jia, Existence and uniqueness of mild solutions for abstract delay fractional differential equations, Comput. Math. Appl., 62 (2011), 1398–1404. http://dx.doi.org/10.1016/j.camwa.2011.02.038 doi: 10.1016/j.camwa.2011.02.038
    [29] J. Liang, H. Yang, Controllability of fractional integro-differential evolution equations with nonlocal conditions, Appl. Math. Comput., 254 (2015), 20–29. http://dx.doi.org/10.1016/j.amc.2014.12.145 doi: 10.1016/j.amc.2014.12.145
    [30] N. Li, C. Wang, New existence results of positive solution for a class of nonlinear fractional differential equations, Acta Math. Sci., 33 (2013), http://dx.doi.org/10.1016/S0252-9602(13)60044-2 doi: 10.1016/S0252-9602(13)60044-2
    [31] Y. Li, Regularity of mild Solutions for fractional abstract Cauchy problem with order $\alpha\in(1, 2)$, Z. Angew. Math. Phys., 66 (2015), 3283–3298. http://dx.doi.org/10.1007/s00033-015-0577-z doi: 10.1007/s00033-015-0577-z
    [32] L. Luo, L. Li, W. Huang, Stability of the Caputo fractional-order inertial neural network with delay-dependent impulses, Neurocomputing, 520 (2023), 25–32. http://dx.doi.org/10.1016/j.neucom.2022.11.060 doi: 10.1016/j.neucom.2022.11.060
    [33] J. Mao, Z. Zhao, C. Wang, The unique iterative positive solution of fractional boundary value problem with q-difference, Appl. Math. Lett., 100 (2019), 106002. http://dx.doi.org/10.1016/j.aml.2019.106002 doi: 10.1016/j.aml.2019.106002
    [34] K. Mamehrashi, Ritz approximate method for solving delay fractional optimal control problems, J. Comput. Appl. Math., 417 (2023), 114606. http://dx.doi.org/10.1016/j.cam.2022.114606 doi: 10.1016/j.cam.2022.114606
    [35] B. Mathieu, P. Melchior, A. Oustaloup, C. Ceyral, Fractional differentiation for edge detection, Signal. Process., 83 (2003), 2421–2432. http://dx.doi.org/10.1016/S0165-1684(03)00194-4 doi: 10.1016/S0165-1684(03)00194-4
    [36] F. McRae, Monotone iterative technique and existence results for fractional differential equations, Nonlinear Anal., 71 (2009), 6093–6096. http://dx.doi.org/10.1016/j.na.2009.05.074 doi: 10.1016/j.na.2009.05.074
    [37] J. Nieto, Solution of a fractional logistic ordinary differential equation, Appl. Math. Lett., 123 (2022), 107568. http://dx.doi.org/10.1016/j.aml.2021.107568 doi: 10.1016/j.aml.2021.107568
    [38] H. Ngo, Existence results for extremal solutions of interval fractional functional integro-differential equations, Fuzzy Sets and Systems, 347 (2018), 29–53. http://dx.doi.org/10.1016/j.fss.2017.09.006 doi: 10.1016/j.fss.2017.09.006
    [39] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, Berlin, 1983.
    [40] Y. Xu, Fractional boundary value problems with integral and anti-periodic boundary conditions, Bull. Malays. Math. Sci. Soc., 39 (2016), 571–587. http://dx.doi.org/10.1007/s40840-015-0126-0 doi: 10.1007/s40840-015-0126-0
    [41] X. Shu, Q. Wang, The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order $1 < \alpha < 2$, Comput. Math. Appl., 64 (2012), 2100–2110. http://dx.doi.org/10.1016/j.camwa.2012.04.006 doi: 10.1016/j.camwa.2012.04.006
    [42] X. Shu, F. Xu, Y. Shi, $S$-asymptotically $\omega$-positive periodic solutions for a class of neutral fractional differential equations, Appl. Math. Comput., 270 (2015), 768–776. http://dx.doi.org/10.1016/j.amc.2015.08.080 doi: 10.1016/j.amc.2015.08.080
    [43] C. Travis, G. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Hungar., 32 (1978), 75–96. http://dx.doi.org/10.1007/BF01902205 doi: 10.1007/BF01902205
    [44] C. Travis, G. Webb, Second order differential equations in Banach space, 2 Eds., New York: Academic Press, 1978.
    [45] R. Wang, D. Chen, T. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Differential Equations, 252 (2012), 202–235. http://dx.doi.org/10.1016/j.jde.2011.08.048 doi: 10.1016/j.jde.2011.08.048
    [46] J. Wang, Y. Zhou, Existence of mild solutions for fractional delay evolution systems, Appl. Math. Comput., 218 (2011), 357–367. http://dx.doi.org/10.1016/j.amc.2011.05.071 doi: 10.1016/j.amc.2011.05.071
    [47] J. Wang, Y. Zhou, A class of fractional evolution equations and optimal controls, Nonlinear Anal. Real World Appl., 12 (2011), 263–272. http://dx.doi.org/10.1016/j.nonrwa.2010.06.013 doi: 10.1016/j.nonrwa.2010.06.013
    [48] J. Wang, Y. Zhou, M. Feckan, Abstract Cauchy problem for fractional differential equations, Nonlinear Dynam., 71 (2012), 685–700. http://dx.doi.org/10.1007/s11071-012-0452-9 doi: 10.1007/s11071-012-0452-9
    [49] C. Yang, Improved spectral deferred correction methods for fractional differential equations, Chaos Solitons Fractals, 168 (2023), 113204. http://dx.doi.org/10.1016/j.chaos.2023.113204 doi: 10.1016/j.chaos.2023.113204
    [50] H. Yang, Y. Zhao, Existence and optimal controls of non-autonomous impulsive integro-differential evolution equation with nonlocal conditions, Chaos Solitons Fractals, 148 (2021), 111027. http://dx.doi.org/10.1016/j.chaos.2021.111027 doi: 10.1016/j.chaos.2021.111027
    [51] K. Yosida, Functional analysis, Springer, Berlin, 1965.
    [52] S. Zhang, Existence of a solution for the fractional differential equation with nonlinear boundary conditions, Comput. Math. Appl., 61 (2011), 1202–1208. http://dx.doi.org/10.1016/j.camwa.2010.12.071 doi: 10.1016/j.camwa.2010.12.071
    [53] Y. Zhou, J. Feng, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063–1077. http://dx.doi.org/10.1016/j.camwa.2009.06.026 doi: 10.1016/j.camwa.2009.06.026
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(916) PDF downloads(94) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog