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Abstract: This manuscript considers a class of fractional evolution equations with order 1 < γ < 2 in
ordered Banach space. Based on the theory of cosine operators, this paper extends the application
of monotonic iterative methods in this type of equation. This method can be applied to some
physical problems and phenomena, providing new tools and ideas for academic research and practical
applications. Under the assumption that the linear part is an m-accretive operator, the positivity
of the operator families of fractional power solutions is obtained by using Mainardi’s Wright-type
function. By virtue of the positivity of the family of fractional power solution operators, we establish
the monotone iterative technique of the solution of the equation and obtain the existence of extremal
mild solutions under the assumption that the upper and lower solutions exist. Moreover, we investigate
the positive mild solutions without assuming the existence of upper and lower solutions. In the end,
we give an example to illustrate the applied value of our study.

Keywords: fractional evolution equation; monotone iterative technique; lower and upper solutions;
positive solution; operator sine and cosine functions; Kuratowski measure of noncompactness
Mathematics Subject Classification: 34A08, 47H07, 47D09, 47H08

1. Introduction

Let (X, ∥ · ∥,≤) be an ordered Banach space, whose positive cone K = {u ∈ X|u ≥ θ} is normal with
normal constant N, θ is the zero element of X. In this paper, we discuss the existence and uniqueness
of mild solutions for fractional evolution equations

cDγt u(t) + Au(t) = f (t, u(t)), t ∈ [0, a],

u(0) = x0, u
′

(0) = x1,
(1.1)
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where cDγt is the Caputo fractional derivative of order γ ∈ (1, 2), −A is the infinitesimal generator of a
strongly continuous cosine family {C(t)}t≥0 of uniformly bounded linear operators in X, f : [0, a]×X →
X is a given function which will be specified later, x0, x1 ∈ X.

Fractional calculus is an important branch of mathematics, which was born in 1695. It is generally
recognized that integral calculus and fractional calculus appear almost simultaneously. They have
plenty of similarities. In the fields of turbulence models, Brownian motion, and viscoelastic materials,
the researchers found that integer calculus cannot accurately describe the historical memory and
spatial correlation of relevant models. However, fractional calculus can comprehensively reflect its
behavior. Therefore, fractional calculus has become an indispensable method to deal with practical
problems in a number of disciplines. Fractional calculus is widely used in fractional evolution
equations. Because differential equations containing fractional derivatives (called fractional differential
equations) are abstract formulas for many problems in engineering, flow control system, biological
tissue, stochastic process, genetic mechanics, newtonian fluid mechanics, anomalous diffusion, etc,
the subject is frequently discussed at home and abroad by scholars. The theory and application of
fractional differential equations have yielded several remarkable results (see [14, 16, 20, 28, 31, 52]
and the references therein).

In the natural world, diffusion phenomena occur frequently. For example, the transmission of odor,
sound, and light, as well as the transmission of temperature, etc. It has wide applications in many fields.
In the realm of physics, it can be harnessed to modulate the resistivity of semiconductors. In industry,
diffusion phenomena can optimize the speed and efficiency of chemical reactions. In biology, it allows
for the investigation of cellular interactions, thereby enhancing our understanding of life processes. The
diffusion phenomena refer to the spontaneous migration of biomass resulting from the thermal motion
of particles, including atoms, molecules, and molecular clusters. There exists a correlation between
the diffusion coefficient of particles and mean squared displacement. The mean squared displacement
depends on time, and the specific relationship is manifested as ⟨x2(t)⟩ ∼ const · tγ, γ > 0. When γ = 1,
it represents a slow diffusion phenomenon. When γ = 2, it represents a fast diffusion phenomenon,
such as the wave equation. When γ ∈ (1, 2) represents the super-diffusion equation, which can be
applied to information signal processing. The edge detection based on fractional differential equation
can improve the standard of edge detection and the community’s standard of noise[35]. It can also be
applied to other fields such as viscosity. Additionally, this type of equation and its various variants are
applicable to mathematical models of viscoelasticity. Therefore, the study of such equations is very
meaningful.

The study of fractional evolution equations has captured the interest of numerous scholars.
However, the prevailing research trend involves converting equations into alternative forms,
disregarding the constraints of certain equations, and failing to explore iterative sequences. In
addition, the majority of the existing literature focuses on integer derivatives or fractional derivatives
of 0 < γ < 1. Recently, for instance, Abdollahi et al. [2] analyzed the generalized two-dimensional
fractional Volterra integral equations and transformed the proposed equation into an algebraic equation
using the two-dimensional Haar wavelet operation matrix method. They derived some sufficient
conditions for existence and uniqueness of the equation. Alipour [5] solved for the numerical solution
of the two-dimensional time fractional diffusion wave equation using the double interactive boundary
element method and provided the iterative format of the time derivative. The author suggested
that discretization could convert fractional differential equations into non-homogeneous Helmholtz
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equations. Avazzadeh et al. [6] studied fractional differential systems for order γ ∈ (0, 1) under the
Caputo sense, with initial value conditions. The existence and uniqueness of the system were proven
using the GFP model and derivative operation matrix.

In response to the issues mentioned in the above analysis, this paper proposes an effective
method, which is the monotonic iteration technique for upper and lower solutions. This method
can be briefly described as: if the problem that we consider has a pair of ordered lower and upper
solutions, we will construct a simple iterative sequence through these lower and upper solutions, so
that it can converges uniformly to the minimum and maximum solutions between lower and upper
solutions of problem under certain conditions. This method can obtain both the existence of the
solution and the corresponding approximate iteration sequence. This method is comprehensively
summarized in document [22]. Many scholars use this method to treat all kinds of fractional evolution
equations. In 2009, McRae [36] applied the monotone iteration technique of upper and lower
solutions to study the existence of extremal solutions for Riemann-Liouville fractional differential
equation. Later, Cabada and Kisela [9] concerned with the existence and uniqueness of solutions for
a nonlinear fractional differential equation involving Riemann-Liouville fractional derivative supplied
with periodic boundary condition. Abdelouahed and Zakia [1] established the existence of maximal
and minimal solutions for two types of fractional nonlinear reaction diffusion problems with periodic
conditions or with initial conditions. For more applications of the upper and lower solutions, see [3, 38]
and the references therein.

In practical operation, utilizing this technology poses certain challenges. If the A is infinitesimal
generator of semigroup T (t), we can use T (t) and probability density function to express the operator
families of fractional power solutions, which is a very common method. The positivity of the operator
families of fractional power solutions is naturally generated by the positivity of the semigroup T (t).
A new semigroup Tb(t) is generated after T (t) perturbation and Tb(t) = e−btT (t). Thus, we can still
obtain the positivity of Tb(t) using the positivity of T (t). In this paper, we hope to adopt a similar
approach. However, we encountered two very critical issues. On the one hand, we are not sure if the
strong continuous cosine family and the strong continuous sine family generated after perturbation are
positive; On the other hand, we don’t know that the operator families of fractional power solutions
described by cosine function theory and Minardi’s Wright-type function are positive.

In addition, we focus on the fact that only positive solutions have practical significance in some
mathematical and physical models, such as the reaction-diffusion equation, neutron transport equation
and heat transfer equation. When 0 < γ < 1, a host of scholars have paid attention to the positive
solutions and have achieved many results. Li et al. [30] discussed a class of nonlinear fractional
differential equations by constructing the upper and lower control functions of nonlinear terms. They
obtained the existence of positive solutions by employing the method of upper and lower solutions
and Schauder’s fixed point theorem. For more applications, see [9, 12, 14, 25, 33, 42] and the
references therein. When 1 < γ < 2, it is rare to study positive solutions. Li et al. [24] investigated
the boundary value problems described by fractional differential equation with Riemann-Liouville
fractional derivative. The existence of positive solutions is obtained by using Krasnoselskii’s fixed
point theorem.

This article attempts to expand Eq (1.1) research from various perspectives. Firstly, the current
literature predominantly employs the theory of analytic semigroup to analyze problems while attaching
importance to specific fractional evolution equations with order between 0 and 1. Thus, this study
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classifies and compares these equations, deriving the applicability of upper and lower bound methods
to fractional evolution equations with order between 1 and 2. Secondly, this article concentrates
on the uniqueness of the cosine family theory of operators, using the translation of cosine function
generators and combining it with dissipative operator theory to enhance the understanding of the
positivity of fractional power solution operators. This further extends the existing theory of fractional
power solution operators. Finally, we overcome the usual constraint that monotonic iterative methods
require the existence of upper and lower solutions of the system. Our research methodology proves
effective in addressing these limitations, making monotonic iterative methods widely applicable to
practical problems. Overall, this paper contributes substantially to the research on Eq (1.1), deepening
its understanding while providing new concepts and techniques for further research and application.

The remainder of this paper is organized as follows. In Section 2, the symbols, concepts and lemma
required are introduced for this article. By introducing the concept of accretive operator and related
properties, the positivity of the strong continuous cosine family and the strong continuous sine family
generated after perturbation are obtained. Furthermore, combined with the definition and properties of
Mainardi’s Wright-type function, the positivity of the operator families of fractional power solutions is
obtained. In Section 3, under the condition that the strongly continuous sine family is compact, we use
the monotonic iterative technique of upper and lower solutions to demonstrate the existence of mild
solutions. In the case that the strongly continuous sine family is noncompact, we explore the existence
of the extreme solution of Eq (1.1). By introducing the Kuratowski measure of noncompactness, we
establish the uniqueness of solution of Eq (1.1). Finally, the existence of positive solution of Eq (1.1)
is obtained without assuming the existence of upper and lower solutions. In Section 4, we present an
example to illustrate the applied value of our study.

2. Preliminaries

In this section, we will list some concepts and definitions used to show our main results. Assume
that X is an ordered Banach space with norm ∥ · ∥ and partial order ≤, whose positive cone K = {x ∈
X|x ≥ θ} is normal with normal constant N, θ is the zero element of X. We denote that Lb(X,Y) are
the spaces of all bounded linear operators from X into Y equipped with the norm ∥ · ∥Lb . If X = Y ,
Lb(X, X) is denoted Lb(X). We define the domain of −A by D(−A) and the range of −A by R(−A). If
−A is a linear operator, then the resolvent set and resolvent of −A are defined by ρ(−A) and R(λ,−A) =
(λI + A)−1 ∈ Lb(X), respectively.

Let C([0, a], X) be the Banach space of all continuous functions from [0, a] into X endowed with
∥u∥C = supt∈[0,a] ∥u(t)∥. C([0, a], X) is also an ordered Banach space, the positive cone KC = {u ∈
C([0, a], X)| u(t) ∈ K, t ∈ [0, a]} is also normal. K,KC have the same normal constant N.

For v,w ∈ C([0, a], X), v ≤ w ⇔ v(t) ≤ w(t) for all t ∈ [0, a]. we denote the order interval
[v,w] = {u ∈ C([0, a], X)|v ≤ u ≤ w} and [v(t),w(t)] = {u(t) ∈ X|v(t) ≤ u(t) ≤ w(t)}.

A significant amount of literature refers to the definition of Caputo fractional derivation, see [13, 46]
and its references.

Now, we propose definitions of the strongly continuous cosine and sine families, recalling a few of
their characteristics.

Definition 2.1 ([44]) A one parameter family {C(t)}t∈R of bounded linear operators mapping the
Banach space X into itself is called a strongly continuous cosine family if and only if
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(i) C(0) = I;
(ii) C(s + t) +C(s − t) = 2C(s)C(t) for all s, t ∈ R;
(iii) C(t)x is continuous in t on R for each fixed x ∈ X.
The sine family associated with {C(t)}t∈R is defined by {S (t)}t∈R, where

S (t)x =
∫ t

0
C(s)xds, x ∈ X, t ∈ R. (2.1)

The infinitesimal generator −A of cosine family {C(t)}t∈R is defined by

−Ax =
d2

dt2 C(t)x|t=0, for x ∈ D(−A),

where
D(−A) = {x ∈ X|C(t)x is a twice continuously differentiable function of t}.

Clearly, −A is a closed dense operator in X.
Lemma 2.2 ([44]) Let {C(t)}t≥0 be a strongly continuous cosine family in X. Then there exist constants
M0 > 0 and ϖ > 0 such that

∥C(t)∥Lb ≤ M0eϖ|t|, for all t ≥ 0. (2.2)

Lemma 2.3 ([44]) Let {C(t)}t≥0 be a strongly continuous cosine family in X. Then

lim
t→0

S (t)
t
= I.

Lemma 2.4 ([44]) Let −A generate the strongly continuous cosine family {C(t)}t≥0 in X satisfying (2.2).
Then for Reλ ≥ ϖ, λ2 ∈ ρ(−A), here ρ(−A) is the resolvent set of −A, and

λR(λ2;−A)x =
∫ ∞

0
e−λtC(t)xdt, x ∈ X, (2.3)

R(λ2;−A)x =
∫ ∞

0
e−λtS (t)xdt, x ∈ X. (2.4)

Moreover, according to [8, Proposition 2.11], we have the following result.
Lemma 2.5 ([8]) Let −A generate a strongly continuous cosine family {C(t)}t≥0 satisfying (2.2). Then

C(t)x = lim
n→∞

1
n!

n+1∑
k=1

b2
k,n+1

(
I +
( t
n
)2A
)−k

x,

and the convergence is uniform on bounded subsets of t ≥ 0 for any fixed x ∈ X, where b2
1,1 = 1,

b2
k,n = (n − 1 − 2k)b2

k,n−1 + 2(k − 1)b2
k−1,n−2(1 ≤ k ≤ n, n = 2, 3, · · · ), and b2

k,n = 0(k > n, n = 1, 2, · · · ).
According to [44, Lemma 4.1], note that −(A + L2I) can also generate a strongly continuous cosine

families CL(t) in X for arbitrary constant L. And

∥CL(t)∥Lb ≤ M0e(ϖ+|L|)t, t ≥ 0, (2.5)
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and

λR(λ2;−A − L2I)x = λR(λ2 + L2;−A)x =
∫ ∞

0
e−λtCL(t)xdt (2.6)

for Reλ > ϖ + |L| and x ∈ X. Let S L(t) denote the strongly continuous sine family associated with
CL(t). In view of [43, Proposition 2.1] and (2.6), it is easy to obtain for

R(λ2;−A − L2I)x = R(λ2 + L2;−A)x =
∫ ∞

0
e−λtS L(t)xdt, (2.7)

for Reλ > ϖ + |L| and x ∈ X.
Next, we will introduce solution operators and their related properties. We first introduce the

Mainardi’s Wright-type function

ξϱ(z) =
∞∑
0

(−z)n

n!Γ(1 − ϱ(n + 1))
, for z ∈ C, ϱ ∈ (0, 1).

For any t > 0, the Mainardi’s Wright-type function has the properties

ξϱ(t) ≥ 0,
∫ ∞

0
τσξϱ(τ)dτ =

Γ(1 + σ)
Γ(1 + ϱσ)

, −1 < σ < ∞. (2.8)

In what follows, we always suppose that −A is the infinitesimal generator of a strongly continuous
cosine family of uniformly bounded linear operators {C(t)}t≥0, namely, there exist a constant M0 ≥ 1
such that ∥C(t)∥Lb ≤ M0 for t ≥ 0. For the sake of convenience in writing, we also set q = γ

2 for
γ ∈ (1, 2). Thus, we can define three families of operators Cq(t)(t ≥ 0),Nq(t)(t ≥ 0) and Tq(t)(t ≥ 0) in
X as following

Cq(t) =
∫ ∞

0
ξq(τ)C(tqτ)dτ, Nq(t) =

∫ t

0
Cq(s)ds, (2.9)

Tq(t) =
∫ ∞

0
qτξq(τ)S (tqτ)dτ. (2.10)

We have the following useful properties for operator families Cq(t)(t ≥ 0),Nq(t)(t ≥ 0) and Tq(t)(t ≥
0).
Lemma 2.6 ([44]) The operators Cq(t), Nq(t) and Tq(t) admit the following properties:

(i) for all t ≥ 0, Cq(t), Nq(t) and Tq(t) are linear operators;

(ii) for all t ≥ 0 and for any x ∈ X,

∥Cq(t)x∥ ≤ M0∥x∥, ∥Nq(t)x∥ ≤ M0∥x∥t, ∥Tq(t)x∥ ≤
M0

Γ(2q)
∥x∥tq;

(iii) {Cq(t), t ≥ 0}, {Nq(t), t ≥ 0}, {tq−1Tq(t), t ≥ 0} are strongly continuous;
To prove the positivity of the proposed operator families, we need to introduce the definition of

accretive operator and related lemmas.
Definition 2.7 An operator family {C(t)}t≥0 in X is called to be positive if C(t)x ≥ θ for any x ≥ θ and
t ≥ 0.
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Definition 2.8 ([8]) −A : D(A) → X is said to be nonnegative if and only if it satisfies both of the
following conditions:

(i) There exists P ≥ 0 such that, for every value of λ > 0 and every x ∈ D(A),

λ∥x∥ ≤ P∥λx − Ax∥;

(ii) R(λI − A) = X for every value of λ > 0.

Definition 2.9 ([8]) An operator −A satisfying (i) of Definition 2.8 with P = 1 is called accretive. If
−A moreover satisfies (ii) then −A is called m-accretive.

Lemma 2.10 Let −A be a linear m-accretive operator and generate a uniformly bounded strongly
continuous cosine family {C(t)}t≥0 in X. Then strongly continuous cosine family CL(t) generated by
−A − L2I is positive.

Proof Since −A is a m-accretive operator, from Definition 2.8 and Definition 2.9, it is easy to obtain
that −A is nonnegative. From (2.6), it follows that λ2 + L2 ∈ ρ(−A) and for Reλ > ϖ + |L|, one can see

R(λ2;−A − L2I)x = R(λ2 + L2;−A)x

= ((λ2 + L2)I + A))−1x

=

∞∑
n=0

(−A)n

(λ2 + L2)n+1 x ≥ θ, for x ≥ θ,

which implies that R(λ2;−A − L2I) is positive. Thus, according to Lemma 2.5, we can get that

CL(t)x = lim
n→∞

1
n!

n+1∑
k=1

b2
k,n+1

(
I +
( t
n
)2(A + L2)

)−k
x.

From Definition 2.7, we can obtain that the cosine family CL(t) is positive. Similarly, by (2.7), it is
easily to obtain that the sine family S L(t) is positive. This completes the proof of Lemma 2.10 . □

Define three operators Cq(t)(t ≥ 0),Nq(t)(t ≥ 0) and Tq(t)(t ≥ 0) in X as follows

Cq(t)x =
∫ ∞

0
ξq(τ)CL(tqτ)xdτ, Nq(t)x =

∫ t

0
Cq(s)xds, (2.11)

Tq(t)x =
∫ ∞

0
qτξq(τ)S L(tqτ)xdτ, (2.12)

where x ∈ X, and ξq(τ) is the Mainardi’s Wright-type function. Employing (2.5) and t ∈ [0, a], derive
the relation

∥CL(t)∥Lb ≤ M0e(ϖ+|L|)a := M.

The operators Cq(t),Nq(t) and Tq(t) have properties (i) and (iii) in Lemma 2.6. At the same time, for
each t ≥ 0,

∥Cq(t)x∥ ≤ M∥x∥, ∥Nq(t)x∥ ≤ M∥x∥t, ∥Tq(t)x∥ ≤
M
Γ(2q)

∥x∥tq. (2.13)
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Taking account to the properties of the Mainardi’s Wright-type function, the positivity of {CL(t)}t≥0,
we can deduce that Cq(t), Nq(t) and Tq(t) are positive operators for all t ≥ 0.
Lemma 2.11 ([11]) Let −A be a closed operator from D(−A) into X such that Rλ(−A) exists and is
compact for some λ. Then Rλ(−A) is compact for any λ ∈ ρ(−A).
Lemma 2.12 Assume that −A is a closed operator. If the strongly continuous sine operator S (t)
generated by −A is compact, then the strongly continuous sine operator S L(t) generated by −A − L2I
is also compact for every t ≥ 0.
Proof The following two properties are equivalent for every t ≥ 0: (i) The strongly continuous sine
operator S (t) is compact; (ii) The resolvent operator R(λ2,−A) is compact. Our conclusion can be
found by applying a similar proof technique in [10, Theorem 3.1]. We have therefore omitted the
details here. A similar result holds that the compactness of S L(t) is equivalent to the compactness of
R(λ2 + L2,−A) for all t ≥ 0. Since Lemma 2.4, λ2 ∈ ρ(−A). Thus, λ2 + L2 ∈ ρ(−A). By Lemma 2.11
and the compactness of R(λ2,−A), we deduce that R(λ2+ L2,−A) is compact. This completes the proof
of Lemma 2.12. □

Before introducing the definitions of the lower and upper solution for Eq (1.1), we need to defined
the set Cγ([0, a], X) by

Cγ([0, a], X) = {u ∈ C([0, a], X)|cDγt u exists, and cDγt u ∈ C([0, a], X)},

and denote by X1 the Banach space D(A) with the graph norm ∥ · ∥1 = ∥ · ∥ + ∥A · ∥.
Definition 2.13 A function v ∈ C([0, a], X) is said to be a lower solution of Eq (1.1) if v ∈ Cγ([0, a], X)∩
C([0, a], X1) and satisfies 

cDγt v(t) + Av(t) ≤ f (t, v(t)), t ∈ [0, a],

v(0) ≤ x0, v
′

(0) ≤ x1,
(2.14)

If the inequality of (2.14) is inverse, we call it is an upper solution.
We define the mild solution of Eq (1.1) as follows:

Definition 2.14 A function u ∈ C([0, a], X) is said to be a mild solution of Eq (1.1) if satisfies

u(t) = Cq(t)x0 + Nq(t)x1 +

∫ t

0
(t − s)q−1Tq(t − s) f (s, u(s))ds.

Moreover, if u(t) ≥ θ for t ∈ [0, a], then it is said to be a positive mild solution of Eq (1.1).
Next, we recall some facts about the measure of noncompactness. Let α(·) denote the Kuratowski

measure of noncompactness of the bounded set. For any D ⊂ C([a, b], X) and t ∈ [a, b], set D(t) =
{u(t)|u ∈ D}. If D is bounded in C([a, b], X), then D(t) is bounded in X, and α(D(t)) ≤ α(D).
Lemma 2.15 ([39]) Let S 1, S 2 be a nonempty bounded set in X and a ∈ R, then the noncompactness
measure α(·) has the following properties

(i) α(S 1) = 0⇔ S 1 is a relative compact set;
(ii) S 1 ⊂ S 2 ⇒ α(S 1) ≤ α(S 2);
(iii) α(S 1) = α(S 1);

AIMS Mathematics Volume 8, Issue 11, 25487–25510.



25495

(iv) α(S 1 ∪ S 2) ≤ max{α(S 1), α(S 2)};
(v) α(aS 1) = |a|α(S 1), where aS 1 = {x|x = ay, y ∈ S };
(vi) α(S 1 + S 2) ≤ α(S 1) + α(S 2), where S 1 + S 2 = {x|x = y + z, y ∈ S 1, z ∈ S 2};
(vii) α(coS 1) = α(S 1).

Lemma 2.16 ([7]) Let X be a Banach space and let D ⊂ C([a, b], X) be bounded and equicontinuous.
Then α(D(t)) is continuous on [a, b], and

α(D) = max
t∈[a,b]
α(D(t)).

Lemma 2.17 ([19]) Let X be a Banach space, D = {un} ⊂ C([a, b], X) be a bounded and countable
set. Then α(D(t)) is Lebesgue integrable on [a, b], and

α({
∫ b

a
un(s)ds}) ≤ 2

∫ b

a
α(D(t))dt.

To illustrate our final results, the following lemma is also needed.
Lemma 2.18 ([51]) Assume that f (t) is a nonnegative function locally integrable on 0 ≤ t < T (some
T < ∞), g(t) is a nonnegative, nondecreasing continuous bounded function on 0 ≤ t < T, p, q > 0.
Suppose that h(t) is nonnegative and locally integrable on 0 ≤ t < T with

h(t) ≤ f (t) + g(t)
∫ t

0
(t − s)q−1h(s)ds.

Then,

h(t) ≤ f (t) +
∫ t

0
(
∞∑

n=1

(g(t)Γ(q))n

Γ(nq)
(t − s)nq−1 f (s))ds.

3. Main results

Throughout this part, we always assume that X is an ordered Banach space, whose positive cone K
is normal. −A is a linear m-accretive operator and −A generates a strongly continuous cosine family
{C(t)}t≥0 in X.

We present and demonstrate several results in this location. First, under the condition that the
strongly continuous sine family is compact, we apply monotone iterative method of the lower and
upper solutions to consider the existence of the extreme solutions of Eq (1.1).
Theorem 3.1. Let −A be a linear m-accretive operator and −A generate a compact strongly
continuous sine family {S (t)}t≥0 in X. Assume that Eq (1.1) has upper and lower solutions w0, v0 with
v0 ≤ w0, f : [0, a] × X → X is a continuous function. If the following assumptions are established:
(H1) There is a constant number L such that

f (t, x2) − f (t, x1) ≥ −L2(x2 − x1),

for all t ∈ [0, a] and v0(t) ≤ x1 ≤ x2 ≤ w0(t).
Then Eq (1.1) has minimal and maximal mild solutions u, u ∈ [v0,w0].
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Proof It follows easily from Eq (1.1)
cDγt u(t) + Au(t) + L2u(t) = f (t, u(t)) + L2u(t), t ∈ [0, a],

u(0) = x0, u
′

(0) = x1,
(3.1)

where constant L is decided by condition (H1).
According to [44, Lemma 4.1], −(A+ L2I) can generate a strongly continuous cosine families CL(t)

in X. And ∥CL(t)∥Lb ≤ M.
We define an operator Q on [v0,w0] by

Qu(t) = Cq(t)x0 +Nq(t)x1 +

∫ t

0
(t − s)q−1Tq(t − s)

×[ f (s, u(s)) + L2u(s)]ds, t ∈ [0, a]. (3.2)

From the hypothesis (H1) and the normality of the cone K, we can easily obtain that there exists a
constant M1 > 0 such that

sup
t∈[0,a]
{∥ f (t, u(t)) + L2u(t)∥} ≤ M1, (3.3)

for each u ∈ [v0,w0]. Thus, Q : [v0,w0]→ C([0, a], X) is well defined. Taking into account Definition
2.14, (3.1) and (3.2), we claim that u ∈ [v0,w0] is a mild solution of Eq (1.1) if and only if u is a fixed
point of Q. Now, we prove that u is a fixed point of Q.

Step 1. Prove the following properties of operator Q.
(i) v0 ≤ Qv0,Qw0 ≤ w0.
(ii) Q is a monotonic increasing operator.

On the one hand, let
cDγt v0(t) + (A + L2)v0(t) := h(t), t ≥ 0. (3.4)

In view of (3.1), (3.2), (3.4), Definition 2.13, Definition 2.14 and the positivity of Cq(t)(t ≥ 0),
Nq(t)(t ≥ 0) and Tq(t)(t ≥ 0), we find that

v0(t) = Cq(t)v0(0) +Nq(t)v
′

0(0) +
∫ t

0
(t − s)q−1Tq(t − s)h(s)ds

≤ Cq(t)x0 +Nq(t)x1 +

∫ t

0
(t − s)q−1Tq(t − s) f (s, v0(s))ds

+

∫ t

0
(t − s)q−1Tq(t − s)L2v0(t)ds

= Qv0(t)

for each t ∈ [0, a]. Similarly, we can prove that Qw0(t) ≤ w0(t) for each t ∈ [0, a]. Thus, v0 ≤

Qv0,Qw0 ≤ w0.
On the other hand, for every u1, u2 ∈ [v0,w0] with u1 ≤ u2 and t ∈ [0, a], then v0(t) ≤ u1(t) ≤ u2(t) ≤

w0(t). Make use of condition (H1) and the positivity of Tq(t)(t ≥ 0) to obtain the inequality∫ t

0
(t − s)q−1Tq(t − s)[ f (s, u1(s)) + L2u1(s)]ds
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≤

∫ t

0
(t − s)q−1Tq(t − s)[ f (s, u2(s)) + L2u2(s)]ds.

Using this fact and the positivity of Cq(t)(t ≥ 0) and Nq(t)(t ≥ 0), we can deduce that Qu1 ≤ Qu2.
Therefore, Q is a continuous monotonic increasing operator.
Next, we define two sequences by

vi = Qvi−1, wi = Qwi−1, i = 1, 2, . . . . (3.5)

Since the monotonicity of Q, we get

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vi ≤ · · · ≤ wi ≤ · · · ≤ w2 ≤ w1 ≤ w0. (3.6)

Step 2. Show that {vi(t)} and {wi(t)} are relatively compact on X for every t ∈ [0, a].
Let Ω = {vi}(i = 1, 2, . . .) and Ω0 = {vi} ∪ {v0}. It follows that Ω(t) = (QΩ0)(t) for t ∈ [0, a]. Let

t ∈ [0, a] be fixed, the set defined by

Qε,δΩ0(t) := {Qε,δvi(t)|vi ∈ Ω0, 0 ≤ t ≤ a}

for each 0 < ε < t and δ > 0, where

(Qε,δvi)(t)

= Cq(t)x0 +Nq(t)x1 +
S L(εqδ)
εqδ

∫ t−ε

0

∫ ∞

δ

(t − s)q−1qτξq(τ)

×S L((t − s)qτ − εqδ)[ f (s, vi−1(s)) + L2vi−1(s)]dτds.

According to (2.1), (2.8), (3.3) and ∥CL(t)∥Lb ≤ M, we can prove that∥∥∥∥S L(εqδ)
εqδ

∫ t−ε

0

∫ ∞

δ

(t − s)q−1qτξq(τ)

×S L((t − s)qτ − εqδ)[ f (s, vi−1(s)) + L2vi−1(s)]dτds
∥∥∥∥

≤ qM2M1

∫ t−ε

0

∫ ∞

δ

(t − s)q−1τξq(τ)
(
(t − s)qτ − εqδ

)
dτds

≤ 2qM2M1

∫ t−ε

0
(t − s)2q−1ds

∫ ∞

δ

τ2ξq(τ)dτ

≤
3M2M1a2q

qΓ(2q)
.

Since the compactness of {S (t)}t>0 and Lemma 2.12, Qε,δΩ0(t) is relatively compact in X for any δ > 0
and 0 < ε < t. Moreover, for every vi ∈ Ω0 and t ∈ [0, a], from (2.12), (3.2), (3.3), we can derive the
following inequality

∥(Qvi)(t) − (Qε,δvi)(t)∥
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≤

∥∥∥∥ ∫ t

0

∫ ∞

0
(t − s)q−1qτξq(τ)S L((t − s)qτ)[ f (s, vi−1(s)) + L2vi−1(s)]dτds

−
S L(εqδ)
εqδ

∫ t−ε

0

∫ ∞

δ

(t − s)q−1qτξq(τ)

×S L((t − s)qτ − εqδ)[ f (s, vi−1(s)) + L2vi−1(s)]dτds
∥∥∥∥

≤

∥∥∥∥ ∫ t

0

∫ δ

0
(t − s)q−1qτξq(τ)S L((t − s)qτ)[ f (s, vi−1(s)) + L2vi−1(s)]dτds

∥∥∥∥
+
∥∥∥∥ ∫ t

t−ε

∫ ∞

δ

(t − s)q−1qτξq(τ)S L((t − s)qτ)[ f (s, vi−1(s)) + L2vi−1(s)]dτds
∥∥∥∥

+
∥∥∥∥ ∫ t−ε

0

∫ ∞

δ

(t − s)q−1qτξq(τ)[ f (s, vi−1(s)) + L2vi−1(s)]

×
[
S L((t − s)qτ) −

S L(εqδ)
εqδ

S L((t − s)qτ − εqδ)
]
dτds
∥∥∥∥

:= χ1 + χ2 + χ3.

Results (2.1), (3.3) and ∥CL(t)∥Lb ≤ M together imply that

χ1 =
∥∥∥∥ ∫ t

0

∫ δ

0
(t − s)q−1qτξq(τ)S L((t − s)qτ)

×[ f (s, vi−1(s)) + L2vi−1(s)]dτds
∥∥∥∥

≤ qMM1

∫ t

0
(t − s)2q−1ds

∫ δ

0
τ2ξq(τ)dτ

→ 0 as δ→ 0.

Similarly, by (2.8), we obtain

χ2 =
∥∥∥∥ ∫ t

t−ε

∫ ∞

δ

(t − s)q−1qτξq(τ)S L((t − s)qτ)

×[ f (s, vi−1(s)) + L2vi−1(s)]dτds
∥∥∥∥

≤ qMM1

∫ t

t−ε
(t − s)2q−1ds

∫ ∞

δ

τ2ξq(τ)dτ

≤
3MM1ε

2q

Γ(1 + 2q)
→ 0 as ε→ 0.

Finally, in view of Lemma 2.3 and the strong continuous of S L(t) for every t ≥ 0, we obtain∥∥∥∥S L((t − s)qτ) −
S L(εqδ)
εqδ

S L((t − s)qτ − εqδ)
∥∥∥∥

Lb
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≤ ∥S L((t − s)qτ) − S L((t − s)qτ − εqδ)
∥∥∥∥

Lb

+
∥∥∥∥S L((t − s)qτ − εqδ) −

S L(εqδ)
εqδ

S L((t − s)qτ − εqδ)
∥∥∥∥

Lb

→ 0 as ε, δ→ 0.

Using this result, we get

χ3 =
∥∥∥∥ ∫ t−ε

0

∫ ∞

δ

(t − s)q−1qτξq(τ)[ f (s, vi−1(s)) + L2vi−1(s)]

×
[
S L((t − s)qτ) −

S L(εqδ)
εqδ

S L((t − s)qτ − εqδ)
]
dτds
∥∥∥∥

≤ qM1

∫ t−ε

0
(t − s)q−1

∫ ∞

δ

τξq(τ)

×

∥∥∥∥S L((t − s)qτ) −
S L(εqδ)
εqδ

S L((t − s)qτ − εqδ)
∥∥∥∥

Lb
dτds

→ 0 as ε, δ→ 0.

Consequently, one can deduce that the set (QΩ0)(t) is relatively compact, which means that {vi(t)}
is relatively compact on X for each t ∈ [0, a]. Therefore, {vi(t)} is relatively compact on X for every
t ∈ [0, a]. Similarly, we can prove that {wi(t)} is relatively compact on X for every t ∈ [0, a].

Combining the normality of the cone and monotonicity, it follows that {vi} themselves is convergent,
that is, there exists u ∈ C([0, a], X) such that vi → u, i → ∞. Similarly, there exists u ∈ C([0, a], X)
such that wi → u, i→ ∞. Taking the limit of (3.5), we can assert that

u(t) = Qu(t), u(t) = Qu(t).

Hence, two fixed points of Q, u and u, are mild solutions of Eq (1.1).
Step 3. Minimal and maximal properties of u, u.
Assume that ũ is a fixed point of Q with ũ ∈ [v0,w0], then for every t ∈ [0, a], v0(t) ≤ ũ(t) ≤ w0(t)

and
v1(t) = (Qv0)(t) ≤ (Qũ)(t) = ũ(t) ≤ (Qw0)(t) = w1(t),

that is, v1 ≤ ũ ≤ w1, In general,
vi ≤ ũ ≤ wi, i = 1, 2, . . . .

It is clear that u ≤ ũ ≤ u as i→ ∞, which means that u and u are minimal and maximal mild solutions
of Eq (1.1), and u and u can be obtained by the iterative sequences defined in (3.5) starting from v0

and w0. This completes the proof of Theorem 3.1. □

Furthermore, we delete the compactness of S (t) and investigate the existence of the solution of Eq
(1.1) under the Kuratowski measure of noncompactness.
Theorem 3.2. Assume that Eq (1.1) has upper and lower solutions w0, v0 with v0 ≤ w0. f : [0, a]×X →
X is a continuous function and satisfied condition (H1). If the following assumption is established:
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(H2) There is an integrable function h f (t) : [0, a]→ [0,∞) such that

α({ f (t,D}) ≤ h f (t)α(D)

for any t ≥ 0 and bounded subset D ⊂ C([0, a], X).
Then Eq (1.1) has maximal and minimal solutions u, u between v0 and w0, which can be obtained by
monotone iterative sequences starting from v0 and w0, respectively.

Proof We define the operator Q by (3.2). In view of Theorem 3.1, it is easy to derive that Q : [v0,w0]→
[v0,w0] is a continuous monotone increasing operator, v0 ≤ Qv0 and Qw0 ≤ w0. Next, we define two
sequences {vi} and {wi} by (3.5) satisfy (3.6).

We show that {vi} and {wi} are equicontinuous in t ∈ [0, a]. In fact, let 0 ≤ t1 < t2 ≤ a. Taking
account to (3.2), for every u ∈ [v0,w0], it is evident that

∥Qu(t2) − Qu(t1)∥

=
∥∥∥∥Cq(t2)x0 +Nq(t2)x1 − Cq(t1)x0 − Nq(t1)x1

+

∫ t2

0
(t2 − s)q−1Tq(t2 − s)[ f (s, u(s)) + L2u(s)]ds

−

∫ t1

0
(t1 − s)q−1Tq(t1 − s)[ f (s, u(s)) + L2u(s)]ds

∥∥∥∥
≤ ∥Cq(t2)x0 − Cq(t1)x0∥ + ∥Nq(t2)x1 − Nq(t1)x1∥

+

∫ t2

t1
(t2 − s)q−1

∥∥∥∥Tq(t2 − s)[ f (s, u(s)) + L2u(s)]
∥∥∥∥ds

+

∫ t1

0

∥∥∥∥((t2 − s)q−1Tq(t2 − s) − (t1 − s)q−1Tq(t1 − s)
)

×[ f (s, u(s)) + L2u(s)]
∥∥∥∥ds

:= I1 + I2 + I3 + I4.

We need to check In → 0(n = 1, 2, 3, 4) independently of u ∈ [v0,w0] as t2 − t1 → 0. By virtue of
Lemma 2.6 (iii), one can obtain that {Cq(t), t ≥ 0} and {Nq(t), t ≥ 0} are strongly continuous. Thus,
I1, I2 → 0 as t2 − t1 → 0. From (2.13) and (3.3), we can obtain that

I3 =

∫ t2

t1
(t2 − s)q−1

∥∥∥∥Tq(t2 − s)[ f (s, u(s)) + L2u(s)]
∥∥∥∥ds

≤
MM1

Γ(2q)

∫ t2

t1
(t2 − s)2q−1ds

≤
MM1

Γ(1 + 2q)
(t2 − t1)2q
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→ 0 as t2 − t1 → 0.

Let Pq(t) = tq−1Tq(t) for t ∈ [0, a], from which we conclude that

∥Pq(t)x∥ ≤
M
Γ(2q)

∥x∥t2q−1 (3.7)

for all t ∈ [0, a] and x ∈ X. In view of Lemma 2.6, we obtain that Pq(t) is a strongly continuity
operator. For I4, taking σ > 0 small enough and using (2.13), (3.3) and (3.7), one can get that

I4 =

∫ t1

0

∥∥∥∥((t2 − s)q−1Tq(t2 − s)

−(t1 − s)q−1Tq(t1 − s))[ f (s, u(s)) + L2u(s)]
∥∥∥∥ds

=

∫ t1−σ

0
∥Pq(t2 − s) − Pq(t1 − s)∥Lb · ∥ f (s, u(s)) + L2u(s)∥ds

+

∫ t1

t1−σ
∥Pq(t2 − s) − Pq(t1 − s)∥Lb · ∥ f (s, u(s)) + L2u(s)∥ds

≤ t1M1 sup
s∈[0,t1−σ]

∥Pq(t2 − s) − Pq(t1 − s)∥Lb

+M1

∫ t1

t1−σ
∥Pq(t2 − s)∥ + ∥Pq(t1 − s)∥Lbds

≤ t1M1 sup
s∈[0,t1−σ]

∥Pq(t2 − s) − Pq(t1 − s)∥Lb

+
MM1

Γ(1 + 2q)

(
(t2 − t1 + σ)2q + (t2 − t1)2q + σ2q

)
→ 0 as t2 − t1 → 0, σ→ 0.

In summary, we can derive that ∥Qu(t2) − Qu(t1)∥ → 0 as t2 − t1 → 0 independently of u ∈ [v0,w0].
Thus, Q is equicontinuous.

Next, we prove that {vi} and {wi} are convergent on X.
Set Ω and Ω0 as Theorem 3.1. By (3.5), (3.6) and the normality of the positive cone K, we obtain

that Ω and Ω0 are bounded, which implies that

α(Ω(t)) = α(Ω0(t))

for all t ∈ [0, a]. Due to (2.13), (3.2), Lemma 2.15, Lemma 2.16, Lemma 2.17 and (H2), one can
deduce that

α({vi(t)}) = α({Qvi−1(t)})

= α
(
Cq(t)x0 +Nq(t)x1 +

∫ t

0
(t − s)q−1Tq(t − s)[ f (s, vi−1(s)) + L2vi−1(s)]ds

)
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= α
( ∫ t

0
(t − s)q−1Tq(t − s)[ f (s, vi−1(s)) + L2vi−1(s)]ds

)
≤ 2

∫ t

0
(t − s)q−1∥Tq(t − s)∥Lbα( f (s, vi−1(s)) + L2vi−1(s)))ds

≤
2M
Γ(2q)

∫ t

0
(t − s)2q−1

(
h f (s) + L2

)
α(vi(s))ds.

Therefore, from Lemma 2.18, we can obtain α({vi(t)}) ≡ 0 for each t ∈ [0, a]. Consequently, based
on Lemma 2.15 (i), it follows that {vi(t)} is relatively compact in C([0, a], X).

Combining uniform boundedness and equicontinuous of {vi} on [0, a], {vi} is relatively compact
in C([0, a], X), then the sequence {vi} has a convergent subsequence. According to the monotonicity
and the normality of the cone, one can deduce that {vi} itself is convergent. Then {vi} themselves is
convergent, that is, there exists u ∈ C([0, a], X) such that vi → u as i → ∞. Similarly, there exists
u ∈ C([0, a], X) such that wi → u as i→ ∞.

From the proof of Theorem 3.1, u and u are the minimal and maximal mild solutions of Eq (1.1).
This completes the proof of Theorem 3.2. □

Corollary 3.3. Assume that Eq (1.1) has upper and lower solutions w0, v0 with v0 ≤ w0. f : [0, a]×X →
X is a continuous function and satisfied condition (H1). If the following assumption is established:

(H3) The sequence {ui} ⊂ [v0(t),w0(t)] ⊂ C([0, a], X) is increasing monotonic, and there is a constant
h1 > 0 such that

α({ f (t, ui(t) + L2ui(t)}) ≤ h1α({ui(t)})

for each t ∈ [0, a].
Then Eq (1.1) has maximal and minimal solutions u, u between v0 and w0, which can be obtained by
monotone iterative sequences starting from v0 and w0, respectively.

Proof Using the same method as Theorem 3.2, we can obtain

α(vi(t)) = α(Qvi−1(t)) ≤
2h1M
Γ(2q)

∫ t

0
(t − s)2q−1α(vi(s))ds.

According to Lemma 2.18, we can obtain that {vi(t)} is relatively compact in C([0, a], X). This
completes the proof of Corrollary 3.3. □

On the basis of Theorem 3.2, we discuss the uniqueness of the solution of Eq (1.1).

Theorem 3.4. Suppose that Eq (1.1) has lower and upper solutions v0,w0 with v0 ≤ w0. f : [0, a]×X →
X is a continuous function. If the condition (H1), (H2) and the following assumptions are established:
(H4) There is a constant h2 such that

f (t, x2) − f (t, x1) ≤ h2(x2 − x1)

for all t ∈ [0, a], v0(t) ≤ x1 ≤ x2 ≤ w0(t).
Then Eq (1.1) has a unique mild solution between v0 and w0 provided that

M(h2 + L2)a2q

Γ(1 + 2q)
≤ 1.
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Proof We establish two iterative sequences vi and wi by (3.5), and its satisfy (3.6). By Theorem 3.2,
we know that Eq (1.1) has maximal and minimal mild mild solution on interval [v0,w0], that is, the
operator Q has fixed point defined by (3.2). For any t ∈ [0, a], from (3.2), (3.5) and (H4), one can
obtain that

θ ≤ wi(t) − vi(t) = Qwi−1(t) − Qvi−1(t)

=

∫ t

0
(t − s)q−1Tq(t − s)[ f (s,wi−1(s)) + L2wi−1(s)]ds

−

∫ t

0
(t − s)q−1Tq(t − s)[ f (s, vi−1(s)) + L2vi−1(s)]ds

≤ (h2 + L2)
∫ t

0
(t − s)q−1Tq(t − s)(wi−1(s) − vi−1(s))ds.

From the normality of the cone K, (2.13) and (3.3), we get that

∥wi(t) − vi(t)∥ ≤
M(h2 + L2)a2q

Γ(1 + 2q)
∥wi−1(s) − vi−1(s)∥

for any t ∈ [0, a], that is,

∥wi − vi∥ ≤
M(h2 + L2)a2q

Γ(1 + 2q)
∥wi−1 − vi−1∥.

Then

∥wi − vi∥ ≤ (
M(h2 + L2)a2q

Γ(1 + 2q)
)i∥w0 − v0∥ → 0, i→ ∞.

Thus, there exists a unique mild solution û of Eq (1.1) in [v0,w0], i.e. lim
i→∞

wi = lim
i→∞

vi = û. Taking

limit in (3.5) as i→ ∞, we can get that û = Qû, which means that û is unique mild solution û ∈ [v0,w0]
of Eq (1.1). This completes the proof of Theorem 3.4. □

By adding appropriate assumptions, we overcome the condition that the upper and lower solutions
of the equation must exist, and obtain the existence of positive solutions of Eq (1.1).

Theorem 3.5. Let −A be a linear m-accretive operator and −A generate a compact strongly continuous
sine family {S (t)}t≥0 in X. Let x0, x1 ≥ θ. f : [0, a] × X → X is a continuous function. If the condition
(H1) and the following assumptions are established:
(H5) For t ∈ [0, a], x2 ≥ x1 ≥ θ,

f (t, x2) + L2x2 ≥ f (t, x1) + L2x1 ≥ θ.

(H6) There exist nonnegative constants c ∈ (0, ϖ3

M(1−ea) ) and d ≥ 0, such that

∥ f (t, x) + L2x∥ ≤ c∥x∥ + d, t ≥ 0, x ∈ X.

Then Eq (1.1) has minimal positive mild solutions u∗.
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Proof We define the operator Q by (3.2). The positive mild solution of Eq (1.1) is equivalent to the fixed
point of the operator Q. In view of the continuity of f , it is easy to derive that Q : [v0,w0] → [v0,w0]
is continuous.

For every u, v ∈ K with u ≤ v, from (H5), (3.2), the positivity of Cq(t),Nq(t),Tq(t), and x0, x1 ≥ θ,
it follows that for all t ∈ [0, a],

θ ≤ Qu(t) ≤ Qv(t). (3.8)

Define the sequence {vi} by
vi = Qvi−1, i = 1, 2, . . . , (3.9)

Due to (H6), (2.12), (2.13) and (3.2), we get

∥Qu(t)∥ ≤ M∥x0∥ + M∥x1∥t + (c∥u∥ + d)
∫ t

0

∫ ∞

0
qτξq(τ)

×(t − s)q−1
∫ (t−s)qτ

0
Meϖρdρdτds

≤ M∥x0∥ + M∥x1∥t + M(c∥u∥ + d)
∫ t

0

∫ ∞

0
qτξq(τ)

×(t − s)q−1 1
ϖ

eϖ(t−s)qτdτds

≤ M∥x0∥ + Ma∥x1∥ +
M(1 − ea)
ϖ3 (c∥u∥ + d)

= β1 + β2∥u∥,

where β1 = M∥x0∥ + aM∥x1∥ +
dM(1−ea)
ϖ3 , β2 =

cM(1−ea)
ϖ3 < 1. From (3.8) and (3.9), one can evident that

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vi ≤ · · · ,

∥vi∥ ≤ β1 + β2∥vi−1∥.

Thus,

∥vi∥ ≤ β1 + β2β1 + . . . + β
i−1
2 β1 = β1

1 − βi
2

1 − β2
≤
β1

1 − β2
. (3.10)

i.e., the sequence {vi} is uniformly bounded.
By Theorem 3.1, we know that {vi} is relatively compact and equicontinuous in [0, a]. According to

the monotonicity of sequence and the normality of cone, {vi} itself is uniformly converge, which means
that there is u∗ ∈ C([0, a], X) such that vi → u∗ as i→ ∞.

u∗ = lim
i→∞

vi = lim
i→∞

Qvi = Qu∗.

Thus, u∗ is fixed point of Q, which means that u∗ is a positive mild solution of Eq (1.1).
Finally, we prove that u∗ is the minimal positive mild solution. In fact, let u

′

be a positive mild
solution of Eq (1.1). Then, u

′

(t) = Qu
′

(t) for t ∈ [0, a]. It is easy to find that u
′

(t) ≥ v0 and

u
′

(t) = Qu
′

(t) ≥ Qv0(t) = v1(t),

so, u
′

≥ v1. In general, u
′

≥ vi, i = 1, 2, . . .. Thus, u
′

≥ u∗ as i → ∞. It follows that u∗ is the minimal
positive mild solution of Eq (1.1). This completes the proof of Theorem 3.5. □
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4. Example

In this section, we provide an application example. We consider the following fractional partial
differential system 

∂
3
2

∂t
3
2
u(t, z) + △u(t, z) = f (t, z, u(t, z)), t ∈ [0, 1], z ∈ Ω,

u(t, 0) = u(t, π) = 0,

u(0, z) = u0(z), u
′

(0, z) = u1(z), z ∈ Ω

(4.1)

where Dγt is the Caputo fractional partial derivative, ∆ is a Laplace operator. Take X = L2(Ω) and
K = {u ∈ C([0, 1], X)|u(t, x) ≥ 0, a.e. (t, z) ∈ [0, 1] ×Ω}.

Obviously, X is an ordered Banach space and K is a normal cone. We define the operator −A by
−A = △ and

D(−A) = H1
0(Ω) ∩ H2(Ω).

This seems obvious, −A generates a uniformly bounded strongly continuous cosine family C(t) for
t ≥ 0. Thus, ∥C(t)∥Lb ≤ M for each t ≥ 0.

Let λk = k2π2 and Ψk(y) =
√

2
π

sin(kπy) is the normalized feature vector of the corresponding
eigenvalue. Let {−λkΨk}

∞
k=1 be the eigensystem of −A, so 0 < λ1 < λ2 ≤ · · · λk → ∞ as k → ∞, and

{Ψk}
∞
k=1 is the orthonormal set of X. The cosine function is defined by

C(t)x =
∞∑

k=1

cos(
√
λkt)⟨x,Ψk⟩Ψk, x ∈ X,

and the associated sine family is given by

S (t)x =
∞∑

k=1

1
√
λk

sin(
√
λkt)⟨x,Ψk⟩Ψk, x ∈ X.

From [44, Example 5.1], it is easy to check that S (t) is compact.
We need the following assumptions:

(A1) There exists v(t, z) ∈ Cγ([0, 1], X) ∩ (H2(Ω) ∪ H1
0(Ω)) satisfies

∂
3
2

∂t
3
2
v(t, z) + ∆v(t, z) ≤ f (t, z, v(t, z)),

v(t, 0) ≤ v(t, π) = 0,
v(0, z) ≤ v0(z), v

′

(0, z) ≤ u1(z),

(A2) There is a constant number L, such that

f (t, z, x2) − f (t, z, x1) ≥ −L2(x2 − x1)

for every t ∈ [0, 1] and 0 ≤ x1 ≤ x2 ≤ u(t, z),

Theorem 4.1. Let f : [0, 1] × Ω × R × R → R is a continuous function. Conditions (A1) and (A2)
guarantee that system (4.1) has minimal and maximal mild solutions between [0,w].
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Proof It is obvious that Eq (4.1) equivalent to
∂

3
2

∂t
3
2
u(t, z) + △u(t, z) + L2u(t, z) = f (t, z, u(t, z)) + L2u(t, z),

u(t, 0) = u(t, π) = 0,

u(0, z) = u0(z), u
′

(0, z) = u1(z),

(4.2)

where L is determined by the condition (A2).
As an elliptic operator, Laplace operator has the maximum principle, so we can easily know the

operator λ2I+A has a positive bounded inverse. By Lemma 2.10, we can obtain that −A−L2I generate
a positive strongly continuous cosine operator CL(t) for each t ≥ 0. As consequence, the operator
families Cq(t)(t ≥ 0),Nq(t)(t ≥ 0) and Tq(t)(t ≥ 0) are positive. By Theorem 3.1, (4.1) has minimal
and maximal mild solutions between [0,w]. This completes the proof of Theorem 4.1. □
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5. Conclusions

In this paper, we investigate three properties of the fractional diffusion equation: existence of
solutions, uniqueness of solutions, and existence of positive solutions. The existence of solutions
is established through the use of upper and lower solutions, which enable us to construct monotonic
iterative sequences that converge to the minimum and maximum solutions of the problem. Uniqueness
of the solution is obtained using this iterative scheme. To validate our theoretical findings, we provide
an example of a reaction-diffusion problem.

The combination of upper and lower solutions with monotonic iteration techniques can be applied
to various types of fractional evolution equations, for modeling and analyzing phenomena in fields
such as physics, engineering, and biology. Further research can explore the use of these methods in
specific physical problems and phenomena, providing new tools and ideas for academic research and
practical applications. The method proposed in this study has high reliability and practicality and can
provide useful theoretical basis and practical applications for researchers in related fields.
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