This study investigates univalent log-harmonic mappings, a class of functions that map the unit disk into the complex plane. First, we establish the necessary and sufficient conditions for univalent log-harmonic mappings to map the unit disk onto a spirallike region. We then explore the relationship between starlike harmonic mappings and spirallike log-harmonic mappings, providing several examples to illustrate our results. Finally, under specific conditions, we present growth and covering theorems for univalent log-harmonic mappings and determine the radius of spirallikeness for starlike log-harmonic mappings.
Citation: Chuang Wang, Junzhe Mo, Zhihong Liu. On univalent spirallike log-harmonic mappings[J]. AIMS Mathematics, 2024, 9(11): 30515-30528. doi: 10.3934/math.20241473
This study investigates univalent log-harmonic mappings, a class of functions that map the unit disk into the complex plane. First, we establish the necessary and sufficient conditions for univalent log-harmonic mappings to map the unit disk onto a spirallike region. We then explore the relationship between starlike harmonic mappings and spirallike log-harmonic mappings, providing several examples to illustrate our results. Finally, under specific conditions, we present growth and covering theorems for univalent log-harmonic mappings and determine the radius of spirallikeness for starlike log-harmonic mappings.
[1] | P. Duren, Univalent functions, New York: Springer-Verlag, 1983. |
[2] | C. Pommerenke, Univalent functions, Göttingen: Vandenhoeck & Ruprecht, 1975. |
[3] | M. F. Ali, S. Pandit, On harmonic univalent spirallike mappings, preprint paper, 2023. https://doi.org/10.48550/arXiv.2309.00798 |
[4] | X. S. Ma, S. Ponnusamy, T. Sugawa, Harmonic spirallike functions and harmonic strongly starlike functions, Monatsh. Math., 199 (2022), 363–375. https://doi.org/10.1007/s00605-022-01708-y doi: 10.1007/s00605-022-01708-y |
[5] | Z. Abdulhadi, D. Bshouty, Univalent functions in $H\cdot\overline{H}(\mathbb{D})$, Trans. Amer. Math. Soc., 305 (1988), 841–849. |
[6] | Z. Liu, S. Ponnusamy, Some properties of univalent log-harmonic mappings, Filomat, 32 (2018), 5275–5288. https://doi.org/10.2298/FIL1815275L doi: 10.2298/FIL1815275L |
[7] | J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A.I. Math., 9 (1984), 3–25. https://doi.org/10.5186/aasfm.1984.0905 |
[8] | Z. Abdulhadi, W. Hengartner, Spirallike logharmonic mappings, Complex Variables Theory Appl., 9 (1987), 121–130. https://doi.org/10.1080/17476938708814256 doi: 10.1080/17476938708814256 |
[9] | Z. Abdulhadi, W. Hengartner, One pointed univalent logharmonic mappings, J. Math. Anal. Appl., 203 (1996), 333–351. https://doi.org/10.1006/jmaa.1996.0383 doi: 10.1006/jmaa.1996.0383 |
[10] | H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl., 220 (1998), 283–289. https://doi.org/10.1006/jmaa.1997.5882 doi: 10.1006/jmaa.1997.5882 |
[11] | Z. Liu, S. Ponnusamy, On univalent log-harmonic mappings, Filomat. 36 (2022), 4211–4224. https://doi.org/10.2298/FIL2212211L |
[12] | Z. Abdulhadi, W. Hengartner, Univalent harmonic mappings on the left half-plane with periodic dilatations, In: Univalent functions, fractional calculus, and their applications. Ellis Horwood series in mathematics and applications, Horwood: Chickester, 1989, 13–28. |