Research article

On univalent spirallike log-harmonic mappings

  • Received: 30 August 2024 Revised: 12 October 2024 Accepted: 17 October 2024 Published: 28 October 2024
  • MSC : 30C35, 30C45, 35Q30

  • This study investigates univalent log-harmonic mappings, a class of functions that map the unit disk into the complex plane. First, we establish the necessary and sufficient conditions for univalent log-harmonic mappings to map the unit disk onto a spirallike region. We then explore the relationship between starlike harmonic mappings and spirallike log-harmonic mappings, providing several examples to illustrate our results. Finally, under specific conditions, we present growth and covering theorems for univalent log-harmonic mappings and determine the radius of spirallikeness for starlike log-harmonic mappings.

    Citation: Chuang Wang, Junzhe Mo, Zhihong Liu. On univalent spirallike log-harmonic mappings[J]. AIMS Mathematics, 2024, 9(11): 30515-30528. doi: 10.3934/math.20241473

    Related Papers:

  • This study investigates univalent log-harmonic mappings, a class of functions that map the unit disk into the complex plane. First, we establish the necessary and sufficient conditions for univalent log-harmonic mappings to map the unit disk onto a spirallike region. We then explore the relationship between starlike harmonic mappings and spirallike log-harmonic mappings, providing several examples to illustrate our results. Finally, under specific conditions, we present growth and covering theorems for univalent log-harmonic mappings and determine the radius of spirallikeness for starlike log-harmonic mappings.



    加载中


    [1] P. Duren, Univalent functions, New York: Springer-Verlag, 1983.
    [2] C. Pommerenke, Univalent functions, Göttingen: Vandenhoeck & Ruprecht, 1975.
    [3] M. F. Ali, S. Pandit, On harmonic univalent spirallike mappings, preprint paper, 2023. https://doi.org/10.48550/arXiv.2309.00798
    [4] X. S. Ma, S. Ponnusamy, T. Sugawa, Harmonic spirallike functions and harmonic strongly starlike functions, Monatsh. Math., 199 (2022), 363–375. https://doi.org/10.1007/s00605-022-01708-y doi: 10.1007/s00605-022-01708-y
    [5] Z. Abdulhadi, D. Bshouty, Univalent functions in $H\cdot\overline{H}(\mathbb{D})$, Trans. Amer. Math. Soc., 305 (1988), 841–849.
    [6] Z. Liu, S. Ponnusamy, Some properties of univalent log-harmonic mappings, Filomat, 32 (2018), 5275–5288. https://doi.org/10.2298/FIL1815275L doi: 10.2298/FIL1815275L
    [7] J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A.I. Math., 9 (1984), 3–25. https://doi.org/10.5186/aasfm.1984.0905
    [8] Z. Abdulhadi, W. Hengartner, Spirallike logharmonic mappings, Complex Variables Theory Appl., 9 (1987), 121–130. https://doi.org/10.1080/17476938708814256 doi: 10.1080/17476938708814256
    [9] Z. Abdulhadi, W. Hengartner, One pointed univalent logharmonic mappings, J. Math. Anal. Appl., 203 (1996), 333–351. https://doi.org/10.1006/jmaa.1996.0383 doi: 10.1006/jmaa.1996.0383
    [10] H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl., 220 (1998), 283–289. https://doi.org/10.1006/jmaa.1997.5882 doi: 10.1006/jmaa.1997.5882
    [11] Z. Liu, S. Ponnusamy, On univalent log-harmonic mappings, Filomat. 36 (2022), 4211–4224. https://doi.org/10.2298/FIL2212211L
    [12] Z. Abdulhadi, W. Hengartner, Univalent harmonic mappings on the left half-plane with periodic dilatations, In: Univalent functions, fractional calculus, and their applications. Ellis Horwood series in mathematics and applications, Horwood: Chickester, 1989, 13–28.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(258) PDF downloads(43) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog