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1. Introduction

Let A denote the space of analytic functions h defined on the unit disk D = {z ∈ C : |z| < 1} of the
form

h(z) = z +
∞∑

n=2

anzn,

and let S denote the class of univalent functions in A. The function h ∈ S is referred to as a starlike
function. It maps the unit disk D relative to the origin into a starlike domain, i.e., when z ∈ D \ {0},
it satisfies Re {zh′(z)/h(z)} > 0. Similarly, if the analytic function h ∈ S maps the unit disk D onto a
convex domain, i.e., if it satisfies Re{1+ zh′′(z)/h′(z)} > 0, then it is referred to as a convex function. If
a function h ∈ S, and for all z in the unit disk D except the origin, it satisfies Re

{
e−iλzh′(z)/h(z)

}
> 0,

then h is called λ-spirallike. To learn more about these classes, please see details in [1–4].
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A log-harmonic mapping f is a solution of the nonlinear elliptic partial differential equation

fz(z)
f (z)
= µ(z)

fz(z)
f (z)
, (1.1)

where µ(z) ∈ A and |µ(z)| < 1 for all z ∈ D, which is known as the second complex dilatation of f .
Note that the Jacobian J f of f is given by

J f = | fz|
2 − | fz|

2 = | fz|
2(1 − |µ|2).

If J f is positive, then all non-constant log-harmonic mappings are sense-preserving in the unit disk D.
A log-harmonic mapping f vanishes at z = 0 if and only if f has the form

f (z) = z|z|2βh(z)g(z),

where Reβ > −1/2, h, g ∈ A, h(0) , 0 and g(0) = 1 (cf. [5, 6]). For simplicity, we set β = 0 and let
SLH be the class of all univalent sense-preserving log-harmonic functions f (z) = zh(z)g(z) in D with

h(z) = exp

 ∞∑
n=1

anzn

 and g(z) = exp
( ∞∑

n=1

bnzn
)
, (1.2)

the dilatation of the function f ∈ SLH is satisfied

µ(z) =
zg′(z)/g(z)

1 + zh′(z)/h(z)
. (1.3)

If the function f is first-order continuously differentiable on the complex plane, then the differential
operator D of f ∈ C1(D) is defined as

D f (z) = z fz(z) − z fz(z).

As is known to all, the properties convexity and starlikeness of a univalent analytic function are
hereditary, i.e., if the analytic function f is convex or starlike, then for 0 < r < 1, f (Dr) is convex or
starlike domain, respectively, where Dr = {z ∈ C : |z| < r}. Clunie and Sheil–Small [7] succeeded in
extending the theory of starlikeness, convexity, and close-to-convex from analytic to harmonic
functions. The classic results on spirallike functions can be extended to log-harmonic mappings.
In [8, 9], the authors introduce a concept called hereditarily spirallikeness of log-harmonic mappings
in the unit disk D. For the real λ, if |λ| < π2 , then the log-harmonic mapping f (z) = zh(z)g(z) ∈ SLH is
called the λ-spirallike log-harmonic mapping if f is univalent on D and for every r < 1, f (Dr) is a
λ-spirallike domain.

Definition 1. Let λ ∈ (−π/2, π/2). A univalent function f ∈ C1(D) with f (0) = 0 is called λ-spirallike,
denoted by SPLH(λ), if

Re
(
e−iλD f (z)

f (z)

)
> 0, z ∈ D \ {0}.

To facilitate the following discussion, we will employ the symbols defined below:

(1) S∗ is the set of all f ∈ S, and f (D) is a starlike domain;
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(2) SP(λ) is the set of all f ∈ S and f (D) is a λ-spirallike domain;
(3) SH is the set of all univalent harmonic mappings f (z) = h(z) + g(z) defined on D such that

f (0) = h(0) = g(0) = h′(0) − 1 = 0;
(4) SPH(λ) is the set of all f (z) ∈ SH, and f (D) is a λ-spirallike domain;
(5) SPLH(λ) is the set of all f (z) ∈ SLH and f (D) is a λ-spirallike domain;
(6) S∗LH = SPLH(0) and S∗H = SPH(0), for which f (D) is starlike.

The main content of this paper is as follows: In Section 2, we obtain coefficient determination
conditions for λ-spirallike log-harmonic mappings. In Section 3, we investigate the relationship
between S∗H′ and SPLH(λ). Finally, in Section 4, we propose modulus estimates and covering
theorems for univalent log-harmonic mappings satisfying certain conditions. Based on the coefficient
estimation of starlike log-harmonic mappings, we derive the radius of λ-spirallikeness for starlike
log-harmonic mappings.

2. Discriminant conditions for spirallike log-harmonic mappings

Currently, a wealth of conclusions has been drawn for the class of mappings S∗LH, S∗H, and S∗. In
this section, we obtain several results for λ-spirallike log-harmonic mappings. Firstly, we present the
sufficient and necessary conditions for the SPLH(λ).

Theorem 2.1. Let λ ∈ (−π/2, π/2) and f (z) = zh(z)g(z) be a sense-preserving log-harmonic mapping
on D such that f (z) = 0 only for z = 0. Then f ∈ SPLH(λ) if and only if

cos λ > Re
{

e−iλ

(
zg′(z)
g(z)

−
zh′(z)
h(z)

)}
. (2.1)

Proof. Since f ∈ SPLH(λ), by Definiton 1, it follows that

Re
(
e−iλD f (z)

f (z)

)
= Re

e−iλ zh(z)g(z) + z2h′(z)g(z) − |z|2h(z)g′(z)

zh(z)g(z)


= Re

e−iλ

1 + zh′(z)
h(z)

−
zg′(z)
g(z)


= cos λ + Re

(
e−iλ

(
zh′(z)
h(z)

−
zg′(z)
g(z)

))
> 0.

Since λ ∈ (−π/2, π/2), it follows that cos λ > 0. Thus, we get (2.1).
Conversely, through simple calculations, by the condition (2.1) and λ ∈ (−π/2, π/2) yield

Re
(
e−iλ D f (z)

f (z)

)
> 0. According to Definition 1, it follows that f ∈ SPLH(λ). □

Remark 1. We claim that the right-half plane log-harmonic mapping

f1(z) = zh1(z)g1(z) =
z

1 − z
exp

(
Re

(
2z

1 − z

))
is not π6 -spirallike region, where g1(z) = exp

(
z

1−z

)
, h1(z) = 1

1−z exp
(

z
1−z

)
and z ∈ D. Because for

λ = π
6 and z = 1

2 the inequality (2.1) becomes
√

3
2 >

√
3

2 . According to Theorem 2.1, it is known that
f1 < SPLH(π6 ).
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In the realm of studying spirallike log-harmonic mappings, direct assessments frequently pose
challenges. Consequently, there arises a necessity to transpose numerous research findings pertaining
to spirallike analytic functions into the realm of spirallike log-harmonic mappings. Theorem 2.2
forges a bridge between the families of mappings, specifically linking SP(λ) and SPLH(λ).

Theorem 2.2. Let λ ∈ (−π/2, π/2) and f (z) = zh(z)g(z) = φ(z)|g(z)|2 be a log-harmonic mapping on
D, where φ(z) = zh(z)

g(z) , g(z) ∈ A such that φ(z) and g(z) are non-vanishing in D \ {0}. Then f ∈ SPLH(λ)
if and only if φ ∈ SP(λ).

Proof. After a simple calculation shows that

Dφ(z) = zφ′(z) = z
(h(z) + zh′(z))g(z) − g′(z)zh(z)

(g(z))2 ,

and
D f (z) = z fz(z) − z fz(z) = zh(z)g(z) + z2h′(z)g(z) − |z|2

(
zh(z)g′(z)

)
.

Which implies that

Re
(
e−iλD f (z)

f (z)

)
= Re

(
e−iλ

(
1 + z

h′(z)
h(z)

− z
g′(z)
g(z)

))
= Re

(
e−iλDφ(z)
φ(z)

)
.

□

Theorem 2.2 establishes the direct equivalence between φ ∈ SP(λ) and f ∈ SPLH(λ). By imposing
certain restrictions on φ, the conditions for SP(λ) can be relaxed to S∗, thereby establishing the
relationship between S∗ and SPLH(λ).

Corollary 2.3. Let f (z) = zh(z)g(z), and φ(z) = zh(z)
g(z) ∈ S

∗ . If

(1) λ ∈ (0, π/2) and Im
(

zφ′(z)
φ(z)

)
≥ 0, or

(2) λ ∈ (−π/2, 0) and Im
(

zφ′(z)
φ(z)

)
≤ 0.

Then f (z) = zh(z)g(z) ∈ SPLH(λ).

Proof. According to Theorem 2.2, we have

Re
(
e−iλD f (z)

f (z)

)
= Re

(
e−iλ zφ′(z)
φ(z)

)
= cos λRe

(
zφ′(z)
φ(z)

)
+ sin λ Im

(
zφ′(z)
φ(z)

)
.

As φ(z) ∈ S∗, Im
(

zφ′(z)
φ(z)

)
≥ 0 and λ ∈ (0, π/2), it follows that

cos λRe
(
zφ′(z)
φ(z)

)
+ sin λ Im

(
zφ′(z)
φ(z)

)
> 0.

As φ(z) ∈ S∗, Im
(

zφ′(z)
φ(z)

)
≤ 0 and λ ∈ (−π/2, 0). Then f (z) = zh(z)g(z) ∈ SPLH(λ). The proof

process is the same as the previous text. □

Now we present a few results for f ∈ SPLH(λ) in the unit disk. Before we do that, let us jot down a
symbol that we will use throughout the paper.

B :=
∣∣∣1 + e−iλ

∣∣∣ − ∣∣∣1 − e−iλ
∣∣∣ . (2.2)
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Theorem 2.4. Let λ ∈ (−π/2, π/2) and f (z) = zh(z)g(z) be of the form (1.2) such that

∞∑
n=1

n
B

(|an| + |bn|) ≤
1
2
, (2.3)

where B is given by (2.2). Then f (z) = zh(z)g(z) ∈ SPLH(λ).

Proof. Note that
B
2
=
|1 + e−iλ| − |1 − e−iλ|

2
≤
|1 + e−iλ|

2
≤ 1.

First, to prove that f is sense-preserving and locally univalent in D, we need only show that |µ| < 1.
By (1.3) and (2.3), we have∣∣∣∣∣1 + z

h′(z)
h(z)

∣∣∣∣∣ − ∣∣∣∣∣zg′(z)
g(z)

∣∣∣∣∣ =
∣∣∣∣∣∣∣1 +

∞∑
n=1

nanzn

∣∣∣∣∣∣∣ −
∣∣∣∣∣∣∣
∞∑

n=1

nbnzn

∣∣∣∣∣∣∣
> 1 −

∞∑
n=1

n|an| −

∞∑
n=1

n|bn|

≥ 1 −
B
2

≥ 0.

Next, in order to prove that f is λ-spirallike, it is sufficient to show that

Re
(
e−iλD f (z)

f (z)

)
> 0, z ∈ D \ {0},

which is equivalent to ∣∣∣∣∣1 + e−iλD f (z)
f (z)

∣∣∣∣∣ > ∣∣∣∣∣1 − e−iλD f (z)
f (z)

∣∣∣∣∣ ,
or equivalent to

M :=

∣∣∣∣∣∣∣1 + e−iλ

1 + ∞∑
n=1

n(an − bn)zn


∣∣∣∣∣∣∣ −

∣∣∣∣∣∣∣1 − e−iλ

1 + ∞∑
n=1

n(an − bn)zn


∣∣∣∣∣∣∣ > 0.

Now

M =

∣∣∣∣∣∣∣(1 + e−iλ) + e−iλ
∞∑

n=1

n(an − bn)zn

∣∣∣∣∣∣∣ −
∣∣∣∣∣∣∣(1 − e−iλ) − e−iλ

∞∑
n=1

n(an − bn)zn

∣∣∣∣∣∣∣
≥ |1 + e−iλ| −

∞∑
n=1

n(|an| + |bn|)|z|n − |1 − e−iλ| −

∞∑
n=1

n(|an| + |bn|)|z|n

> |1 + e−iλ| − |1 − e−iλ| − 2
∞∑

n=1

n(|an| + |bn|)

= B

1 − 2
∞∑

n=1

n
B

(|an| + |bn|)

 .
AIMS Mathematics Volume 9, Issue 11, 30515–30528.
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Thus from (2.3), for z ∈ D \ {0}, we have

M > B

1 − 2
∞∑

n=1

n
B

(|an| + |bn|)

 ≥ 0.

Then f (z) = zh(z)g(z) ∈ SPLH(λ). This completes the proof. □

Example 1. We claim that f2(z) = zh(z)g(z) = z exp
(

Bzk

2k

)
∈ SPLH(λ), where k ∈ N+, λ ∈ (−π/2, π/2)

and B is given by (2.2).

Here h(z) = 1 and g(z) = exp
(

Bzk

2k

)
. Since

|µ2(z)| =
∣∣∣∣∣ zg′(z)/g(z)
1 + zh′(z)/h(z)

∣∣∣∣∣ =
∣∣∣∣∣∣Bzk

2

∣∣∣∣∣∣ <
∣∣∣∣∣B2

∣∣∣∣∣ ≤ 1.

So f2 ∈ SLH. Next, we provide the coefficients of the series terms for f2(z),

an = 0, bn =

 B
2n , k = n,

0, k , n.

Finally, we see that
∞∑

n=1

n
B

(|an| + |bn|) =
n
B

(
0 +

B
2n

)
=

1
2
.

According to Theorem 2.4, we can deduce that f2 ∈ SPLH(λ). The images of D under f2 for certain
values of k and λ are shown in Figure 1. As shown in Figure 1, it can be observed that the value of k
determines the number of cusps of f2(D) (see Figure 1(a,c) for details), while the value of λ determines
the smoothness of the image at the cusps (compare Figures 1(a–d)).

Let λ = 0 in Theorem 2.4, and we obtain the following result.

Corollary 2.5. Let f (z) = zh(z)g(z) be of the form (1.2) such that

∞∑
n=1

n(|an| + |bn|) ≤ 1. (2.4)

Then f (z) = zh(z)g(z) ∈ S∗LH.

Our next result provides the necessary conditions for a log-harmonic mapping f ∈ SPLH(λ).

Theorem 2.6. Let λ ∈ (−π/2, π/2) and f (z) = zh(z)g(z) ∈ SPLH(λ) be of the form (1.2). Then

∞∑
n=1

B
2

n(|an| + |bn|) ≤ 1, (2.5)

where B is given by (2.2).
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(a) k = 3 and λ=0
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(b) k = 3 and λ= π3
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(c) k = 4 and λ=0
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(d) k = 4 and λ= π3

Figure 1. f2(D) for certain values of k and λ.

Proof. Let f ∈ SPLH(λ), then f is univalent and satisfies

Re
(
e−iλD f (z)

f (z)

)
> 0, z ∈ D \ {0}.

For limz→1 z = 1, we obtain

Re
(
e−iλD f (z)

f (z)

)
= cos λRe

1 + ∞∑
n=1

n(an − bn)zn


≥ cos λ

1 − ∞∑
n=1

n(|an| + |bn|)

 > 0.

Since B
2 ≤ 1, it follows that

∞∑
n=1

B
2

n(|an| + |bn|) ≤
∞∑

n=1

n(|an| + |bn|) < 1.

This completes the proof. □
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Remark 2. Let f (z) = zh(z)g(z). Then f ∈ S∗LH if and only if f satisfies the coefficient inequality

∞∑
n=1

n(|an| + |bn|) ≤ 1.

3. The relationship between S∗H′ and SPLH(λ)

In this section, we will discuss some commonalities in the judgment conditions between the
spirallike harmonic mappings and the λ-spirallike log-harmonic mappings. According to some
theorems, a family of spirallike log-harmonic mappings can be generated through the starlike
harmonic family. Before describing the following conclusions, we need a brief explanation of
harmonic mappings. A continuous twice differentiable complex-valued function f = u + iv is called a
harmonic mapping in the complex domain Ω if both u and v are real harmonic on Ω. In any simply
connected domain Ω, each harmonic mapping f can be expressed as f = h + g, where h and g are
analytic in Ω [4]. Let H be the class of all sense-preserving and univalent harmonic functions
f = h + g in D with

h(z) = z +
∞∑

n=2

anzn, g(z) =
∞∑

n=1

bnzn (3.1)

andH ′ be the class of harmonic functions F = H +G inH with the representation

H(z) = z −
∞∑

n=2

|an|zn, G(z) =
∞∑

n=1

|bn|zn. (3.2)

If a harmonic mapping F ∈ SH′ and F(D) is a starlike region, then this subclass of mappings is
denoted by S∗H′ . We can extend the conclusion to the relationship between S∗H′ and S∗LH(λ). Before
this, we need the following lemma.

Lemma 3.1. ( [10, Theorem 2]) For F(z) = H(z) + G(z) ∈ H ′ be of the form (3.2) if and only if it
satisfies the coefficient inequality

∞∑
n=1

n (|an| + |bn|) ≤ 2. (3.3)

Theorem 3.2. F(z) = z −
∑∞

n=2 |an|zn +
∑∞

n=1 |bn|zn ∈ S∗H′ if and only if

f (z) = z exp

 ∞∑
n=2

anzn

 exp

 ∞∑
n=1

bnzn

 ∈ S∗LH.

Proof. Since F(z) = z −
∑∞

n=2 |an|zn +
∑∞

n=1 |bn|zn ∈ S∗H′ , by Lemma 3.1, we obtain

∞∑
n=2

n|an| +

∞∑
n=1

n|bn| ≤ 1.

AIMS Mathematics Volume 9, Issue 11, 30515–30528.
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For the log-harmonic mapping f (z) = z exp
(∑∞

n=2 anzn) exp
(∑∞

n=1 bnzn), a1 = 0. Then we have

∞∑
n=1

n (|an| + |bn|) =
∞∑

n=2

n|an| +

∞∑
n=1

n|bn| ≤ 1.

By Corrollary 2.5, we have

f (z) = z exp

 ∞∑
n=2

anzn

 exp

 ∞∑
n=1

bnzn

 ∈ S∗LH.

Conversely, if

f (z) = z exp

 ∞∑
n=2

anzn

 exp

 ∞∑
n=1

bnzn

 ∈ S∗LH,

it follows from Remark 2 that
∑∞

n=1 n(|an| + |bn|) ≤ 1. After simple calculations, it can be deduced that

F(z) = z −
∞∑

n=2

|an|zn +

∞∑
n=1

|bn|zn ∈ S∗H′ .

□

The following establishes the relationship between starlike harmonic mappings and spirallike log-
harmonic mappings.

Theorem 3.3. Let F(z) = z −
∑∞

n=2 |an|zn +
∑∞

n=1 |bn|zn ∈ S∗H′ . Then

f (z) = z exp

 ∞∑
n=2

dnanzn

 exp

 ∞∑
n=1

dnbnzn

 ∈ SPLH(λ),

where {dn} is a sequence such that |dn| ≤ B/2 for n ≥ 1 and B is given by (2.2).

Proof. Since F(z) = z −
∑∞

n=2 |an|zn +
∑∞

n=1 |bn|zn be starllike harmonic mapping, by Lemma 3.1, the
coefficient condition (3.3) holds. Since {dn} is a sequence of complex numbers with |dn| ≤ B/2. Then

∞∑
n=1

2n
B

(|dnan| + |dnbn|) =
∞∑

n=2

2n
B
|dn||an| +

∞∑
n=1

2n
B
|dn||bn|

≤

∞∑
n=2

n|an| +

∞∑
n=1

n|bn|

≤ 1.

Hence, by Theorem 2.4, we have

f (z) = z exp

 ∞∑
n=2

dnanzn

 exp

 ∞∑
n=1

dnbnzn

 ∈ SPLH(λ).

□
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For positive integers n greater than 2, f3(z) = z exp
(

B
4nzn

)
exp

(
B
4nzn

)
∈ SPLH(λ) as from Lemma 3.1

the mapping F(z) = z − 1
2nzn + 1

2nzn
∈ S∗H′ . Here, the value of dn is B/2. Figure 2 illustrates the images

of D under f3(z) and F(z) for certain values of n and λ. From the images, it can be concluded that F(D)
has at least one real axis as its axis of symmetry, and f3(D) has at least n axes of symmetry, including
the real axis.
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(a) f3(D) for n = 4 and λ = π3
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(b) F(D) for n = 4
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(c) f3(D) for n = 6 and λ= π3

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

(d) F(D) for n = 6

Figure 2. f3(D), F(D) for certain values of n and λ.

4. Growth estimate and λ−spirallike radius

Next, we present a growth estimate for the modulus of sense-preserving log-harmonic λ-spirallike
mappings.

Theorem 4.1. Let f (z) = zh(z)g(z) be a log-harmonic mapping of the form (1.2) and satisfies the
coefficient inequality (2.3). Then the sharp inequality

r exp
(
−

B
2

r
)
< | f (z)| < r exp

(B
2

r
)

for |z| = r
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holds and {
w ∈ C : |w| < exp

(
−

B
2

)}
⊂ f (D).

where B is given by (2.2).

Proof. Let |z| = r < 1. As the log-harmonic mapping f (z) = z exp
(∑∞

n=2 anzn) exp
(∑∞

n=1 bnzn) satisfies
the condition (2.3), it follows that

| f (z)| = r exp

Re

 ∞∑
n=1

anzn + bnzn


≤ r exp

 ∞∑
n=1

(|an| + |bn|)r


< r exp

 ∞∑
n=1

n(|an| + |bn|)r


< r exp

(B
2

r
)
.

On the other hand,

| f (z)| = r exp

Re

 ∞∑
n=1

anzn + bnzn


≥ r exp

 ∞∑
n=1

−(|an| + |bn|)r


> r exp

 ∞∑
n=1

−n(|an| + |bn|)r


> r exp

(
−

B
2

r
)
.

When we approach r to 1 from the left side, we obtain{
w ∈ C : |w| < exp

(
−

B
2

)}
⊂ f (D).

□

Similar to the Bieberbach conjecture for analytic and harmonic mappings, the following
Bieberbach conjecture for log-harmonic mappings can be naturally proposed with the help of the
Koebe log-harmonic mapping. The case where f (z) = h(z)g(z) ∈ S∗LH has already been confirmed by
the author in ( [11], Theorem 3.2) and ( [12], Theorem 3.3):

Lemma 4.2. ( [11, Theorem 3.2]) Let f (z) = zh(z)g(z) belong to S∗LH, where h(z) and g(z) are given
by (1.2). Then for all n ≥ 1,

|an − bn| ≤
2
n
. (4.1)

Moreover
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(1) |an| ≤ 2 + 1
n ;

(2) |bn| ≤ 2 − 1
n .

Equality holds if

f (z) = φ(z)|g(z)|2 =
z

(1 − z)2

∣∣∣∣∣∣(1 − z) exp
(

2z
1 − z

)∣∣∣∣∣∣2 ,
or one of its rotations.

Next, we will derive the λ-spirallike radius for log-harmonic mappings f ∈ S∗LH.

Theorem 4.3. Let f (z) = zh(z)g(z) be a log-harmonic mapping of the form (1.2), and f ∈ S∗LH. Then
the λ-spirallike radius of f (z) is rs(λ), where λ ∈ (−π/2, π/2), and

rs(λ) =
cos λ

cos λ + 2
∈ (0,

1
3

). (4.2)

Proof. According to Theorem 2.1 in this paper, to prove f ∈ SPLH(λ), it suffices to obtain

cos λ > Re
(
e−iλ

(
zg′(z)
g(z)

−
zh′(z)
h(z)

))
.

By using the coefficient estimates |an| and |bn| (Lemma 4.2), we have

cos λ − Re
(
e−iλ

(
zg′(z)
g(z)

−
zh′(z)
h(z)

))
= cos λ − Re

e−iλ

 ∞∑
n=1

n(bn − an)zn


≥ cos λ −

 ∞∑
n=1

n(|an − bn|)rn


≥ cos λ −

 ∞∑
n=1

2rn


= cos λ −

2r
1 − r

.

Therefore,

f ∈ SPLH(λ) if cos λ −
2r

1 − r
> 0,

that is, if
cos λ − (cos λ + 2)r > 0,

through simple calculations, it can be obtained that

rs(λ) = r <
cos λ

cos λ + 2
.
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Therefore, for all λ ∈ (−π/2, π/2), rs(λ) ∈ (0, 1
3 ). Consequently, when r ≤ rs(λ), we have f ∈

SPLH(λ). To prove the accuracy of rs(λ), it is necessary to consider the cases where equality holds
during the proof. For the Koebe log-harmonic mapping, we have

g(z) = (1 − z) exp
(

2z
1 − z

)
= exp

 ∞∑
n=1

(2 +
1
n

)zn

 ,
h(z) =

1
1 − z

exp
(

2z
1 − z

)
= exp

 ∞∑
n=1

(2 −
1
n

)zn

 ,
f (z) =

z
(1 − z)2

∣∣∣∣∣∣(1 − z) exp
(

2z
1 − z

)∣∣∣∣∣∣2 ,
when z =

cos λ
cos λ + 2

satisfies

Re
(
e−iλD f (z)

f (z)

)
= Re

(
e−iλ1 + z

1 − z

)
= Re

(
e−iλ(1 + cos λ)

)
= cos λ(1 + cos λ) > 0.

When λ approaches −π/2 or π/2, Re
(
e−iλ D f (z)

f (z)

)
approaches 0. Therefore, rs(λ) is sharp. □
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