In this article, we study the class of positive partial transpose blocks. We introduce several inequalities related to this class with an emphasis on comparing the main diagonal and off-diagonal components of a $ 2 \times 2 $ positive partial transpose block.
Citation: Moh. Alakhrass. A note on positive partial transpose blocks[J]. AIMS Mathematics, 2023, 8(10): 23747-23755. doi: 10.3934/math.20231208
In this article, we study the class of positive partial transpose blocks. We introduce several inequalities related to this class with an emphasis on comparing the main diagonal and off-diagonal components of a $ 2 \times 2 $ positive partial transpose block.
[1] | M. Alakhrass, On sectorial matrices and their inequalities, Linear Algebra Appl., 617 (2021), 179–189. https://doi.org/10.1016/j.laa.2021.02.003 doi: 10.1016/j.laa.2021.02.003 |
[2] | M. Alakhrass, M. Sababheh, Lieb functions and sectorial matrices, Linear Algebra Appl., 586 (2020), 308–324. https://doi.org/10.1016/j.laa.2019.10.028 doi: 10.1016/j.laa.2019.10.028 |
[3] | M. Alakhrass, A note on sectorial matrices, Linear Multilinear Algebra, 68 (2020), 2228–2238. https://doi.org/10.1080/03081087.2019.1575332 doi: 10.1080/03081087.2019.1575332 |
[4] | R. Bhatia, P. Grover, Norm inequalities related to the matrix geometric mean, Linear Algebra Appl., 437 (2012), 726–733. https://doi.org/10.1016/j.laa.2012.03.001 doi: 10.1016/j.laa.2012.03.001 |
[5] | R. Bhatia, Positive Definite Matrices, Princeton: Princeton University Press, 2007. |
[6] | R. Bhatia, Matrix Analysis, Berlin: Springer, 1997. |
[7] | X. Fu, P. S. Lau, T. Y. Tam, Inequalities on 2 × 2 block positive semidefinite matrices, Linear Multilinear Algebra, 70 (2022), 6820–6829. https://doi.org/10.1080/03081087.2021.1969327 doi: 10.1080/03081087.2021.1969327 |
[8] | M. Horodecki, P. Horodecki, R. Horodecki, Separability of mixed states: necessary and sufficient conditions, Phys. Lett. A, 223 (1996), 1–8. |
[9] | E. Y. Lee, The off-diagonal block of a PPT matrix, Linear Algebra Appl., 486 (2015), 449–453. https://doi.org/10.1016/j.laa.2015.08.018 doi: 10.1016/j.laa.2015.08.018 |
[10] | M. Lin. Inequalities related to 2 × 2 block PPT matrices, Oper. Matrices, 9 (2015), 917–924. http://doi.org/10.7153/oam-09-54 doi: 10.7153/oam-09-54 |
[11] | A. Peres, Separability criterion for density matrices, Phys. Rev. Lett., 77 (1996), 1413–1415. https://doi.org/10.1103/PhysRevLett.77.1413 doi: 10.1103/PhysRevLett.77.1413 |
[12] | J. S. Respondek, Matrix black box algorithms-a survey, Tech. Bull. Pol. Acad. Sci., 70 (2022), e140535. https://doi.org/10.24425/bpasts.2022.140535 doi: 10.24425/bpasts.2022.140535 |