Research article Special Issues

A note on positive partial transpose blocks

  • Received: 09 June 2023 Revised: 11 July 2023 Accepted: 17 July 2023 Published: 02 August 2023
  • MSC : 15A18, 15A42, 15A45, 15A60

  • In this article, we study the class of positive partial transpose blocks. We introduce several inequalities related to this class with an emphasis on comparing the main diagonal and off-diagonal components of a $ 2 \times 2 $ positive partial transpose block.

    Citation: Moh. Alakhrass. A note on positive partial transpose blocks[J]. AIMS Mathematics, 2023, 8(10): 23747-23755. doi: 10.3934/math.20231208

    Related Papers:

  • In this article, we study the class of positive partial transpose blocks. We introduce several inequalities related to this class with an emphasis on comparing the main diagonal and off-diagonal components of a $ 2 \times 2 $ positive partial transpose block.



    加载中


    [1] M. Alakhrass, On sectorial matrices and their inequalities, Linear Algebra Appl., 617 (2021), 179–189. https://doi.org/10.1016/j.laa.2021.02.003 doi: 10.1016/j.laa.2021.02.003
    [2] M. Alakhrass, M. Sababheh, Lieb functions and sectorial matrices, Linear Algebra Appl., 586 (2020), 308–324. https://doi.org/10.1016/j.laa.2019.10.028 doi: 10.1016/j.laa.2019.10.028
    [3] M. Alakhrass, A note on sectorial matrices, Linear Multilinear Algebra, 68 (2020), 2228–2238. https://doi.org/10.1080/03081087.2019.1575332 doi: 10.1080/03081087.2019.1575332
    [4] R. Bhatia, P. Grover, Norm inequalities related to the matrix geometric mean, Linear Algebra Appl., 437 (2012), 726–733. https://doi.org/10.1016/j.laa.2012.03.001 doi: 10.1016/j.laa.2012.03.001
    [5] R. Bhatia, Positive Definite Matrices, Princeton: Princeton University Press, 2007.
    [6] R. Bhatia, Matrix Analysis, Berlin: Springer, 1997.
    [7] X. Fu, P. S. Lau, T. Y. Tam, Inequalities on 2 × 2 block positive semidefinite matrices, Linear Multilinear Algebra, 70 (2022), 6820–6829. https://doi.org/10.1080/03081087.2021.1969327 doi: 10.1080/03081087.2021.1969327
    [8] M. Horodecki, P. Horodecki, R. Horodecki, Separability of mixed states: necessary and sufficient conditions, Phys. Lett. A, 223 (1996), 1–8.
    [9] E. Y. Lee, The off-diagonal block of a PPT matrix, Linear Algebra Appl., 486 (2015), 449–453. https://doi.org/10.1016/j.laa.2015.08.018 doi: 10.1016/j.laa.2015.08.018
    [10] M. Lin. Inequalities related to 2 × 2 block PPT matrices, Oper. Matrices, 9 (2015), 917–924. http://doi.org/10.7153/oam-09-54 doi: 10.7153/oam-09-54
    [11] A. Peres, Separability criterion for density matrices, Phys. Rev. Lett., 77 (1996), 1413–1415. https://doi.org/10.1103/PhysRevLett.77.1413 doi: 10.1103/PhysRevLett.77.1413
    [12] J. S. Respondek, Matrix black box algorithms-a survey, Tech. Bull. Pol. Acad. Sci., 70 (2022), e140535. https://doi.org/10.24425/bpasts.2022.140535 doi: 10.24425/bpasts.2022.140535
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(941) PDF downloads(73) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog