Research article

Impact of the strong Allee effect in a predator-prey model

  • Received: 30 March 2022 Revised: 15 June 2022 Accepted: 28 June 2022 Published: 04 July 2022
  • MSC : 34C23, 92D25, 34D20, 65P40

  • In this work, we propose and investigate a new predator-prey model with strong Allee effect in prey and Holling type Ⅱ functional response in predator. By performing a comprehensive dynamical analysis, we first derive the existence and stability of all the possible equilibria of the system and the system undergoes two transcritical bifurcations and one Hopf-bifurcation. Next, we have calculated the first Lyapunov coefficient and find the Hopf-bifurcation in this model is supercritical and a stable limit cycle is born. Then, by comparing the properties of the system with and without Allee effect, we show that the strong Allee effect is of great importance to the dynamics. It can drive the system to instability. Specifically, Allee effect can increase the extinction risk of populations and has the ability to switch the system's stability to limit cycle oscillation from stable node. Moreover, numerical simulations are presented to prove the validity of our findings.

    Citation: Yudan Ma, Ming Zhao, Yunfei Du. Impact of the strong Allee effect in a predator-prey model[J]. AIMS Mathematics, 2022, 7(9): 16296-16314. doi: 10.3934/math.2022890

    Related Papers:

  • In this work, we propose and investigate a new predator-prey model with strong Allee effect in prey and Holling type Ⅱ functional response in predator. By performing a comprehensive dynamical analysis, we first derive the existence and stability of all the possible equilibria of the system and the system undergoes two transcritical bifurcations and one Hopf-bifurcation. Next, we have calculated the first Lyapunov coefficient and find the Hopf-bifurcation in this model is supercritical and a stable limit cycle is born. Then, by comparing the properties of the system with and without Allee effect, we show that the strong Allee effect is of great importance to the dynamics. It can drive the system to instability. Specifically, Allee effect can increase the extinction risk of populations and has the ability to switch the system's stability to limit cycle oscillation from stable node. Moreover, numerical simulations are presented to prove the validity of our findings.



    加载中


    [1] N. Bacaer, A short history of mathematical population dynamics, Springer London, 2011.
    [2] S. Bentout, A. Tridane, S. Djilali, T. M. Touaoula, Age-structured modeling of COVID-19 epidemic in the USA, UAE and Algeria, Alex. Eng. J., 60 (2021), 401–411. https://doi.org/10.1016/j.aej.2020.08.053 doi: 10.1016/j.aej.2020.08.053
    [3] S. Djilali, S. Bentout, S. Kumar, T. M. Touaoula, Approximating the asymptomatic infectious cases of the COVID-19 disease in Algeria and India using a mathematical model, Int. J. Model. Simul. SC, 2250028 (2022).
    [4] A. Singh, A. Parwaliya, A. Kumar, Hopf bifurcation and global stability of density-dependent model with discrete delays involving Beddington-DeAngelis functional response, Math. Method. Appl. Sci., 44 (2021), 8838–8861. https://doi.org/10.1002/mma.7311 doi: 10.1002/mma.7311
    [5] A. Singh, P. Malik, Bifurcations in a modified Leslie-Gower predator-prey discrete model with Michaelis-Menten prey harvesting, J. Appl. Math. Comput., 67 (2021), 143–174. https://doi.org/10.1007/s12190-020-01491-9 doi: 10.1007/s12190-020-01491-9
    [6] H. I. Freedman, Stability analysis of a predator-prey system with mutual interference and density-dependent death rates, Bull. Math. Biol., 41 (1979), 67–78. https://doi.org/10.1016/S0092-8240(79)80054-3 doi: 10.1016/S0092-8240(79)80054-3
    [7] D. P. Hu, H. J. Cao, Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlinear Anal.-Real, 33 (2017), 58–82. https://doi.org/10.1016/j.nonrwa.2016.05.010 doi: 10.1016/j.nonrwa.2016.05.010
    [8] L. Li, W. C. Zhao, Deterministic and stochastic dynamics of a modified Leslie-Gower prey-predator system with simplified Holling-type Ⅳ scheme, Math. Biosci. Eng., 18 (2021), 2813–2831. https://doi.org/10.3934/mbe.2021143 doi: 10.3934/mbe.2021143
    [9] S. Djilali, S. Bentout, Spatiotemporal patterns in a diffusive predator-prey model with prey social behavior, Acta. Appl. Math., 169 (2020), 1–19. https://doi.org/10.1007/s10440-019-00291-z doi: 10.1007/s10440-019-00291-z
    [10] S. Djilali, S. Bentout, Pattern formations of a delayed diffusive predator-prey model with predator harvesting and prey social behavior, Math. Method. Appl. Sci., 44 (2021), 9128–9142. https://doi.org/10.1002/mma.7340 doi: 10.1002/mma.7340
    [11] M. J. Groom, Allee effects limit population viability of an annual plant, Am. Nat., 151 (1998), 487–496. https://doi.org/10.1086/286135 doi: 10.1086/286135
    [12] M. Kuussaari, I. Saccheri, M. Camara, I. Hanski, Allee effect and population dynamics in the Glanville fritillary butterfly, Oikos, 82 (1998), 384–392. https://doi.org/10.2307/3546980 doi: 10.2307/3546980
    [13] F. Courchamp, T. Clutton-Brock, B. Grenfell, Inverse density dependence and the Allee effect, Trends Ecol. Evol., 14 (1999), 405–410. https://doi.org/10.1016/S0169-5347(99)01683-3 doi: 10.1016/S0169-5347(99)01683-3
    [14] M. A. Mccarthy, The Allee effect, finding mates and theoretical models, Ecol. Model., 103 (1997), 99–102. https://doi.org/10.1016/S0304-3800(97)00104-X doi: 10.1016/S0304-3800(97)00104-X
    [15] F. Courchamp, L. Berec, J. Gascoigne, Allee effects in ecology and conservation, Oxford University Press, London, 2008. https://doi.org/10.1093/acprof:oso/9780198570301.001.0001
    [16] M. Wang, M. Kot, Speeds of invasion in a model with strong or weak Allee effects, Math. Biosci., 171 (2001), 83–97. https://doi.org/10.1016/S0025-5564(01)00048-7 doi: 10.1016/S0025-5564(01)00048-7
    [17] J. F. Wang, J. P. Shi, J. J. Wei, Predator-prey system with strong Allee effect in prey, J. Math. Biol., 62 (2011), 291–331. https://doi.org/10.1007/s00285-010-0332-1 doi: 10.1007/s00285-010-0332-1
    [18] U. Kumar, P. S. Mandal, E. Venturino, Impact of Allee effect on an eco-epidemiological system, Ecol. Complex., 42 (2020), 100828. https://doi.org/10.1016/j.ecocom.2020.100828 doi: 10.1016/j.ecocom.2020.100828
    [19] G. Voorn, L. Hemerik, M. P. Boer, B. W. Kooi, Heteroclinic orbits indicate over exploitation in predator-prey systems with a strong Allee effect, Math. Biosci., 209 (2007), 451–469. https://doi.org/10.1016/j.mbs.2007.02.006 doi: 10.1016/j.mbs.2007.02.006
    [20] F. M. Hilker, M. Langlais, H. Malchow, The Allee effect and infectious diseases: Extinction, multistability, and the (dis)appearance of oscillations, Am. Nat., 173 (2009), 72–88. https://doi.org/10.1086/593357 doi: 10.1086/593357
    [21] S. Bentout, A. Chekroun, T. Kuniya, Parameter estimation and prediction for coronavirus disease outbreak 2019 (COVID-19) in Algeria, AIMS Public Health, 7 (2020), 306–318. https://doi.org/10.3934/publichealth.2020026 doi: 10.3934/publichealth.2020026
    [22] S. Bentout, T. M. Touaoula, Global analysis of an infection age model with a class of nonlinear incidence rates, J. Math. Anal. Appl., 434 (2016), 1211–1239. https://doi.org/10.1016/j.jmaa.2015.09.066 doi: 10.1016/j.jmaa.2015.09.066
    [23] S. Djilali, A. Mezouaghi, O. Belhamiti, Bifurcation analysis of a diffusive predator-prey model with schooling behaviour and cannibalism in prey, Int. J. Math. Model. Numer. Opt., 11 (2021), 209. https://doi.org/10.1504/IJMMNO.2021.116676 doi: 10.1504/IJMMNO.2021.116676
    [24] J. Zu, M. Mimura, The impact of Allee effect on a predator-prey system with Holling type Ⅱ functional response, Appl. Math. Comput., 217 (2010), 3542–3556. https://doi.org/10.1016/j.amc.2010.09.029 doi: 10.1016/j.amc.2010.09.029
    [25] C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 97 (1965), 1–60. https://doi.org/10.4039/entm9745fv doi: 10.4039/entm9745fv
    [26] S. Y. Tang, Y. N. Xiao, L. S. Chen, Integrated pest management models and their dynamical behaviour, Bull. Math. Biol., 67 (2005), 115–135. https://doi.org/10.1016/j.bulm.2004.06.005 doi: 10.1016/j.bulm.2004.06.005
    [27] J. Zu, W. D. Wang, B. Zu, Evolutionary dynamics of prey-predator systems with Holling type Ⅱ, Math. Biosci. Eng., 4 (2007), 221–237. https://doi.org/10.3934/mbe.2007.4.221 doi: 10.3934/mbe.2007.4.221
    [28] K. B. Sun, T. H. Zhang, Y. Tian, Dynamics analysis and control optimization of a pest management predator-prey model with an integrated control strategy, Appl. Math. Comput., 292 (2017), 253–271. https://doi.org/10.1016/j.amc.2016.07.046 doi: 10.1016/j.amc.2016.07.046
    [29] K. X. Wang, Influence of feedback controls on the global stability of a stochastic predator-prey model with Holling type Ⅱ response and infinite delays, Discrete. Cont. Dyn.-B, 25 (2020), 1699–1714. https://doi.org/10.3934/dcdsb.2019247 doi: 10.3934/dcdsb.2019247
    [30] X. Y. Wu, H. Zheng, S. C. Zhang, Dynamics of a non-autonomous predator-prey system with Hassell-Varley-Holling Ⅱ function response and mutual interference, AIMS Math., 6 (2021), 6033–6049. https://doi.org/10.3934/math.2021355 doi: 10.3934/math.2021355
    [31] Z. F. Zhang, T. R. Ding, W. Z. Huang, Z. X. Dong, Qualitative theory of differential equation, Beijing, Beijing, 1997.
    [32] J. Sotomayor, Dynamical systems: Generic bifurcations of dynamical systems, Academic Press, New York, 1973,561–582. https://doi.org/10.1016/B978-0-12-550350-1.50047-3
    [33] L. Perko, Differential equations and dynamical systems, Springer, New York, 2001.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1797) PDF downloads(216) Cited by(2)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog