Research article

The Cartesian closedness of c-spaces

  • Received: 16 April 2021 Revised: 22 June 2022 Accepted: 29 June 2022 Published: 04 July 2022
  • MSC : 06B35, 54A20, 54B30, 54H10

  • Directed space was defined by Hui Kou in 2014 [21], which is equivalent to $ T_0 $ monotone determined space. Its main purpose is to build an extended framework for domain theory. In this paper, we study the category of c-spaces which is a subcategory of directed spaces. The main results are: (1) we will describe c-spaces using a new definition, which give us the convenience to construct new classes of spaces; (2) we give some conditions such that categorical products and topological products agree in $ {\bf Dtop} $; (3) the category of c-spaces is not Cartesian closed; (4) we define a new class of spaces, namely, FS-spaces, which forms a Cartesian closed category.

    Citation: Xiaolin Xie, Hui Kou. The Cartesian closedness of c-spaces[J]. AIMS Mathematics, 2022, 7(9): 16315-16327. doi: 10.3934/math.2022891

    Related Papers:

  • Directed space was defined by Hui Kou in 2014 [21], which is equivalent to $ T_0 $ monotone determined space. Its main purpose is to build an extended framework for domain theory. In this paper, we study the category of c-spaces which is a subcategory of directed spaces. The main results are: (1) we will describe c-spaces using a new definition, which give us the convenience to construct new classes of spaces; (2) we give some conditions such that categorical products and topological products agree in $ {\bf Dtop} $; (3) the category of c-spaces is not Cartesian closed; (4) we define a new class of spaces, namely, FS-spaces, which forms a Cartesian closed category.



    加载中


    [1] A. Jung, Cartesian closed categories of domains, Amsterdam: Centrum voor wiskunde en informatica, 66 (1989).
    [2] M. J. Che, H. Kou, A Cartesian closed full subcategory of the category c-spaces, J. Sichuan Normal Univ., 43 (2020), 756–762. http://dx.doi.org/10.3969/j.issn.1001-8395.2020.06.005 doi: 10.3969/j.issn.1001-8395.2020.06.005
    [3] R. Engelking, General topology, Warzawa: Polish Scientific Publishers, 1989.
    [4] M. Erné, The ABC of order and topology, Heldermann, Berlin, 1991, 57–83.
    [5] M. Erné, Infinite distributive laws versus local connectedness and compactness properties, Topol. Appl., 156 (2009), 2054–2069. http://dx.doi.org/10.1016/j.topol.2009.03.029 doi: 10.1016/j.topol.2009.03.029
    [6] Y. L. Ershov, Theory of domains and nearby, Springer, Berlin, Heidelberg, 1993, 1–7. http://dx.doi.org/10.1007/BFb0039696
    [7] G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove, D. Scott, Lattices and domains, Cambridge University Press, 2003. http://dx.doi.org/10.1090/S0894-0347-1992-1124979-1
    [8] J. Goubault-Larrecq, Non-Hausdorff topology and domain theory: Selected topics in point-set topology, Cambridge: Cambridge University Press, 2013. http://dx.doi.org/10.1017/CBO9781139524438
    [9] H. Kou, Directed spaces: An extended framework for domain theory, 1th Pan Pacific International Conference on Topology and Applications, Min Nan Normal University, Zhangzhou, 11 (2015), 25–30.
    [10] Z. C. Lyu, Y. Chen, X. D. Jia, Core-compactness, consonance and the Smyth powerspaces, Topol. Appl., 312 (2022), 108066. http://dx.doi.org/10.1016/j.topol.2022.108066 doi: 10.1016/j.topol.2022.108066
    [11] S. MacLane, Categories for the working mathematician, Springer-Verlag, New York, 1971. http://dx.doi.org/10.1007/978-1-4757-4721-8
    [12] M. Mislove, Generalizing domain theory, International conference on foundations of software science and computation structure, Springer, Berlin, Heidelberg, 1998, 1–19. http://dx.doi.org/10.1007/BFb0053538
    [13] M. Mislove, Topology, domain theory and theoretical computer science, Topol. Appl., 89 (1998), 3–59. http://dx.doi.org/10.1016/S0166-8641(97)00222-8 doi: 10.1016/S0166-8641(97)00222-8
    [14] D. S. Scott, Outline of a mathematical theory of computation, In 4th Annual Princeton Conference on Information Sciences and Systems, 1970.
    [15] D. S. Scott, Continuous lattiees, toposes, algebraic geometry and logic, Springer Lecture Notes in Mathematics, 274 (1972), 97–136. http://dx.doi.org/10.1007/BFb0073967
    [16] D. S. Scott, Lectures on a mathematical theory of computation, Springer, Dordrecht, 91 (1982) 145–292. http://dx.doi.org/10.1007/978-94-009-7893-5_9
    [17] M. de Brecht, T. Kawai, On the commutativity of the powerspace constructions, Log. Meth. Comput. Sci., 15 (2019). http://dx.doi.org/10.23638/LMCS-15(3:13)2019
    [18] W. Wang, H. Kou, Approximation structures on $T_0$ topological spaces, J. Sichuan Univ., 51 (2014), 681–683. http://dx.doi.org/10.3969/j.issn.0490-6756.2014.04.007 doi: 10.3969/j.issn.0490-6756.2014.04.007
    [19] X. L. Xie, H. Kou, Lower power structures of directed spaces, J. Sichuan Univ., 57 (2020), 211–217. http://dx.doi.org/10.3969/j.issn.0490-6756.2020.002 doi: 10.3969/j.issn.0490-6756.2020.002
    [20] X. Q. Xu, Order and topology, Beijing: Science Press, 2016.
    [21] Y. Yu, H. Kou, Directed spaces defined through $T_0$ spaces with specialization order, J. Sichuan Univ., 52 (2015), 217–222. http://dx.doi.org/10.3969/j.issn.0490-6756.2015.02.001 doi: 10.3969/j.issn.0490-6756.2015.02.001
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1379) PDF downloads(71) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog