Directed space was defined by Hui Kou in 2014 [
Citation: Xiaolin Xie, Hui Kou. The Cartesian closedness of c-spaces[J]. AIMS Mathematics, 2022, 7(9): 16315-16327. doi: 10.3934/math.2022891
Directed space was defined by Hui Kou in 2014 [
[1] | A. Jung, Cartesian closed categories of domains, Amsterdam: Centrum voor wiskunde en informatica, 66 (1989). |
[2] | M. J. Che, H. Kou, A Cartesian closed full subcategory of the category c-spaces, J. Sichuan Normal Univ., 43 (2020), 756–762. http://dx.doi.org/10.3969/j.issn.1001-8395.2020.06.005 doi: 10.3969/j.issn.1001-8395.2020.06.005 |
[3] | R. Engelking, General topology, Warzawa: Polish Scientific Publishers, 1989. |
[4] | M. Erné, The ABC of order and topology, Heldermann, Berlin, 1991, 57–83. |
[5] | M. Erné, Infinite distributive laws versus local connectedness and compactness properties, Topol. Appl., 156 (2009), 2054–2069. http://dx.doi.org/10.1016/j.topol.2009.03.029 doi: 10.1016/j.topol.2009.03.029 |
[6] | Y. L. Ershov, Theory of domains and nearby, Springer, Berlin, Heidelberg, 1993, 1–7. http://dx.doi.org/10.1007/BFb0039696 |
[7] | G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove, D. Scott, Lattices and domains, Cambridge University Press, 2003. http://dx.doi.org/10.1090/S0894-0347-1992-1124979-1 |
[8] | J. Goubault-Larrecq, Non-Hausdorff topology and domain theory: Selected topics in point-set topology, Cambridge: Cambridge University Press, 2013. http://dx.doi.org/10.1017/CBO9781139524438 |
[9] | H. Kou, Directed spaces: An extended framework for domain theory, 1th Pan Pacific International Conference on Topology and Applications, Min Nan Normal University, Zhangzhou, 11 (2015), 25–30. |
[10] | Z. C. Lyu, Y. Chen, X. D. Jia, Core-compactness, consonance and the Smyth powerspaces, Topol. Appl., 312 (2022), 108066. http://dx.doi.org/10.1016/j.topol.2022.108066 doi: 10.1016/j.topol.2022.108066 |
[11] | S. MacLane, Categories for the working mathematician, Springer-Verlag, New York, 1971. http://dx.doi.org/10.1007/978-1-4757-4721-8 |
[12] | M. Mislove, Generalizing domain theory, International conference on foundations of software science and computation structure, Springer, Berlin, Heidelberg, 1998, 1–19. http://dx.doi.org/10.1007/BFb0053538 |
[13] | M. Mislove, Topology, domain theory and theoretical computer science, Topol. Appl., 89 (1998), 3–59. http://dx.doi.org/10.1016/S0166-8641(97)00222-8 doi: 10.1016/S0166-8641(97)00222-8 |
[14] | D. S. Scott, Outline of a mathematical theory of computation, In 4th Annual Princeton Conference on Information Sciences and Systems, 1970. |
[15] | D. S. Scott, Continuous lattiees, toposes, algebraic geometry and logic, Springer Lecture Notes in Mathematics, 274 (1972), 97–136. http://dx.doi.org/10.1007/BFb0073967 |
[16] | D. S. Scott, Lectures on a mathematical theory of computation, Springer, Dordrecht, 91 (1982) 145–292. http://dx.doi.org/10.1007/978-94-009-7893-5_9 |
[17] | M. de Brecht, T. Kawai, On the commutativity of the powerspace constructions, Log. Meth. Comput. Sci., 15 (2019). http://dx.doi.org/10.23638/LMCS-15(3:13)2019 |
[18] | W. Wang, H. Kou, Approximation structures on $T_0$ topological spaces, J. Sichuan Univ., 51 (2014), 681–683. http://dx.doi.org/10.3969/j.issn.0490-6756.2014.04.007 doi: 10.3969/j.issn.0490-6756.2014.04.007 |
[19] | X. L. Xie, H. Kou, Lower power structures of directed spaces, J. Sichuan Univ., 57 (2020), 211–217. http://dx.doi.org/10.3969/j.issn.0490-6756.2020.002 doi: 10.3969/j.issn.0490-6756.2020.002 |
[20] | X. Q. Xu, Order and topology, Beijing: Science Press, 2016. |
[21] | Y. Yu, H. Kou, Directed spaces defined through $T_0$ spaces with specialization order, J. Sichuan Univ., 52 (2015), 217–222. http://dx.doi.org/10.3969/j.issn.0490-6756.2015.02.001 doi: 10.3969/j.issn.0490-6756.2015.02.001 |