
This paper proposes a class of quaternion-valued high-order Hopfield neural networks with delays. By using the non-decomposition method, non-reduced order method, analytical techniques in uniform convergence functions sequence, and constructing Lyapunov function, we obtain several sufficient conditions for the existence and global exponential synchronization of anti-periodic solutions for delayed quaternion-valued high-order Hopfield neural networks. Finally, an example and its numerical simulations are given to support the proposed approach. Our results play an important role in designing inertial neural networks.
Citation: Jin Gao, Lihua Dai. Anti-periodic synchronization of quaternion-valued high-order Hopfield neural networks with delays[J]. AIMS Mathematics, 2022, 7(8): 14051-14075. doi: 10.3934/math.2022775
[1] | Haiping Ren, Xue Hu . Estimation for inverse Weibull distribution under progressive type-Ⅱ censoring scheme. AIMS Mathematics, 2023, 8(10): 22808-22829. doi: 10.3934/math.20231162 |
[2] | Hassan Okasha, Mazen Nassar, Saeed A. Dobbah . E-Bayesian estimation of Burr Type XII model based on adaptive Type-Ⅱ progressive hybrid censored data. AIMS Mathematics, 2021, 6(4): 4173-4196. doi: 10.3934/math.2021247 |
[3] | Samah M. Ahmed, Abdelfattah Mustafa . Estimation of the coefficients of variation for inverse power Lomax distribution. AIMS Mathematics, 2024, 9(12): 33423-33441. doi: 10.3934/math.20241595 |
[4] | Mustafa M. Hasaballah, Oluwafemi Samson Balogun, M. E. Bakr . Frequentist and Bayesian approach for the generalized logistic lifetime model with applications to air-conditioning system failure times under joint progressive censoring data. AIMS Mathematics, 2024, 9(10): 29346-29369. doi: 10.3934/math.20241422 |
[5] | Bing Long, Zaifu Jiang . Estimation and prediction for two-parameter Pareto distribution based on progressively double Type-II hybrid censored data. AIMS Mathematics, 2023, 8(7): 15332-15351. doi: 10.3934/math.2023784 |
[6] | Tahani A. Abushal, Alaa H. Abdel-Hamid . Inference on a new distribution under progressive-stress accelerated life tests and progressive type-II censoring based on a series-parallel system. AIMS Mathematics, 2022, 7(1): 425-454. doi: 10.3934/math.2022028 |
[7] | Nora Nader, Dina A. Ramadan, Hanan Haj Ahmad, M. A. El-Damcese, B. S. El-Desouky . Optimizing analgesic pain relief time analysis through Bayesian and non-Bayesian approaches to new right truncated Fréchet-inverted Weibull distribution. AIMS Mathematics, 2023, 8(12): 31217-31245. doi: 10.3934/math.20231598 |
[8] | A. M. Abd El-Raheem, Ehab M. Almetwally, M. S. Mohamed, E. H. Hafez . Accelerated life tests for modified Kies exponential lifetime distribution: binomial removal, transformers turn insulation application and numerical results. AIMS Mathematics, 2021, 6(5): 5222-5255. doi: 10.3934/math.2021310 |
[9] | Naif Alotaibi, A. S. Al-Moisheer, Ibrahim Elbatal, Salem A. Alyami, Ahmed M. Gemeay, Ehab M. Almetwally . Bivariate step-stress accelerated life test for a new three-parameter model under progressive censored schemes with application in medical. AIMS Mathematics, 2024, 9(2): 3521-3558. doi: 10.3934/math.2024173 |
[10] | Rasha Abd El-Wahab Attwa, Shimaa Wasfy Sadk, Hassan M. Aljohani . Investigation the generalized extreme value under liner distribution parameters for progressive type-Ⅱ censoring by using optimization algorithms. AIMS Mathematics, 2024, 9(6): 15276-15302. doi: 10.3934/math.2024742 |
This paper proposes a class of quaternion-valued high-order Hopfield neural networks with delays. By using the non-decomposition method, non-reduced order method, analytical techniques in uniform convergence functions sequence, and constructing Lyapunov function, we obtain several sufficient conditions for the existence and global exponential synchronization of anti-periodic solutions for delayed quaternion-valued high-order Hopfield neural networks. Finally, an example and its numerical simulations are given to support the proposed approach. Our results play an important role in designing inertial neural networks.
Statistical analysis and the modeling of lifetime data are essential across various applied disciplines such as insurance, finance, biomedical research, and engineering. Consequently, a multitude of lifetime distributions have been introduced in these domains. Particularly, the modeling of datasets constrained within the range of (0,1) has gained significant prominence in recent times. This approach has found widespread utility in addressing the survival and failure rates of products across diverse fields. As a result of its adaptability in handling probabilistic models of this nature, a plethora of unit distributions that are bounded within the interval (0,1) have emerged. Furthermore, industries including medical, actuarial, and finance sectors are increasingly recognizing the indispensable value of these types of distributions.
Extensive efforts from statisticians have been directed toward comprehending the failure of components and units, particularly within the well-structured operating systems prevalent in industrial and mechanical engineering. Their investigation revolves around the observation of operating units until they encounter failure. Subsequently, the lifetimes of these units are recorded, followed by the application of statistical inference techniques to the accumulated data. This process culminates in the estimation of reliability and hazard functions for the entire system, leveraging the collected dataset. Despite these endeavors, situations arise where certain experimental units possess both high reliability and significant costs. In such cases, a practical necessity emerges to reduce the number of experimental units utilized as well as the duration of the lifetime experiments involving these units. To address this scenario, the progressive Type-Ⅱ censoring (PT-IIC) scheme comes into play. This scheme offers a way to achieve robust estimations through lifetime experiments while safeguarding some experimental units from encountering failure. The progressive Type-Ⅱ censoring scheme is frequently described as follows: Initially, the experimenter places n independent and identical units into the life measurement process. Upon the occurrence of the first failure, denoted as x(1), a random selection process removes R1 units from the remaining n−1 surviving units. This process is reiterated for each subsequent failure event: At the time of the second failure, x(2), R2 units are randomly chosen for removal from the surviving units, now numbering n−R1−2. This pattern continues until the m-th failure transpires at time xm, resulting in the extraction of Rm=n−m−∑m−1i=1Ri surviving units from the test. The collective set of r values, denoted as R = (R1, R2, ..., Rm), characterizes the PT-IIC scheme. In contrast, Progressive Type-Ⅱ right censoring involves a predefined censoring scheme R before the experiment's commencement. Interestingly, Type-Ⅱ censoring can often be viewed as a specific instance of PT-IIC, where the scheme is represented as R = (0, 0, ..., n−m), as documented in [1,2,3]. This experimental setup concludes at the mth failure, a predetermined event occurring at time tm, and the value of Rm is computed as n−m−∑m−1i=1Ri, (Figure 1).
Let x(1),x(2),...,x(m),1≤m≤n, be a PT-IIC sample observed from a lifetime test involving n units and R1,R2,...,Rm be the censoring scheme. The joint probability density function(PDF) of a PT-IIC sample is given by
L(xi:m:n;θ,α)=Cm∏i=1f (xi:m:n))[(1−F(xi:m:n))]Ri, | (1.1) |
where C may be a constant defined as
C=n (n−R1−1)⋯(n−m−1∑i=1(Ri+1)). |
The attention has been on the development of PT-IIC over the last two to three decades. One can consult sources such as [2,5,6,7] and others for insightful findings regarding this censoring scheme.
A substitute for the maximum likelihood estimation (MLE) approach for deducing the parameters of continuous uni-variate distributions was introduced by [8], termed the maximum product of spacing (MPS) method. This approach was put forth as a means to retain many of the properties inherent in maximum likelihood by substituting the likelihood function with a product of spacing. This technique was subsequently extended to parameter estimation using censored samples by various researchers. For complete samples, sources like [9,10,11] delve into this method. When dealing with Type-Ⅰ and Type-Ⅱ censored samples, the works of [12,13] offer insights. The progressive Type-Ⅱ censoring scheme (PT-IIC) is explored in studies such as [14,15], while the adaptive progressive Type-Ⅱ scheme is examined in sources like [16,17,18]. The organization of this paper is as follows: In Section 2, the generalized power unit half-logistic geometric distribution will be presented. Section 3 introduces the classical estimation methods. Bayesian estimates for the unknown parameters are obtained in Section 4. In Section 5, the numerical computations are analyzed. In Section 6, we present an optimal progressive censoring scheme and compare it with various alternative censoring schemes. The conclusions drawn from the findings are summarized in Section 7.
Nasiru et al. [19] introduced a new generalized power unit half-logistic geometric (GPUHLG)distribution. The random variable X is said to follow a GPUHLG distribution if its probability density function (pdf) is expressed as:
f(x)=2αθxα−1((θ−2)xα−θ)2,θ,α>0,0<x<1, | (2.1) |
and the cumulative distribution function (cdf)
F(x)=1−θ(1−xα)(2−θ)xα+θ,θ,α>0,0<x<1. | (2.2) |
Figure 2 shows the cdf and the pdf of the GPUHLG distribution at different values of θ and α.
Also, the survival and the hazard failure rate functions of the GPUHLG distribution are given respectively as
S(x)=1−F(x)=θ(1−xα)(2−θ)xα+θ,θ,α>0,0<x<1, | (2.3) |
and
H(x)=f(x)S(x)=2αxα−1(xα−1)((θ−2)xα−θ),θ,α>0,0<x<1. | (2.4) |
Figure 3 shows the survival and the hazard rate functions of the GPUHLG distribution at different values of θ and α.
In this section, the techniques of maximum likelihood estimation (MLEs) and maximum product of spacing estimation (MPSs) are employed to derive both point and interval estimators for the model parameter. The construction of interval estimators leverages the asymptotic characteristics of the MLEs and MPSs.
Consider a PT-IIC sample of size m, denoted by x=x(i), where i=1,…,m. This sample is acquired using the progressive censoring scheme Si from the GPUHLG distribution, which is defined by the probability density function (pdf) and cumulative distribution function (cdf) shown in Eqs (2) and (3), respectively. By excluding the constant factor, the likelihood function of the GPUHLG distribution, accounting for the existence of PT-IIC, can be derived from Eqs (2), (3), and (1) as demonstrated below:
L∝(2αθ2)mm∏i=1xα−1(i)((2−θ)xα(i)+θ)2(1−xα(i)(2−θ)xα(i)+θ)Ri. | (3.1) |
The log-likelihood function is given by
l=log(L)∝mlog(2α)+2mlog(θ)+m∑i=1log(xα−1(i))−2m∑i=1log((2−θ)xα(i)+θ)+m∑i=1Ri(log(1−xα(i))−log((2−θ)xα(i)+θ)). | (3.2) |
The derivatives of the log-likelihood function with respect to the parameters θ and α are presented as follows:
∂l∂θ=2mθ−2m∑i=11−xα(i)(2−θ)xα(i)+θ+m∑i=1Ri(1−xα(i))(2−θ)xα(i)+θ, | (3.3) |
∂l∂α=mα+m∑i=1log(x(i))−2m∑i=1(2−θ)xα(i)log(x(i))(2−θ)xα(i)+θ−m∑i=1Ri(xα(i)log(x(i))1−xα(i)+(2−θ)xα(i)log(x(i))(2−θ)xα(i)+θ). | (3.4) |
Equations (3.3) and (3.4) do not possess a readily available closed-form solution when equated to zero. Consequently, numerical methods using the Newton-Raphson algorithm implemented in the R programming language are employed to obtain solutions.
The Fisher information matrix, which is required for obtaining the MLE and the corresponding asymptotic confidence intervals of the parameters, requires the second partial derivatives of the log-likelihood function with respect to the parameters. The Fisher matrix F is given by
F=[∂2L∂θ2∂2L∂θ∂α∂2L∂α∂θ∂2L∂α2.], | (3.5) |
These matrices should be positive definite at the MLE estimates of the parameters. The 2nd partial derivatives of the log-likelihood function, which are needed for the Fisher information matrix, are given by
∂2l∂θ2=−2mθ2+2m∑i=1(1−xα(i))2((2−θ)xα(i)+θ)2+m∑i=1(Ri(1−xα(i))2((2−θ)xα(i)+θ)2, | (3.6) |
∂2l∂α2=−mα2−m∑i=1((2−θ)(log(x(i)))2xα(i)(2−θ)xα(i)+θ−(2−θ)2(log(x(i)))2x2α(i)((2−θ)xα(i)+θ)2)+m∑i=1Ri(−2log(x(i))x2α(i)(1−xα(i))2−2log(x(i))xα(i)1−xα(i)−2(2−θ)log(x(i))xα(i)(2−θ)xα(i)+θ+α(2−θ)2(log(x(i)))2x2α(i)((2−θ)xα(i)+θ)2), | (3.7) |
∂2l∂θ∂α=2mθ−2m∑i=11−xα(i)(2−θ)xα(i)+θ−m∑i=1Ri(1−xα(i))(2−θ)xα(i)+θ, | (3.8) |
∂2l∂α∂θ=mα+m∑i=1log(x(i))−2m∑i=1(2−θ)log(x(i))xα(i)(2−θ)xα(i)+θ−m∑i=1Ri(log(x(i))xα(i)1−xα(i)+(2−θ)log(x(i))xα(i)(2−θ)xα(i)+θ). | (3.9) |
As was discussed above, the MLEs of the unknown parameters θ and α are not derived in closed forms. Therefore, the sampling distributions of the MLEs cannot be obtained analytically. Alternatively, we can compute the asymptotic confidence intervals of these parameters using one of the properties of the MLEs, which states that
(ˆθ,ˆα)∼N2((θ,α),ˆF−1) as n→∞, |
where ˆF−1 is the inverse of F evaluated at the MLEs of the parameters, respectively.
The preceding section underscored the challenges associated with calculating second-order derivatives for constructing asymptotic confidence intervals (ACIs) for the model's unknown parameters. Consequently, we turn our attention to employing bootstrapping techniques. Specifically, we consider the percentile bootstrap approach (Boot-p), as well as the bootstrap-t approach proposed by Efron [7], and the bootstrap-t method outlined by Hall [20].
(1) Utilizing the original data x=x(1),x(2),...,x(m), maximize Eqs (8) and (9) to obtain ˆθ and ˆα, respectively.
(2) Generate the PT-IIC sample x∗=x∗(1),x∗(2),...,x∗(m) based on the pre-specified PT-IIC scheme (R1,R2,...,Rm) from the GPUHLG distribution with parameters ˆθ and ˆα, using the algorithm detailed in Balakrishnan and Sandhu [4] and [3].
(3) Obtain the maximum likelihood estimates based on the bootstrap sample, denoting this estimate as ˆψ∗, where in our case ψ could be θ and α.
(4) Repeat Steps (2) and (3) for a total of N bootstrap iterations, obtaining ˆψ∗1,ˆψ∗2,...,ˆψ∗N boot, where ˆψ∗i=(ˆθ∗i,ˆα∗i) and i=1,2,3,...,N boot.
(5) Arrange ˆψ∗i in ascending order to obtain ˆψ∗(1),ˆψ∗(2),...,ˆψ∗(N boot).
Consider G1(z)=P(ˆψ∗≤z) to represent the cumulative distribution function of ˆψ∗. Introduce ˆψboot−p=G−11(z) for a given value of z. The estimated bootstrap-p 100(1−γ) confidence interval of ˆψ is then expressed as:
[ˆψboot−p(γ2),ˆψboot−p(1−γ2)]. | (3.10) |
(1) The same as the parametric Boot-p.
(2) The same as the parametric Boot-p.
(3) The same as the parametric Boot-p.
(4) Utilizing the asymptotic variance-covariance matrix, calculate the matrix I−1∗(∂ℓ∂θ,∂ℓ∂α).
(5) Calculate the statistic T∗ψ, defined as follows:
T∗ψ=(ˆψ∗−ˆψ)√^var(ˆψ∗). |
(6) Repeat Steps 2−5, N-Boot times and obtain T∗ψ1,T∗ψ2,...,T∗ψN boot.
(7) Arrange the values T∗ψ1,T∗ψ2,...,T∗ψN boot in ascending order to derive the ordered sequences T∗ψ(1),T∗ψ(2),...,T∗ψ(N boot).
Let G2(z)=P(T∗≤z) be the cumulative distribution function of T∗ for given z. Define ˆψboot−t=ˆψ+G−11(z)√^var(ˆψ∗).
Then, the approximate bootstrap-t 100(1−γ) CI of ˆψ=(ˆθ,ˆα), is given by
[ˆψboot−t(γ2),ˆψboot−p(1−γ2)]. | (3.11) |
A reliable alternative to the maximum likelihood approach is the maximum product spacing (MPS) method, which provides an approximation to the Kullback-Leibler information measure.
Examine a PT-IIC sample of size m, denoted as x=x(i), where i ranges from 1 to m. This sample is gathered using the progressive censoring scheme Si from the GPUHLG population, described by the probability density function (pdf) and cumulative distribution function (cdf) outlined in Eqs (2) and (3) respectively. The probability spacing (PS) function, excluding the constant component, can be formulated within this framework by utilizing Eqs (2) and (3) as demonstrated below:
Gs(θ,α|data)=m+1∏i=1(F(x(i))−F(x(i−1)))m∏i=1(1−F(x(i)))Ri=m+1∏i=1(θ(1−xα(i−1))(2−θ)xα(i−1)+θ−θ(1−xα(i))(2−θ)xα(i)+θ)m∏i=1(θ(1−xα(i))(2−θ)xα(i)+θ)Ri, | (3.12) |
and g(θ,α|data)=log(Gs(θ,α|data)) can be obtained as
g(θ,α|data)=m+1∑i=1log(θ(1−xα(i−1))((2−θ)xα(i))−θ(1−xα(i))((2−θ)xα(i−1))))−m+1∑i=1log((2−θ)xα(i−1)+θ)−m+1∑i=1log((2−θ)xα(i)+θ)+m+1∑i=1Rilog(θ(1−xα(i)))−m+1∑i=1Rilog((2−θ)xα(i)+θ). | (3.13) |
Upon deriving the first derivative of the function g(θ,α|data) with respect to θ and α, we obtain:
∂g(θ,α|data)∂θ=m∑i=1Riθ−m+1∑i=11−xα(i−1)(2−θ)xα(i−1)+θ−m+1∑i=11−xα(i)(2−θ)xα(i)+θ−m∑i=1Ri(1−xα(i))(2−θ)xα(i)+θ+m+1∑i=1(1−xα(i−1))((2−θ)xα(i)+θ)−(1−xα(i−1))((2−θ)xα(i−1)+θ)θ(1−xα(i−1))((2−θ)xα(i)+θ)−θ(1−xα(i))((2−θ)xα(i−1)+θ), | (3.14) |
∂g(θ,α|data)∂α=m+1∑i=1θ(2−θ)xα(i)(1−xα(i−1))log(x(i))+θxα(i)log(x(i))((2−θ)xα(i−1)+θ)θ(1−xα(i−1))((2−θ)xα(i)+θ)−θ(1−xα(i))((2−θ)xα(i−1)+θ)−m+1∑i=1θ(2−θ)xα(i−1)(1−xα(i))log(x(i−1))+θxα(i−1)log(x(i−1))((2−θ)xα(i)+θ)θ(1−xα(i−1))((2−θ)xα(i)+θ)−θ(1−xα(i))((2−θ)xα(i−1)+θ)−m+1∑i=1(2−θ)xα(i−1)log(x(i−1))(2−θ)xα(i−1)+θ−m∑i=1Rixα(i)log(x(i))1−xα(i)−m+1∑i=1(2−θ)xα(i)log(x(i))(2−θ)xα(i)+θ−m∑i=1(2−θ)Rixα(i)log(x(i))(2−θ)xα(i)+θ. | (3.15) |
Equations (3.14) and (3.15) lack closed-form analytical solutions when equated to zero. Consequently, numerical methods are employed to obtain solutions.
Within this section, the Bayesian estimation (BE) technique is employed for the estimation of the parameters θ and α. These parameters are presumed to be independent and adhere to a gamma prior distribution characterized by parameters a and b.
The gamma prior density function takes the following shape:
π(u)=baΓ(a)ua−1e−ub,u,a,b>0. | (4.1) |
Subsequently, the joint prior density of θ and α can be expressed as follows:
π(θ,α)=n∏i=1π(θ)π(α)∝(θα)a−1e−(θ+α)b. | (4.2) |
The joint posterior distribution function according to the Bayesian procedure is given by
π(θ,α|x_)=π(θ,α)L(x_)∫∞0∫∞0π(θ,α)L(x_)dθdα∝π(θ,α)L(x_). | (4.3) |
Substituting from Eqs (3.1) and (4.2) into Eq (4.3), we get
π(θ,α|x_)∝θa+2m−1αa+m−1e−(θ+α)b)m∏i=1xα−1(i)((2−θ)xα(i)+θ)2(1−xα(i)(2−θ)xα(i)+θ)Ri. | (4.4) |
The Bayesian estimator for a given function, denoted as l(ϕ), with respect to the squared error (SE) loss function, is defined as:
ˆϕSE=E[l(ϕ)|x]=∫ϕl(ϕ)π(ϕ|x)dϕ. | (4.5) |
The squared error (SE) loss function is a type of asymmetric loss function that assigns equal importance to both underestimation and overestimation. However, in various real-world scenarios, the gravity of underestimation might differ from that of overestimation, and the opposite could also be true. When dealing with such circumstances, a possible substitute for the SE loss function is the LINEX loss, characterized by:
(l(ϕ),ˆl(ϕ))=e{ˆl(ϕ)−l(ϕ)}−v(ˆl(ϕ)−l(ϕ))−1. |
In this context, when v>0, it signifies a greater significance of overestimation compared to underestimation, whereas for v<0, the opposite holds true. As v approaches zero, the loss function aligns with the standard squared error (SE) form. For a deeper understanding of this concept, additional information can be found in [21,22]. The Bayesian estimator (BE) for l(ϕ) under this loss function can be determined as follows:
ˆϕLN=E[e{−vl(ϕ)}|x]=−1vlog[∫ϕe{−vl(ϕ)}π(ϕ|x)dϕ]. | (4.6) |
Observing Eqs (4.5) and (4.6), it becomes apparent that the resulting estimates cannot be transformed into concise analytical forms. To manage this, the Markov chain Monte Carlo(MCMC)method, as outlined in [23], is employed to numerically summarize the posterior distribution. This approach avoids the need for calculating the normalization constant and is executed using the R programming language, as described in [7]. Hence, our next step involves implementing the MCMC methodology and generating posterior samples via the Metropolis-Hastings algorithm. This enables us to acquire the desired Bayesian estimators (BEs).
Markov chain Monte Carlo (MCMC)methods constitute a versatile simulation approach for obtaining samples from posterior distributions and calculating relevant posterior values. In fact, the MCMC samples can effectively encapsulate the full range of uncertainty regarding the parameter ϕ. By utilizing a kernel estimation technique on the posterior distribution, a comprehensive understanding can be obtained. For a more comprehensive exploration of MCMC principles, refer to sources such as [5,23,24,25,26,27].
Numerous methods exist for introducing random noise to create proposals, and a variety of approaches are available for the acceptance and rejection process. Techniques like Gibbs sampling and the Metropolis-Hastings algorithm are among the options for this purpose.
To implement the Metropolis-Hastings (MH) algorithm for the GPUHLG distribution, certain elements must be established: a proposal distribution and initial values for the unknown parameters θ and α. For the proposal distribution, we opt for a bivariate normal distribution, denoted as q((θ′,α′)|(θ,α))≡N2((θ,α),Sθ,α), wherein Sθ,α signifies the variance-covariance matrix. It is important to note that we must avoid generating negative observations, which are considered unacceptable. Regarding initial values, we employ the Maximum Likelihood Estimators (MLE) for θ and α, yielding (θ(0),α(0))=(ˆθ,ˆα). The selection of Sθ,α is based on the asymptotic variance-covariance matrix F−1(ˆθ,ˆα), with F(.) representing the Fisher information matrix. It is worth noting that the choice of Sθ,α holds significance in the MH algorithm, impacting the acceptance rate.
In this context, the sequential stages of the MH algorithm for drawing a sample from the posterior density, as indicated in Eq (22), unfold in the following manner:
Step 1. Initialize the value of η as η(0)=(ˆθ,ˆα).
Step 2. For i=1,2,…,M, iterate through the following process:
(1) Set η=η(i−1).
(2) Generate a fresh candidate parameter value δ from the bivariate normal distribution N2(logη,Sθ,α).
(3) Set η′=exp(δ).
(4) Compute β using the formula β=π(η′|x)π(η|x), where π(⋅) represents the posterior density as defined in Eq (22).
(5) Generate a sample u from the uniform U(0,1); distribution.
(6) Accept or reject the new candidate η′
{Ifu≤βsetη(i)=η′otherwisesetη(i)=η. |
Ultimately, after obtaining a set of random samples of size M from the posterior density, it is common practice to discard a portion of the initial samples (burn-in), retaining the remaining samples for further analysis. Specifically, the Bayesian estimators (BEs) of the parameters θ and α using the squared error (SE) loss function, as outlined in Eq (4.5), can be computed as
ˆθSE=1M−lBM∑l=lBθ(l),ˆαSE=1M−lBM∑l=lBα(l). | (4.7) |
Moreover, the Bayesian estimators (BEs) for the parameters θ and α, employing the LINEX loss function, as provided in Eq (4.6), can be expressed as follows:
ˆθLN=−1vlog[1M−lBM∑i=lBe{−vθ(i)}]ˆαLN=−1vlog[1M−lBM∑i=lBe{−vα(i)}]. | (4.8) |
Here, lB denotes the count of burn-in samples.
The elicitation of the hyper-parameters will depend on informative priors. These informative priors are derived from the MLEs for (θ,α) by equating the mean and variance of (ˆθj,ˆαj) with those of the specified priors (Gamma priors). Here, j=1,2,…,k, and k corresponds to the number of available samples from the GPUHLG distribution (Dey et al. [28]). By equating the moments of (ˆθj,ˆαj) with the moments of the gamma priors, the following equations are derived:
1kk∑j=1ˆθj=a1b1,1k−1k∑j=1(ˆθj−1kk∑j=1ˆθj)2=a1b21,1kk∑j=1ˆαj=a2b2and1k−1k∑j=1(ˆαj−1kk∑j=1ˆαj)2=a2b22. |
By solving the aforementioned equations, the estimated hyper-parameters can be expressed as follows:
a1=(1k∑kj=1ˆθj)21k−1∑kj=1(ˆθj−1k∑kj=1ˆθj)2,b1=1k∑kj=1ˆθj1k−1∑kj=1(ˆθj−1k∑kj=1ˆθj)2a2=(1k∑kj=1ˆαj)21k−1∑kj=1(ˆαj−1k∑kj=1ˆαj)2,b2=1k∑kj=1ˆαj1k−1∑kj=1(ˆαj−1k∑kj=1ˆαj)2. | (4.9) |
We construct the highest posterior density (HPD) intervals for the unobservable parameters α and θ of the GPUHLG distribution within the context of the PT-IIC. These intervals are established using the samples acquired through the aforementioned MH approach from the previous section [29]. In the subsequent case study, let α(δ) and θ(δ) represent the δ-th quantiles of α and θ, respectively. In other words,
(α(δ),θ(δ))=inf{(α,θ):Π((α,θ)|z)≥δ}. |
Here, 0<δ<1, and Π(⋅) represents the posterior distribution of α and θ. Importantly, it is worth noting that for a specific set of α and θ, an effective estimator derived from simulating π((α,θ)|z) can be computed as:
Π((α,θ)|z)=1M−lBM∑i=lBI(α,θ)≤(α,θ). |
Here, I(α,θ)≤(α,θ) is the indicator function. The proper estimate is then determined as
ˆΠ((α,θ)|z)={0if (α,θ)<(α(lB),θ(lB))i∑j=lBωjif (α(i),θ(i))<(α,θ)<(α(i+1),θ(i+1))1if (α,θ)>(α(M),θ(M)) |
where ωj=1M−lB and (α(j),θ(j)) are the ordered values of (αj,θj). Now, for i=lB,…,M, (α(δ),θ(δ)) may be estimated by
(˜α(δ),˜θ(δ))={(α(lB),θ(l−B))ifδ=0(α(i),θ(i))if i−1∑j=lBωj<δ<i∑j=lBωj. |
Furthermore, let us determine a 100(1−δ) HPD credible interval for α and θ:
HPDαj=(˜α(jM),˜α(j+(1−δ)MM))&HPDλj=(˜θ(jM),˜θ(j+(1−δ)MM)) |
for j=lB,…,[δM], where [a] represents indicates the largest integer ≤a. We need to choose HPDj∗ from one of many HPD′js with the narrowest width.
The aim of this section is to assess and compare the efficiencies of the different estimation approaches discussed in the previous sections. To achieve this, a simulation study is conducted to observe the performances of the proposed methods and to gauge the statistical prowesses of the estimators within the framework of a PT-IIC scheme. Furthermore, a flood dataset is analyzed to offer a practical illustration. All calculations were executed using the R programming language.
In this subsection, a Monte Carlo simulation study is carried out to evaluate the performance of distinct estimation methods – namely, MLE, MPS, and BE – within the framework of the PT-IIC scheme applied to the GPUHLG distribution. We generate 1000 sets of random data from the GPUHLG distribution under the PT-IIC, employing parameters θ=0.5 and α=1.5. The configuration of the PT-IIC scheme is established through predetermined values of n and m, alongside various patterns for censoring items Ri, where i=1,2,…,m, as detailed in Table 1. These patterns can be classified into four distinct cases.
n | m | Censoring Scheme (R1,R2,…,Rm) | Scheme |
20 | 10 | (10,0∗9) | R1 |
(0∗9,10) | R2 | ||
(0∗4,5,5,0∗4) | R3 | ||
(1∗10) | R4 | ||
15 | (5,0∗14) | R5 | |
(0∗14,5) | R6 | ||
(0∗7,2,3,0∗7) | R7 | ||
(1∗5,0∗10) | R8 | ||
30 | 20 | (10,0∗19) | R9 |
(0∗19,10) | R10 | ||
(0∗9,5,5,0∗9) | R11 | ||
(1∗10,0∗10) | R12 | ||
25 | (5,0∗24) | R13 | |
(0∗24,5) | R14 | ||
(0∗12,5,0∗12) | R15 | ||
(1∗5,0∗20) | R16 | ||
40 | 20 | (20,0∗19) | R17 |
(0∗19,20) | R18 | ||
(0∗9,10,10,0∗9) | R19 | ||
(1∗20) | R20 | ||
30 | (10,0∗29) | R21 | |
(0∗29,10) | R22 | ||
(0∗14,5,5,0∗14) | R23 | ||
(1∗10,0∗20) | R24 | ||
60 | 40 | (20,0∗39) | R25 |
(0∗39,20) | R26 | ||
(0∗19,10,10,0∗19) | R27 | ||
(1∗20,0∗20) | R28 | ||
50 | (10,0∗49) | R29 | |
(0∗49,10) | R30 | ||
(0∗24,5,5,0∗24) | R31 | ||
(1∗10,0∗30) | R32 |
● In the first pattern, the removal of items (n−m) takes place during life testing, coinciding with the occurrence of the first failure item. This scenario is represented by patterns such as R1,R5,…,R29.
● Conversely, the second pattern involves the removal of items occurring with the last m failure items, and this is exemplified by patterns like R2,R6,…,R30.
● Moving to the third pattern, the removal of items happens at the median of the m items, as demonstrated by patterns R3,R7,…,R31.
● Lastly, the final pattern arises when equal items are removed, whenever possible, at each m stage. This pattern is characterized by representations such as R4,R8,…,R32.
Steps of the Monte Carlo simulation:
Step 1: Generate m sets of PT-IIC random data points from the GPUHLG(θ,α) distribution using the algorithm proposed by [3]. Use the removal pattern of items from Table 1.
Step 2: Obtain MLE and MPS estimates for the parameters θ and α. Additionally, calculate the variance-covariance matrix of MLEs.
Step 3: Compute confidence interval estimates: Asy-CI, Boot-p, and Boot-t.
Step 4: Compute BEs using the MH algorithm as follows:
(1) Consider two scenarios for prior distributions. The first scenario involves an informative prior (INF), wherein hyper-parameter values are computed using Eq (4.9). Specifically, we generate 1000 complete samples, each consisting of 60 data points, from a GPUHLG(θ=0.5,α=1.5) distribution as past samples and compute their MLEs (ˆθ,ˆα). Subsequently, by utilizing Eq (4.9), we can determine the hyper-parameter values as follows: a1=6.52, b1=18.22, a2=49.67, and b2=27.50.
(2) The second scenario involves a non-informative prior (Non-INF), where hyper-parameter values are set to a1=b1=a2=b2=0. This leads to the prior distributions π(θ)=1θ and π(α)=1α.
(3) Generate 10,000 samples of α and θ for both INF and Non-INF prior cases from the posterior density using MCMC and utilizing the MH algorithm. Use the initial MLEs and their variance-covariance matrix, along with the given PT-IIC data x=(x(1),x(2),…,x(m)).
(4) The initial 2,000 samples are discarded as burn-in from the overall set of 10,000 samples generated from the posterior density.
(5) Compute BEs of α and θ using various loss functions: SE and LINEX (with v=−0.5(LN1) and v=0.5(LN2)), as defined by Eqs (4.7) and (4.8).
(6) Finally, calculate the HPD interval using the posterior samples.
Step 5: Repeat Steps 1–4 a total of 1,000 times and save all the estimates.
Step 6: Calculate statistical metrics for point estimates: mean (Avg.) estimate and root mean square error (RMSE) estimate. These calculations can be carried out using the following formulas:
Avg.(ϕ)=110001000∑l=1ˆϕl,RMSE(ϕ)=√110001000∑l=1(ˆϕl−ϕ)2. |
In this context, ϕ represents the parameter, while ˆϕ denotes the estimated value of that parameter.
Step 7: Compute statistical performance measures for interval estimates: average interval length (AIL) and coverage probability (CP) in percentage.
To provide point estimations, we present the results of Avg. and RMSE estimates for various PT-IIC schemes in Tables 2 and 3, corresponding to θ=0.5 and α=1.5, respectively. In terms of interval estimation, Tables 4.a and 4.b display the outcomes for AILs and CPs for θ=0.5 and α=1.5, respectively.
n | m | Scheme | Classical | BE: Non-INF | BE: INF | ||||||||
MLE | MPS | SE | LN1 | LN2 | SE | LN1 | LN2 | ||||||
20 | 10 | R1 | Avg. | 0.4765 | 0.2380 | 0.9846 | 0.9935 | 0.4801 | 0.4454 | 0.4502 | 0.4407 | ||
RMSE | 0.4441 | 0.3613 | 2.0388 | 2.4955 | 0.5909 | 0.1304 | 0.1298 | 0.1311 | |||||
R2 | Avg. | 0.4091 | 0.3442 | 0.7972 | 0.8928 | 0.4799 | 0.4641 | 0.4686 | 0.4597 | ||||
RMSE | 0.3798 | 0.3491 | 1.6437 | 2.2714 | 0.6062 | 0.1487 | 0.1493 | 0.1483 | |||||
R3 | Avg. | 0.4332 | 0.2202 | 0.9129 | 0.7361 | 0.4940 | 0.4576 | 0.4622 | 0.4531 | ||||
RMSE | 0.4277 | 0.3734 | 1.8939 | 2.0204 | 0.6852 | 0.1508 | 0.1512 | 0.1505 | |||||
R4 | Avg. | 0.4361 | 0.2869 | 0.8717 | 1.0763 | 0.4961 | 0.4662 | 0.4709 | 0.4617 | ||||
RMSE | 0.4019 | 0.3500 | 1.7581 | 2.5829 | 0.7831 | 0.1327 | 0.1331 | 0.1325 | |||||
15 | R5 | Avg. | 0.4591 | 0.2873 | 0.7439 | 1.1386 | 0.5258 | 0.4764 | 0.4813 | 0.4717 | |||
RMSE | 0.3731 | 0.3332 | 1.3680 | 2.5534 | 0.6915 | 0.1004 | 0.1006 | 0.1005 | |||||
R6 | Avg. | 0.4389 | 0.3453 | 0.6972 | 1.0921 | 0.4856 | 0.4886 | 0.4933 | 0.4840 | ||||
RMSE | 0.3344 | 0.3099 | 1.1001 | 2.4799 | 0.4603 | 0.1070 | 0.1078 | 0.1063 | |||||
R7 | Avg. | 0.4426 | 0.2826 | 0.7559 | 1.2912 | 0.4837 | 0.4850 | 0.4897 | 0.4803 | ||||
RMSE | 0.3620 | 0.3343 | 1.3448 | 2.8913 | 0.4890 | 0.1117 | 0.1124 | 0.1111 | |||||
R8 | Avg. | 0.4538 | 0.2880 | 0.8059 | 1.1692 | 0.4735 | 0.4824 | 0.4873 | 0.4778 | ||||
RMSE | 0.3740 | 0.3347 | 1.5222 | 2.6285 | 0.4553 | 0.1016 | 0.1021 | 0.1014 | |||||
30 | 20 | R9 | Avg. | 0.4485 | 0.3078 | 0.5471 | 0.9019 | 0.4331 | 0.5034 | 0.5082 | 0.4986 | ||
RMSE | 0.2936 | 0.2849 | 0.6704 | 1.7669 | 0.2984 | 0.0824 | 0.0838 | 0.0814 | |||||
R10 | Avg. | 0.4323 | 0.3668 | 0.5274 | 0.8331 | 0.4448 | 0.5238 | 0.5285 | 0.5193 | ||||
RMSE | 0.2648 | 0.2602 | 0.6618 | 1.7338 | 0.3150 | 0.0926 | 0.0948 | 0.0906 | |||||
R11 | Avg. | 0.4362 | 0.3034 | 0.5479 | 0.9766 | 0.4466 | 0.5200 | 0.5248 | 0.5154 | ||||
RMSE | 0.2899 | 0.2892 | 0.6457 | 2.0462 | 0.4408 | 0.0969 | 0.0991 | 0.0949 | |||||
R12 | Avg. | 0.4412 | 0.3081 | 0.5295 | 1.0421 | 0.4448 | 0.5151 | 0.5200 | 0.5104 | ||||
RMSE | 0.2929 | 0.2870 | 0.6151 | 2.1183 | 0.4526 | 0.0904 | 0.0923 | 0.0887 | |||||
25 | R13 | Avg. | 0.4434 | 0.3232 | 0.5299 | 0.8705 | 0.4386 | 0.5121 | 0.5167 | 0.5077 | |||
RMSE | 0.2865 | 0.2784 | 0.6843 | 1.6652 | 0.2974 | 0.0737 | 0.0755 | 0.0722 | |||||
R14 | Avg. | 0.4369 | 0.3555 | 0.4885 | 0.7234 | 0.4391 | 0.5210 | 0.5255 | 0.5167 | ||||
RMSE | 0.2657 | 0.2574 | 0.3718 | 1.3427 | 0.2772 | 0.0770 | 0.0792 | 0.0751 | |||||
R15 | Avg. | 0.4385 | 0.3222 | 0.5079 | 0.9652 | 0.4424 | 0.5209 | 0.5255 | 0.5165 | ||||
RMSE | 0.2847 | 0.2789 | 0.4529 | 2.0063 | 0.3065 | 0.0795 | 0.0817 | 0.0775 | |||||
R16 | Avg. | 0.4422 | 0.3250 | 0.5143 | 0.8986 | 0.4416 | 0.5145 | 0.5190 | 0.5100 | ||||
RMSE | 0.2873 | 0.2784 | 0.5201 | 1.7517 | 0.3040 | 0.0754 | 0.0772 | 0.0738 | |||||
40 | 20 | R17 | Avg. | 0.4543 | 0.3089 | 0.4947 | 0.7791 | 0.4277 | 0.4994 | 0.5041 | 0.4948 | ||
RMSE | 0.2894 | 0.2816 | 0.4169 | 1.4385 | 0.2869 | 0.0782 | 0.0793 | 0.0775 | |||||
R18 | Avg. | 0.4285 | 0.3771 | 0.4773 | 0.7596 | 0.4307 | 0.5296 | 0.5340 | 0.5252 | ||||
RMSE | 0.2650 | 0.2618 | 0.3458 | 1.4479 | 0.2763 | 0.1024 | 0.1047 | 0.1002 | |||||
R19 | Avg. | 0.4374 | 0.3010 | 0.4890 | 0.8803 | 0.4314 | 0.5250 | 0.5297 | 0.5205 | ||||
RMSE | 0.2922 | 0.2920 | 0.4109 | 1.7176 | 0.3209 | 0.1014 | 0.1037 | 0.0994 | |||||
R20 | Avg. | 0.4375 | 0.3392 | 0.4915 | 0.6960 | 0.4331 | 0.5245 | 0.5291 | 0.5200 | ||||
RMSE | 0.2719 | 0.2687 | 0.5183 | 1.1427 | 0.3153 | 0.0941 | 0.0963 | 0.0921 | |||||
30 | R21 | Avg. | 0.4398 | 0.3361 | 0.4652 | 0.5819 | 0.4318 | 0.5220 | 0.5264 | 0.5177 | |||
RMSE | 0.2580 | 0.2581 | 0.3050 | 0.6697 | 0.2642 | 0.0755 | 0.0778 | 0.0735 | |||||
R22 | Avg. | 0.4334 | 0.3748 | 0.4622 | 0.5112 | 0.4345 | 0.5368 | 0.5411 | 0.5326 | ||||
RMSE | 0.2388 | 0.2363 | 0.2776 | 0.3785 | 0.2462 | 0.0816 | 0.0844 | 0.0791 | |||||
R23 | Avg. | 0.4348 | 0.3350 | 0.4699 | 0.6156 | 0.4344 | 0.5354 | 0.5398 | 0.5310 | ||||
RMSE | 0.2577 | 0.2597 | 0.3094 | 1.0343 | 0.2655 | 0.0852 | 0.0879 | 0.0826 | |||||
R24 | Avg. | 0.4376 | 0.3377 | 0.4631 | 0.5999 | 0.4298 | 0.5294 | 0.5339 | 0.5251 | ||||
RMSE | 0.2596 | 0.2588 | 0.3035 | 0.8299 | 0.2660 | 0.0793 | 0.0819 | 0.0769 | |||||
60 | 40 | R25 | Avg. | 0.4405 | 0.3549 | 0.4486 | 0.4854 | 0.4293 | 0.5313 | 0.5355 | 0.5272 | ||
RMSE | 0.2210 | 0.2267 | 0.2443 | 0.3704 | 0.2267 | 0.0717 | 0.0743 | 0.0693 | |||||
R26 | Avg. | 0.4368 | 0.3943 | 0.4521 | 0.4731 | 0.4369 | 0.5492 | 0.5532 | 0.5452 | ||||
RMSE | 0.2004 | 0.2023 | 0.2185 | 0.2436 | 0.2081 | 0.0818 | 0.0849 | 0.0790 | |||||
R27 | Avg. | 0.4372 | 0.3552 | 0.4514 | 0.4806 | 0.4321 | 0.5487 | 0.5529 | 0.5446 | ||||
RMSE | 0.2200 | 0.2282 | 0.2433 | 0.2829 | 0.2281 | 0.0827 | 0.0859 | 0.0797 | |||||
R28 | Avg. | 0.4383 | 0.3572 | 0.4509 | 0.4824 | 0.4314 | 0.5426 | 0.5469 | 0.5384 | ||||
RMSE | 0.2205 | 0.2268 | 0.2436 | 0.3004 | 0.2270 | 0.0782 | 0.0813 | 0.0754 | |||||
50 | R29 | Avg. | 0.4323 | 0.3614 | 0.4420 | 0.4608 | 0.4274 | 0.5402 | 0.5442 | 0.5363 | |||
RMSE | 0.1918 | 0.2080 | 0.2080 | 0.2308 | 0.1989 | 0.0768 | 0.0796 | 0.0742 | |||||
R30 | Avg. | 0.4316 | 0.3832 | 0.4419 | 0.4564 | 0.4298 | 0.5460 | 0.5498 | 0.5422 | ||||
RMSE | 0.1816 | 0.1913 | 0.1930 | 0.2031 | 0.1871 | 0.0800 | 0.0828 | 0.0773 | |||||
R31 | Avg. | 0.4312 | 0.3624 | 0.4432 | 0.4611 | 0.4290 | 0.5475 | 0.5516 | 0.5436 | ||||
RMSE | 0.1908 | 0.2071 | 0.2063 | 0.2214 | 0.1984 | 0.0814 | 0.0844 | 0.0786 | |||||
R32 | Avg. | 0.4321 | 0.3635 | 0.4414 | 0.4617 | 0.4269 | 0.5419 | 0.5460 | 0.5379 | ||||
RMSE | 0.1920 | 0.2073 | 0.2087 | 0.2512 | 0.1997 | 0.0776 | 0.0805 | 0.0749 |
n | m | Scheme | Classical | BE: Non-INF | BE: INF | ||||||||
MLE | MPS | SE | LN1 | LN2 | SE | LN1 | LN2 | ||||||
20 | 10 | R1 | Avg. | 1.7721 | 2.3772 | 1.9696 | 2.0637 | 1.8813 | 1.1786 | 1.1833 | 1.1741 | ||
RMSE | 0.6475 | 1.1949 | 0.8568 | 0.9146 | 0.8111 | 0.3598 | 0.3559 | 0.3636 | |||||
R2 | Avg. | 1.8662 | 2.0620 | 1.9848 | 2.0582 | 1.9140 | 1.2272 | 1.2320 | 1.2225 | ||||
RMSE | 0.7424 | 0.8617 | 0.8921 | 0.9282 | 0.8637 | 0.4044 | 0.4015 | 0.4073 | |||||
R3 | Avg. | 1.8394 | 2.3798 | 1.9934 | 2.0731 | 1.9169 | 1.2184 | 1.2232 | 1.2136 | ||||
RMSE | 0.7082 | 1.2040 | 0.8852 | 0.9245 | 0.8546 | 0.3489 | 0.3456 | 0.3521 | |||||
R4 | Avg. | 1.8076 | 2.1490 | 1.9565 | 2.0315 | 1.8842 | 1.1983 | 1.2030 | 1.1936 | ||||
RMSE | 0.6521 | 0.9279 | 0.8278 | 0.8680 | 0.7953 | 0.3423 | 0.3385 | 0.3461 | |||||
15 | R5 | Avg. | 1.7452 | 2.1438 | 1.8621 | 1.9333 | 1.7937 | 1.1700 | 1.1747 | 1.1655 | |||
RMSE | 0.5699 | 0.9062 | 0.7314 | 0.7689 | 0.7015 | 0.3429 | 0.3386 | 0.3472 | |||||
R6 | Avg. | 1.7552 | 1.9731 | 1.8415 | 1.9030 | 1.7818 | 1.1819 | 1.1866 | 1.1773 | ||||
RMSE | 0.5667 | 0.7302 | 0.6866 | 0.7179 | 0.6613 | 0.3337 | 0.3295 | 0.3380 | |||||
R7 | Avg. | 1.7670 | 2.1367 | 1.8801 | 1.9459 | 1.8164 | 1.1849 | 1.1896 | 1.1803 | ||||
RMSE | 0.5879 | 0.8991 | 0.7258 | 0.7592 | 0.6988 | 0.3332 | 0.3290 | 0.3374 | |||||
R8 | Avg. | 1.7505 | 2.1170 | 1.8693 | 1.9356 | 1.8046 | 1.1769 | 1.1815 | 1.1723 | ||||
RMSE | 0.5712 | 0.8722 | 0.7035 | 0.7389 | 0.6750 | 0.3377 | 0.3334 | 0.3420 | |||||
30 | 20 | R9 | Avg. | 1.6654 | 1.9584 | 1.7773 | 1.8248 | 1.7310 | 1.1903 | 1.1947 | 1.1860 | ||
RMSE | 0.4334 | 0.6564 | 0.5360 | 0.5649 | 0.5110 | 0.3170 | 0.3128 | 0.3211 | |||||
R10 | Avg. | 1.6761 | 1.8228 | 1.7498 | 1.7903 | 1.7102 | 1.2080 | 1.2123 | 1.2037 | ||||
RMSE | 0.4335 | 0.5349 | 0.5112 | 0.5334 | 0.4921 | 0.3042 | 0.3001 | 0.3082 | |||||
R11 | Avg. | 1.6814 | 1.9459 | 1.7806 | 1.8243 | 1.7377 | 1.2106 | 1.2150 | 1.2063 | ||||
RMSE | 0.4442 | 0.6433 | 0.5415 | 0.5649 | 0.5217 | 0.3022 | 0.2982 | 0.3063 | |||||
R12 | Avg. | 1.6722 | 1.9322 | 1.7805 | 1.8245 | 1.7373 | 1.2053 | 1.2097 | 1.2010 | ||||
RMSE | 0.4343 | 0.6262 | 0.5381 | 0.5625 | 0.5173 | 0.3051 | 0.3010 | 0.3092 | |||||
30 | 25 | R13 | Avg. | 1.6717 | 1.9147 | 1.7567 | 1.7981 | 1.7161 | 1.1986 | 1.2029 | 1.1943 | ||
RMSE | 0.4221 | 0.5972 | 0.5087 | 0.5337 | 0.4871 | 0.3065 | 0.3023 | 0.3106 | |||||
R14 | Avg. | 1.6674 | 1.8303 | 1.7325 | 1.7695 | 1.6961 | 1.2062 | 1.2105 | 1.2019 | ||||
RMSE | 0.4060 | 0.5111 | 0.4729 | 0.4943 | 0.4542 | 0.2997 | 0.2956 | 0.3038 | |||||
R15 | Avg. | 1.6760 | 1.9057 | 1.7580 | 1.7979 | 1.7188 | 1.2070 | 1.2113 | 1.2027 | ||||
RMSE | 0.4222 | 0.5868 | 0.5152 | 0.5376 | 0.4955 | 0.2990 | 0.2949 | 0.3031 | |||||
R16 | Avg. | 1.6708 | 1.9006 | 1.7512 | 1.7917 | 1.7115 | 1.2036 | 1.2080 | 1.1993 | ||||
RMSE | 0.4174 | 0.5804 | 0.5006 | 0.5241 | 0.4802 | 0.3018 | 0.2976 | 0.3059 | |||||
40 | 20 | R17 | Avg. | 1.6423 | 1.9368 | 1.7615 | 1.8045 | 1.7198 | 1.2053 | 1.2095 | 1.2011 | ||
RMSE | 0.4002 | 0.6245 | 0.5011 | 0.5285 | 0.4772 | 0.3026 | 0.2986 | 0.3066 | |||||
R18 | Avg. | 1.6707 | 1.7935 | 1.7531 | 1.7878 | 1.7191 | 1.2422 | 1.2464 | 1.2380 | ||||
RMSE | 0.4195 | 0.5051 | 0.4935 | 0.5120 | 0.4775 | 0.2803 | 0.2766 | 0.2840 | |||||
R19 | Avg. | 1.6661 | 1.9161 | 1.7755 | 1.8133 | 1.7383 | 1.2417 | 1.2459 | 1.2375 | ||||
RMSE | 0.4163 | 0.6018 | 0.5165 | 0.5354 | 0.5006 | 0.2777 | 0.2740 | 0.2815 | |||||
R20 | Avg. | 1.6556 | 1.8383 | 1.7492 | 1.7841 | 1.7149 | 1.2351 | 1.2393 | 1.2310 | ||||
RMSE | 0.4008 | 0.5261 | 0.4867 | 0.5055 | 0.4703 | 0.2806 | 0.2768 | 0.2844 | |||||
30 | R21 | Avg. | 1.6506 | 1.8522 | 1.7232 | 1.7565 | 1.6905 | 1.2214 | 1.2256 | 1.2173 | |||
RMSE | 0.3815 | 0.5203 | 0.4436 | 0.4639 | 0.4255 | 0.2849 | 0.2809 | 0.2888 | |||||
R22 | Avg. | 1.6472 | 1.7643 | 1.7021 | 1.7306 | 1.6740 | 1.2325 | 1.2367 | 1.2284 | ||||
RMSE | 0.3663 | 0.4364 | 0.4206 | 0.4370 | 0.4059 | 0.2737 | 0.2697 | 0.2776 | |||||
R23 | Avg. | 1.6552 | 1.8408 | 1.7213 | 1.7521 | 1.6909 | 1.2344 | 1.2386 | 1.2303 | ||||
RMSE | 0.3830 | 0.5095 | 0.4434 | 0.4611 | 0.4277 | 0.2731 | 0.2692 | 0.2771 | |||||
R24 | Avg. | 1.6502 | 1.8340 | 1.7250 | 1.7561 | 1.6944 | 1.2308 | 1.2350 | 1.2267 | ||||
RMSE | 0.3765 | 0.5002 | 0.4431 | 0.4613 | 0.4270 | 0.2757 | 0.2717 | 0.2796 | |||||
60 | 40 | R25 | Avg. | 1.6030 | 1.7586 | 1.6638 | 1.6874 | 1.6405 | 1.2544 | 1.2584 | 1.2504 | ||
RMSE | 0.2937 | 0.3927 | 0.3486 | 0.3630 | 0.3357 | 0.2522 | 0.2483 | 0.2560 | |||||
R26 | Avg. | 1.5999 | 1.6826 | 1.6436 | 1.6634 | 1.6239 | 1.2714 | 1.2753 | 1.2675 | ||||
RMSE | 0.2813 | 0.3275 | 0.3297 | 0.3404 | 0.3200 | 0.2355 | 0.2318 | 0.2392 | |||||
R27 | Avg. | 1.6060 | 1.7448 | 1.6650 | 1.6865 | 1.6437 | 1.2727 | 1.2766 | 1.2688 | ||||
RMSE | 0.2925 | 0.3799 | 0.3512 | 0.3628 | 0.3407 | 0.2343 | 0.2306 | 0.2380 | |||||
R28 | Avg. | 1.6029 | 1.7395 | 1.6603 | 1.6818 | 1.6391 | 1.2704 | 1.2744 | 1.2665 | ||||
RMSE | 0.2875 | 0.3722 | 0.3404 | 0.3524 | 0.3296 | 0.2364 | 0.2327 | 0.2401 | |||||
50 | R29 | Avg. | 1.6029 | 1.7340 | 1.6472 | 1.6676 | 1.6270 | 1.2656 | 1.2696 | 1.2617 | |||
RMSE | 0.2684 | 0.3534 | 0.3059 | 0.3182 | 0.2947 | 0.2406 | 0.2368 | 0.2444 | |||||
R30 | Avg. | 1.5979 | 1.6890 | 1.6329 | 1.6511 | 1.6148 | 1.2744 | 1.2783 | 1.2705 | ||||
RMSE | 0.2559 | 0.3099 | 0.2854 | 0.2962 | 0.2754 | 0.2319 | 0.2282 | 0.2356 | |||||
R31 | Avg. | 1.6025 | 1.7255 | 1.6466 | 1.6663 | 1.6271 | 1.2742 | 1.2782 | 1.2703 | ||||
RMSE | 0.2660 | 0.3449 | 0.3082 | 0.3200 | 0.2975 | 0.2321 | 0.2284 | 0.2358 | |||||
R32 | Avg. | 1.6008 | 1.7235 | 1.6465 | 1.6662 | 1.6270 | 1.2721 | 1.2760 | 1.2682 | ||||
RMSE | 0.2633 | 0.3415 | 0.3039 | 0.3158 | 0.2931 | 0.2342 | 0.2305 | 0.2379 |
n | m | Scheme | Asy-CI | Boot-p | Boot-t | HPD: Non-INF | HPD: INF | |||||||
AIL | CP | AIL | CP | AIL | CP | AIL | CP | AIL | CP | |||||
20 | 10 | R1 | 1.4189 | 95.9 | 1.5415 | 95.9 | 0.7608 | 88.4 | 4.8626 | 95.0 | 0.5204 | 99.1 | ||
R2 | 1.1619 | 96.1 | 1.2247 | 98.2 | 0.6802 | 89.5 | 3.2465 | 95.1 | 0.6088 | 97.7 | ||||
R3 | 1.3180 | 96.5 | 1.4333 | 97.4 | 0.5603 | 91.3 | 3.9636 | 95.1 | 0.6048 | 99.5 | ||||
R4 | 1.2576 | 96.4 | 1.3209 | 95.5 | 0.8746 | 92.0 | 3.6755 | 95.0 | 0.5620 | 99.2 | ||||
15 | R5 | 1.2277 | 95.6 | 1.2477 | 96.1 | 0.6493 | 92.6 | 2.6191 | 95.1 | 0.3386 | 99.5 | |||
R6 | 1.1148 | 95.5 | 1.1275 | 96.5 | 0.5890 | 90.4 | 2.3954 | 95.0 | 0.3972 | 99.7 | ||||
R7 | 1.1773 | 95.2 | 1.1608 | 96.8 | 0.6258 | 89.5 | 2.8261 | 95.1 | 0.4248 | 99.7 | ||||
R8 | 1.2193 | 95.3 | 1.2128 | 95.9 | 0.5943 | 88.9 | 3.0876 | 95.1 | 0.3578 | 99.2 | ||||
30 | 20 | R9 | 1.0927 | 96.7 | 1.0943 | 95.1 | 0.6490 | 91.3 | 1.3973 | 95.1 | 0.2841 | 99.5 | ||
R10 | 0.9981 | 96.3 | 0.9243 | 97.7 | 0.5944 | 93.0 | 1.1855 | 95.2 | 0.3108 | 98.7 | ||||
R11 | 1.0667 | 96.1 | 1.0269 | 98.2 | 0.5948 | 92.1 | 1.4141 | 95.0 | 0.3176 | 99.3 | ||||
R12 | 1.0805 | 96.1 | 1.0777 | 98.2 | 0.6145 | 89.9 | 1.3295 | 95.0 | 0.3026 | 98.3 | ||||
25 | R13 | 1.0243 | 95.1 | 0.9469 | 96.3 | 0.6274 | 95.1 | 1.2047 | 95.2 | 0.2698 | 99.1 | |||
R14 | 0.9742 | 96.0 | 0.8937 | 95.4 | 0.6363 | 92.3 | 1.0922 | 95.1 | 0.2675 | 98.0 | ||||
R15 | 1.0104 | 95.7 | 0.9589 | 97.3 | 0.6613 | 91.1 | 1.1901 | 95.2 | 0.2783 | 98.4 | ||||
R16 | 1.0229 | 95.1 | 0.9508 | 96.1 | 0.6376 | 90.6 | 1.1745 | 95.0 | 0.2655 | 98.7 | ||||
40 | 20 | R17 | 1.0921 | 96.7 | 1.0707 | 95.2 | 0.6702 | 91.7 | 1.1492 | 95.1 | 0.2697 | 98.8 | ||
R18 | 0.9883 | 96.7 | 0.9653 | 95.2 | 0.5982 | 93.2 | 1.0353 | 95.1 | 0.3432 | 99.9 | ||||
R19 | 1.0724 | 96.3 | 1.0343 | 97.8 | 0.6204 | 93.0 | 1.1892 | 95.0 | 0.3265 | 99.9 | ||||
R20 | 1.0230 | 96.5 | 0.9883 | 95.0 | 0.6683 | 92.6 | 1.0704 | 95.1 | 0.3059 | 99.9 | ||||
30 | R21 | 0.9616 | 96.3 | 0.8855 | 95.4 | 0.6230 | 94.4 | 0.9886 | 96.0 | 0.2726 | 99.6 | |||
R22 | 0.9058 | 96.0 | 0.7910 | 95.0 | 0.6209 | 94.7 | 0.9068 | 95.2 | 0.2673 | 98.8 | ||||
R23 | 0.9501 | 95.9 | 0.8675 | 98.0 | 0.5978 | 95.1 | 1.0082 | 95.1 | 0.2681 | 98.3 | ||||
R24 | 0.9603 | 95.9 | 0.8720 | 97.5 | 0.6431 | 94.9 | 0.9898 | 95.2 | 0.2638 | 99.1 | ||||
60 | 40 | R25 | 0.8883 | 95.7 | 0.7760 | 98.3 | 0.6047 | 93.4 | 0.8285 | 95.3 | 0.2492 | 97.9 | ||
R26 | 0.8094 | 96.8 | 0.6893 | 96.5 | 0.6022 | 96.0 | 0.7593 | 95.9 | 0.2528 | 97.7 | ||||
R27 | 0.8834 | 96.4 | 0.7516 | 98.1 | 0.6123 | 95.2 | 0.8392 | 95.2 | 0.2500 | 98.7 | ||||
R28 | 0.8865 | 96.3 | 0.7366 | 95.7 | 0.5882 | 95.6 | 0.8417 | 95.9 | 0.2486 | 96.9 | ||||
50 | R29 | 0.8015 | 96.8 | 0.6950 | 95.0 | 0.6217 | 91.8 | 0.7084 | 96.3 | 0.2395 | 97.3 | |||
R30 | 0.7498 | 96.7 | 0.6383 | 97.1 | 0.5683 | 94.6 | 0.6648 | 95.9 | 0.2446 | 97.9 | ||||
R31 | 0.7953 | 96.9 | 0.6675 | 96.4 | 0.5653 | 95.0 | 0.7297 | 95.2 | 0.2433 | 97.3 | ||||
R32 | 0.8015 | 96.9 | 0.6834 | 94.2 | 0.5587 | 93.5 | 0.7211 | 95.3 | 0.2435 | 97.7 |
n | m | Scheme | Asy-CI | Boot-p | Boot-t | HPD: Non-INF | HPD: INF | |||||||
AIL | CP | AIL | CP | AIL | CP | AIL | CP | AIL | CP | |||||
20 | 10 | R1 | 2.3107 | 96.1 | 2.1366 | 94.0 | 2.0951 | 93.1 | 2.7333 | 97.2 | 0.3973 | 95.1 | ||
R2 | 2.3761 | 95.6 | 2.3699 | 95.1 | 2.1587 | 96.4 | 2.7816 | 97.9 | 0.6140 | 95.1 | ||||
R3 | 2.4083 | 95.7 | 2.2643 | 96.0 | 2.3124 | 92.4 | 2.8226 | 97.5 | 0.5531 | 95.1 | ||||
R4 | 2.2859 | 96.3 | 2.1960 | 98.0 | 2.2039 | 93.4 | 2.6721 | 97.0 | 0.4768 | 95.0 | ||||
15 | R5 | 2.0615 | 95.7 | 1.8408 | 95.2 | 1.8885 | 92.9 | 2.3849 | 97.7 | 0.2278 | 96.0 | |||
R6 | 1.9783 | 95.9 | 1.8272 | 94.9 | 1.8646 | 91.8 | 2.2227 | 97.2 | 0.2610 | 95.2 | ||||
R7 | 2.0682 | 95.7 | 1.8650 | 95.0 | 1.9044 | 93.2 | 2.3365 | 97.6 | 0.3140 | 95.1 | ||||
R8 | 2.0407 | 95.5 | 1.8657 | 95.0 | 1.9896 | 92.9 | 2.2907 | 96.9 | 0.2497 | 95.5 | ||||
30 | 20 | R9 | 1.7057 | 96.7 | 1.5668 | 97.3 | 1.6037 | 94.6 | 1.7739 | 96.0 | 0.2086 | 97.1 | ||
R10 | 1.6217 | 95.9 | 1.4839 | 96.7 | 1.6509 | 94.0 | 1.6737 | 96.7 | 0.2075 | 96.5 | ||||
R11 | 1.6993 | 96.4 | 1.5414 | 97.0 | 1.6649 | 93.9 | 1.7660 | 96.7 | 0.2179 | 96.1 | ||||
R12 | 1.6768 | 96.3 | 1.5368 | 96.3 | 1.6548 | 96.4 | 1.7178 | 97.6 | 0.2140 | 96.4 | ||||
25 | R13 | 1.5994 | 97.5 | 1.4491 | 97.1 | 1.5323 | 93.1 | 1.6573 | 96.8 | 0.1837 | 97.9 | |||
R14 | 1.5289 | 97.1 | 1.4021 | 98.3 | 1.4219 | 93.0 | 1.5820 | 96.0 | 0.1882 | 96.4 | ||||
R15 | 1.5880 | 97.1 | 1.4487 | 98.0 | 1.4920 | 90.6 | 1.6958 | 96.9 | 0.1899 | 96.4 | ||||
R16 | 1.5784 | 97.3 | 1.4300 | 97.5 | 1.5311 | 94.3 | 1.6675 | 96.5 | 0.1898 | 96.7 | ||||
40 | 20 | R17 | 1.6089 | 96.7 | 1.4261 | 93.2 | 1.4952 | 94.2 | 1.5914 | 96.8 | 0.2241 | 97.1 | ||
R18 | 1.5611 | 96.0 | 1.4436 | 94.2 | 1.5665 | 92.3 | 1.5812 | 97.2 | 0.2495 | 95.9 | ||||
R19 | 1.6019 | 96.5 | 1.4577 | 92.0 | 1.5229 | 94.5 | 1.6767 | 97.1 | 0.2508 | 96.0 | ||||
R20 | 1.5287 | 96.3 | 1.4226 | 96.4 | 1.4079 | 95.6 | 1.5991 | 96.9 | 0.2252 | 96.1 | ||||
30 | R21 | 1.4275 | 96.7 | 1.2919 | 98.0 | 1.3891 | 94.0 | 1.4599 | 96.1 | 0.2088 | 97.2 | |||
R22 | 1.3438 | 96.4 | 1.2161 | 97.3 | 1.2368 | 96.0 | 1.3826 | 95.5 | 0.2077 | 95.9 | ||||
R23 | 1.4091 | 96.0 | 1.2930 | 98.8 | 1.3777 | 94.6 | 1.4867 | 97.1 | 0.2088 | 96.3 | ||||
R24 | 1.3959 | 96.4 | 1.2764 | 97.4 | 1.2923 | 94.7 | 1.4635 | 95.5 | 0.2031 | 96.9 | ||||
60 | 40 | R25 | 1.1996 | 97.7 | 1.0889 | 95.4 | 1.1660 | 93.3 | 1.1783 | 95.7 | 0.2253 | 98.4 | ||
R26 | 1.1140 | 97.3 | 1.0045 | 96.1 | 1.0582 | 94.7 | 1.0678 | 96.3 | 0.2103 | 96.9 | ||||
R27 | 1.1718 | 97.7 | 1.0669 | 96.0 | 1.1131 | 94.8 | 1.1786 | 95.9 | 0.2103 | 96.4 | ||||
R28 | 1.1594 | 97.9 | 1.0421 | 96.7 | 1.0855 | 95.8 | 1.1774 | 96.1 | 0.2136 | 97.9 | ||||
50 | R29 | 1.1143 | 98.0 | 1.0070 | 97.4 | 1.0414 | 94.0 | 1.0306 | 96.0 | 0.2038 | 98.0 | |||
R30 | 1.0557 | 98.1 | 0.9460 | 95.8 | 0.9877 | 98.1 | 0.9522 | 97.2 | 0.1999 | 97.6 | ||||
R31 | 1.0961 | 98.3 | 0.9732 | 96.1 | 1.0344 | 95.4 | 1.0251 | 97.2 | 0.2044 | 97.6 | ||||
R32 | 1.0912 | 98.0 | 0.9802 | 95.6 | 1.0566 | 96.2 | 1.0332 | 96.7 | 0.2008 | 97.7 |
From the results obtained for point estimation of distribution parameters, it is generally observed that an increase in both n and m leads to an improvement in Avg. estimates and its convergence towards the true parameter values. Additionally, we notice a decrease in the RMSEs as well. Regarding interval estimation, as n and m increase, we observe a reduction in the AILs for all interval estimation methods. Additionally, it is worth mentioning that the CP ranges from 90% to 99%. The confidence intervals can be ranked in terms of the efficiency of AILs as follows:
HPD: INF≥Boot-t≥Asy-CI≥Boot-p≥HPD: Non-INF. |
In terms of the efficiency of proposed estimation methods, by comparing classical point estimation methods, we observe that the efficiency of the MLE method for the parameter θ is superior to that of the MPS estimations; and for the parameter α, we observe the opposite. Concerning the BEs methods using assumed loss functions, it is evident that the BEs using LN1 loss function at v=0.5 exhibits the highest efficiency, followed by the estimation using the SE loss function, and then the LN2 loss function at v=−0.5. Moreover, when comparing the BEs using MCMC under INF and Non-INF approaches, there is a very clear indication that the INF prior case significantly outperforms the Non-INF prior one. In a broader sense, it can be concluded that the BEs using MCMC under INF case efficiency are superior among the assumed methods of classical and Bayes estimation.
Furthermore, it is worth noting that these conclusions pertain to a specific set of distribution parameters (θ=0.5,α=1.5). We recommend conducting further research on alternative parameter combinations and comparing the results obtained with those from our study.
Suppose that one can generate a random sample following scheme number 30 (n=60,m=50, and R30=(0∗49,10)), assuming the two parameters of the GPUHLG distribution as θ=0.5,α=1.5. The generated samples are provided in Table 5, and upon examining them, we find that they are ordered and bounded from zero to one, as specified in the distribution range.
0.0321 | 0.0591 | 0.0697 | 0.0880 | 0.1156 | 0.1383 | 0.1767 | 0.1867 | 0.1979 | 0.2214 |
0.2374 | 0.2408 | 0.2487 | 0.2709 | 0.2728 | 0.2921 | 0.3040 | 0.3068 | 0.3071 | 0.3481 |
0.3563 | 0.3599 | 0.3949 | 0.4030 | 0.4215 | 0.4298 | 0.4531 | 0.4627 | 0.4651 | 0.4741 |
0.4947 | 0.5421 | 0.5430 | 0.5535 | 0.5623 | 0.5656 | 0.5827 | 0.6006 | 0.6165 | 0.6260 |
0.6267 | 0.6358 | 0.6530 | 0.6821 | 0.7341 | 0.7648 | 0.7798 | 0.8341 | 0.9472 | 0.9705 |
Hence, we obtained the estimates of parameters (θ,α), respectively, as follows:
● Classical estimation point: MLE: (0.4208,1.9353) and MPS: (0.3471,2.1086).
● BE point: BE Non-INF: (0.4266,1.9847) and BE Non-INF: (0.6496,1.3310).
The convergence of MCMC estimates using the MH algorithm can be demonstrated in Figures 4 and 5. These figures include trace plots and histograms, respectively, for each estimated parameter, θ and α, under two prior scenarios: Non-INF and INF. These graphs illustrate the normality of generated posterior samples for INF priors for both parameters. Additionally, for parameter α in the case of Non-INF priors, the posterior samples also exhibit normal distribution. However, for parameter θ under Non-INF priors, the posterior samples do not follow a normal distribution.
A real dataset is analyzed to offer illustrative instances and to assess the statistical effectiveness of MLE, MPS, and BEs for the GPUHLG distribution under various PT-IIC schemes.
The following dataset consists of 20 flood observations and was previously analyzed by [30]. The dataset is provided below:
0.2650 | 0.2690 | 0.2970 | 0.3150 | 0.3235 | 0.3380 | 0.3790 | 0.3790 | 0.3920 | 0.4020 |
0.4120 | 0.4160 | 0.4180 | 0.4230 | 0.4490 | 0.4840 | 0.4940 | 0.6130 | 0.6540 | 0.7400 |
To begin with, it is crucial to determine whether the GPUHLG distribution is a suitable choice for analyzing the provided dataset. This involves calculating the MLEs for the parameters (θ,α) and evaluating various goodness-of-fit criteria, including the negative log-likelihood criterion (NLC), Akaike information criterion (AIC), Bayesian information criterion (BIC), the Kolmogorov-Smirnov (K-S) test statistic and its corresponding p-value. These criteria are then compared with those obtained from alternative distributions, such as the Weibull (We), inverse gamma (IGa), beta, Kumaraswamy (Kum), and generalized exponential (GEx) distributions. Lower values of these criteria, along with larger p-values, indicate a better fit. The findings are presented in Table 6.b, which includes parameter estimates and goodness-of-fit statistics. The results from Table 6.b indicate that, among the compared distributions, the GPUHLG distribution serves as an appropriate model for the provided dataset. Consequently, the dataset can be effectively analyzed using this distribution, with the MLEs calculated as ˆθ=0.0054 and ˆα=6.4977.
Estimate | NLC | AIC | BIC | K-S | P-value | ||
GPUHLG | 0.0054 | 6.4977 | -16.1649 | -28.3298 | -26.3384 | 0.1177 | 0.9447 |
GEx | 57.5089 | 0.0908 | -16.1383 | -28.2766 | -26.2852 | 0.1217 | 0.9285 |
IGa | 14.5702 | 5.7347 | -15.7329 | -27.4659 | -25.4744 | 0.1271 | 0.9032 |
We | 3.5258 | 0.4688 | -13.2640 | -22.5280 | -20.5365 | 0.1987 | 0.4084 |
beta | 6.7564 | 9.1108 | -14.0622 | -24.1244 | -22.1330 | 0.1987 | 0.4081 |
Kum | 3.3633 | 11.7902 | -12.8660 | -21.0265 | -19.7409 | 0.2109 | 0.3359 |
For a visual evaluation of the compatibility between the provided dataset and the chosen distribution, graphical representations can be highly informative. One common approach is to juxtapose the empirical cumulative distribution function (CDF) with the fitted CDFs for alternative distributions such as Weibull (We), inverse gamma (IGa), beta, Kumaraswamy (Kum), and generalized exponential (GEx). Moreover, a histogram can be illustrated alongside fitted probability density function (pdf) lines for the same set of distributions. Figure 6 illustrates these plotted curves for the CDFs and pdfs of the provided dataset in comparison with their respective distributions. These visualizations clearly underscore that the GPUHLG distribution aligns more favorably with the data compared to the other considered distributions, at least within the context of this particular dataset.
Using the original dataset, we generate eight PT-IIC samples. These samples are created with two distinct numbers of stages, specifically, m=10 and m=15, while following the item removal plan detailed in Table 1. Furthermore, we examine a situation where complete sampling cases are considered, where n=m=20 and R1=R2=…=Rm=0.
In Table 7.a, we compute estimates (Est.) and standard errors (St.Er) through classical estimation methods, specifically, MLEs and MPS. These estimations are carried out for the parameters θ and α, considering varying PT-IIC patterns based on the provided real data set. Furthermore, we calculate BEs using the MH algorithm with the Non-INF prior. While generating samples from the posterior distribution using MH, we initialize the values of (θ,α) as (θ(0),α(0))=(ˆθ,ˆα), where ˆθ and ˆα represent the MLEs of the parameters θ and α, respectively. Subsequently, we discard the initial 2000 burn-in samples from a total of 10,000 samples generated from the posterior density. BEs are then derived using different loss functions, including SE, LN1 with v=−0.5, and LN1 with v=0.5, as defined by Eqs (4.7) and (4.8). Additionally, Table 7.b presents the lower and upper bounds of confidence intervals for the parameters θ and α using various interval estimation methods: Asy-CI, Boot.p, Boot.t, and HPD.
n | m | Scheme | Classical | BE: MCMC | ||||||
MLE | MPS | SEL | LN1 | LN2 | ||||||
20 | 10 | R1 | θ | Est. | 0.0136 | 0.0045 | 0.0104 | 0.0106 | 0.0102 | |
St.Er | 0.0201 | 0.0048 | 0.0285 | 0.0302 | 0.0277 | |||||
α | Est. | 6.0779 | 7.3007 | 9.3911 | 11.2794 | 7.4286 | ||||
St.Er | 1.5177 | 1.2496 | 2.9862 | 3.1285 | 2.9233 | |||||
R2 | θ | Est. | 0.0356 | 0.0315 | 0.0036 | 0.0037 | 0.0036 | |||
St.Er | 0.0490 | 0.0462 | 0.0056 | 0.0059 | 0.0057 | |||||
α | Est. | 5.4831 | 5.7276 | 8.9865 | 10.0021 | 8.2808 | ||||
St.Er | 1.5587 | 1.6848 | 1.8498 | 1.9445 | 1.8511 | |||||
R3 | θ | Est. | 0.0293 | 0.0130 | 0.0758 | 0.0792 | 0.0727 | |||
St.Er | 0.0419 | 0.0201 | 0.1144 | 0.1057 | 0.1152 | |||||
α | Est. | 5.6885 | 6.6484 | 5.7250 | 6.4814 | 5.0367 | ||||
St.Er | 1.5768 | 1.7430 | 1.7178 | 1.6895 | 1.7214 | |||||
R4 | θ | Est. | 0.0166 | 0.0059 | 0.0297 | 0.0305 | 0.0289 | |||
St.Er | 0.0256 | 0.0069 | 0.0554 | 0.0289 | 0.0551 | |||||
α | Est. | 5.8469 | 6.9524 | 6.7183 | 7.6361 | 5.8656 | ||||
St.Er | 1.5669 | 1.2739 | 1.9392 | 1.8330 | 1.9531 | |||||
15 | R5 | θ | Est. | 0.0049 | 0.0026 | 0.0018 | 0.0018 | 0.0018 | ||
St.Er | 0.0068 | 0.0011 | 0.0027 | 0.0028 | 0.0026 | |||||
α | Est. | 6.5072 | 7.1806 | 8.5326 | 9.2548 | 7.8853 | ||||
St.Er | 1.3548 | 0.6462 | 1.6942 | 1.5213 | 1.7025 | |||||
R6 | θ | Est. | 0.0664 | 0.0554 | 0.0550 | 0.0559 | 0.0541 | |||
St.Er | 0.0653 | 0.0580 | 0.0596 | 0.0622 | 0.0589 | |||||
α | Est. | 4.4391 | 4.6638 | 5.0685 | 5.3604 | 4.7860 | ||||
St.Er | 1.0389 | 1.1172 | 1.0750 | 1.0973 | 1.1163 | |||||
R7 | θ | Est. | 0.0110 | 0.0049 | 0.0225 | 0.0229 | 0.0220 | |||
St.Er | 0.0146 | 0.0044 | 0.0431 | 0.0458 | 0.0420 | |||||
α | Est. | 5.9344 | 6.7844 | 6.0844 | 6.5910 | 5.6045 | ||||
St.Er | 1.3495 | 0.9911 | 1.4046 | 1.4709 | 1.3821 | |||||
R8 | θ | Est. | 0.0058 | 0.0020 | 0.0017 | 0.0017 | 0.0017 | |||
St.Er | 0.0081 | 0.0003 | 0.0032 | 0.0033 | 0.0031 | |||||
α | Est. | 6.6795 | 7.8283 | 8.7660 | 9.3073 | 8.2410 | ||||
St.Er | 1.4660 | 0.4950 | 1.4727 | 1.5300 | 1.4465 | |||||
20 | Complete | θ | Est. | 0.0054 | 0.0044 | 0.0053 | 0.0053 | 0.0053 | ||
St.Er | 0.0067 | 0.0035 | 0.0001 | 0.0001 | 0.0001 | |||||
α | Est. | 6.4977 | 6.1805 | 6.5046 | 6.5420 | 6.4684 | ||||
St.Er | 1.2688 | 0.9650 | 0.3838 | 0.3831 | 0.3871 |
n | m | Scheme | Asy-CI | Boot-p | Boot-t | HPD: Non-INF | ||
20 | 10 | R1 | θ | (0.0000, 0.0530) | (0.0001, 0.1115) | (0.0000, 1.9533) | (0.0000, 0.0636) | |
α | (3.1032, 9.0526) | (4.3132, 12.1106) | (0.0000, 13.3042) | (4.1305, 14.3879) | ||||
R2 | θ | (0.0000, 0.1317) | (0.0000, 0.0937) | (0.0000, 1.3141) | (0.0000, 0.0117) | |||
α | (2.4281, 8.5380) | (4.1321, 15.1568) | (0.0000, 15.1879) | (6.1364, 13.4784) | ||||
R3 | θ | (0.0000, 0.1115) | (0.0001, 0.2209) | (0.0000, 0.6662) | (0.0004, 0.3388) | |||
α | (2.5981, 8.7789) | (4.1054, 10.9713) | (3.7289, 17.0075) | (2.3982, 9.0098) | ||||
R4 | θ | (0.0000, 0.0668) | (0.0000, 0.2016) | (0.0000, 22.2738) | (0.0001, 0.1472) | |||
α | (2.7758, 8.9180) | (3.7858, 13.4185) | (0.0000, 12.7341) | (3.1100, 10.0225) | ||||
15 | R5 | θ | (0.0000, 0.0182) | (0.0001, 0.0292) | (0.0000, 0.2996) | (0.0000, 0.0069) | ||
α | (3.8518, 9.1627) | (4.9720, 10.2566) | (0.0000, 13.8741) | (5.7423, 11.6252) | ||||
R6 | θ | (0.0000, 0.1944) | (0.0004, 0.1331) | (0.0000, 0.2994) | (0.0031, 0.1831) | |||
α | (2.4029, 6.4753) | (3.6820, 10.0842) | (3.5814, 9.6642) | (2.9210, 7.0976) | ||||
R7 | θ | (0.0000, 0.0396) | (0.0001, 0.0971) | (0.0000, 1.7671) | (0.0003, 0.0721) | |||
α | (3.2894, 8.5794) | (4.1532, 10.3699) | (0.0000, 16.7183) | (3.6938, 9.2988) | ||||
R8 | θ | (0.0000, 0.0217) | (0.0000, 0.0556) | (0.0000, 0.8662) | (0.0000, 0.0065) | |||
α | (3.8062, 9.5529) | (4.6246, 12.0765) | (0.0000, 12.2860) | (5.9434, 11.6350) | ||||
20 | Complete | θ | (0.0000, 0.0184) | (0.0001, 0.0387) | (0.0000, 0.3996) | (0.0051, 0.0054) | ||
α | (4.0108, 8.9845) | (4.6717, 10.5509) | (0.0000, 13.0766) | (5.7553, 7.2060) |
In the preceding sections, we have deliberated upon the classical and BEs of unknown parameters within the context of the GPUHLG distribution when samples are procured using the PT-IIC approach. Consequently, to execute a life-testing experiment following the PT-IIC scheme, it becomes imperative to possess foreknowledge of the values of n, m, and (R1,R2,…,Rm). However, in various reliability and life testing studies, practical considerations should select the optimum PT-IIC scheme from a class of possible schemes. This problem was first discussed in detail by [6], which considered the problem of determining the optimal censoring plan via various set-ups. The problem of comparing two different censoring schemes has received a lot of interest from various researchers. See, for example, [31,32,33,34,35,36].
In order to identify the most appropriate PT-IIC scheme, we assess an information measure through a specific set of criteria. These criteria for optimal sampling are contingent upon the variance-covariance matrix F−1 of the maximum likelihood estimators (MLEs), as formulated in Eq (3.5), and can be articulated in a subsequent manner:
Criterion 1: Minimizing the determinant of F−1:
det[F−1]=var(ˆθ)var(ˆα)−(cov(ˆθ,ˆα))2. |
Criterion 2: Minimizing the trace of (F−1):
tr[F−1]=var(ˆθ)+var(ˆα). |
Criterion 3: This criterion relies on the choice of u and aims to minimize the variance of the logarithm of the MLE of the u-th quantile (denoted as log(ˆTu)), where 0<u<1. The u-th quantile of the GPUHLG distribution is given by
Tu=(2−2θ+uθuθ)−1α. |
Consequently, the logarithm of Tu is expressed as:
log(Tu)=−1α[log(2−2θ+uθ)−log(uθ)]. |
By utilizing the delta method, an approximation of the variance of log(ˆTu) is derived as:
Var(log(ˆTu))=[∇log(ˆTu)]TF−1[∇log(ˆTu)]. |
Here, [∇log(ˆTu)]T represents the gradient of log(Tu) concerning the parameters θ and α, evaluated at θ=ˆθ and α=ˆα. The partial derivatives of log(Tu) are:
∂∇log(Tu)∂θ=−1α[−2+u2−2θ+uθ−1θ],∂∇log(Tu)∂α=1α2[log(2−2θ+uθ)−log(uθ)]. |
This leads to the expression for the variance of log(ˆTu):
Var(log(ˆTu))=[∂∇log(Tu)∂θ∂∇log(Tu)∂α][var(ˆθ)cov(ˆθ,ˆα)cov(ˆα,ˆθ)var(ˆα)][∂∇log(Tu)∂θ∂∇log(Tu)∂α].
It is known that the optimal sampling scheme for PT-IIC is the one that attains the lowest value in any of the criteria mentioned above. To assess the efficacy of the suggested optimal criteria across various PT-IIC schemes, we will conduct a Monte Carlo simulation and also consider the provided real data set.
Monte-Carlo Simulation: The simulation method was utilized while considering the identical steps performed in the simulation section. Specifically, the initial two steps were employed, involving the estimation of MLEs for the GPUHLG distribution and obtaining the asymptotic variances of MLEs (the Fisher information matrix), with parameters θ=0.5 and α=1.5, across various PT-IIC patterns as outlined in Table 1.
We conducted simulations across 1000 iterations and subsequently computed the Avg. value for each criterion, as outlined in Table 8.a. Generally, we observe that as the n or m increases, the criterion value tends to decrease. Furthermore, we notice that the specific patterns: R2,R6,…,R30, where items are removed towards the end of the m stages, yield lower values. This implies that these patterns are particularly advantageous for the sampling of PT-IIC. Regarding the comparison between criteria themselves, we believe that they differ in terms of calculation methodology. Therefore, the value of one criterion does not hold significance in relation to another criterion. However, for the Criterion 3, it is possible to compare results based on variations in u. We observe that as the value of u increases, the value of the criterion decreases.
n | m | Scheme | Criterion 1 | Criterion 2 | Criterion 3 | ||
u=0.25 | u=0.5 | u=0.75 | |||||
20 | 10 | R1 | 0.03506 | 0.83682 | 0.11268 | 0.07976 | 0.05729 |
R2 | 0.01217 | 0.64069 | 0.06442 | 0.04715 | 0.04140 | ||
R3 | 0.01998 | 0.79471 | 0.07253 | 0.06173 | 0.05435 | ||
R4 | 0.01523 | 0.62961 | 0.07420 | 0.05620 | 0.04626 | ||
15 | R5 | 0.01297 | 0.49835 | 0.07986 | 0.05236 | 0.03773 | |
R6 | 0.00896 | 0.44197 | 0.06528 | 0.04037 | 0.02931 | ||
R7 | 0.01077 | 0.50202 | 0.06663 | 0.04458 | 0.03420 | ||
R8 | 0.01328 | 0.52928 | 0.07711 | 0.05219 | 0.03785 | ||
30 | 20 | R9 | 0.00700 | 0.35165 | 0.06254 | 0.04127 | 0.02893 |
R10 | 0.00384 | 0.28795 | 0.04490 | 0.02887 | 0.02167 | ||
R11 | 0.00480 | 0.33571 | 0.04582 | 0.03353 | 0.02681 | ||
R12 | 0.00559 | 0.33819 | 0.05100 | 0.03700 | 0.02830 | ||
25 | R13 | 0.00432 | 0.28031 | 0.05162 | 0.03272 | 0.02292 | |
R14 | 0.00333 | 0.25036 | 0.04523 | 0.02778 | 0.01949 | ||
R15 | 0.00373 | 0.27659 | 0.04456 | 0.02914 | 0.02169 | ||
R16 | 0.00433 | 0.28334 | 0.04939 | 0.03218 | 0.02287 | ||
40 | 20 | R17 | 0.00603 | 0.31757 | 0.05918 | 0.04126 | 0.02910 |
R18 | 0.00272 | 0.27014 | 0.03429 | 0.02544 | 0.02131 | ||
R19 | 0.00429 | 0.33148 | 0.03842 | 0.03314 | 0.02797 | ||
R20 | 0.00353 | 0.28271 | 0.03848 | 0.02951 | 0.02350 | ||
30 | R21 | 0.00294 | 0.22649 | 0.04286 | 0.02747 | 0.01906 | |
R22 | 0.00188 | 0.19031 | 0.03415 | 0.02132 | 0.01522 | ||
R23 | 0.00223 | 0.21707 | 0.03406 | 0.02338 | 0.01786 | ||
R24 | 0.00266 | 0.22059 | 0.03809 | 0.02631 | 0.01922 | ||
60 | 40 | R25 | 0.00154 | 0.16089 | 0.03263 | 0.02116 | 0.01457 |
R26 | 0.00087 | 0.13226 | 0.02284 | 0.01473 | 0.01079 | ||
R27 | 0.00109 | 0.15160 | 0.02398 | 0.01768 | 0.01377 | ||
R28 | 0.00120 | 0.15151 | 0.02599 | 0.01897 | 0.01425 | ||
50 | R29 | 0.00104 | 0.13316 | 0.02634 | 0.01657 | 0.01144 | |
R30 | 0.00077 | 0.11752 | 0.02294 | 0.01409 | 0.00969 | ||
R31 | 0.00085 | 0.12752 | 0.02335 | 0.01529 | 0.01111 | ||
R32 | 0.00096 | 0.12957 | 0.02508 | 0.01646 | 0.01153 |
Real data application: Using the previous application "Real Data Analysis" section, we considered the first eight PT-IIC schemes, as outlined in Table 1, utilizing the provided real data set. By utilizing the variance-covariance matrix of the MLEs, it is possible to compute the values of the three criteria for all conceivable selections of n, m, and schemes Rl, where l=1,2,…,8, as well as the comprehensive sampling approach where m=n. The outcomes are presented in Table 8.b. Notably, we observe that the optimal schemes are R2 and R6.
n | m | Scheme | Criterion 1 | Criterion 2 | Criterion 3 | ||
u=0.25 | u=0.5 | u=0.75 | |||||
20 | 10 | R1 | 5.44E-03 | 2.53956 | 0.00627 | 0.00688 | 0.01037 |
R2 | 5.41E-04 | 1.33875 | 0.02476 | 0.00472 | 0.00364 | ||
R3 | 1.87E-03 | 1.94060 | 0.00908 | 0.00952 | 0.01424 | ||
R4 | 8.52E-03 | 2.40327 | 0.00616 | 0.00637 | 0.01045 | ||
15 | R5 | 3.10E-05 | 1.66920 | 0.00621 | 0.00561 | 0.00789 | |
R6 | 1.03E-05 | 1.07840 | 0.00936 | 0.00383 | 0.00284 | ||
R7 | 1.31E-04 | 1.56659 | 0.00660 | 0.00573 | 0.00532 | ||
R8 | 1.77E-05 | 2.09906 | 0.00476 | 0.00443 | 0.00667 | ||
20 | Complete | 4.46E-07 | 1.21885 | 0.00250 | 0.00199 | 0.00262 |
In the field of distribution theory, a continuous effort is dedicated to generalizing existing distributions. This pursuit aims to create more robust and adaptable models that can be applied to a wide array of scenarios. To achieve this goal, a multitude of methods are explored, as evidenced by a wealth of literature. The validity and practicality of the chosen distribution in fitting the given data significantly impact the subsequent analysis and empirical findings. This paper centers on addressing the challenge of estimating unknown parameters within the context of a GPUHLG distribution under a PT-IIC scheme. Our approach encompasses both classical and Bayesian perspectives. We derived MLEs, MPS, Asy-CI estimates, and bootstrap confidence intervals for the unidentified parameters of the GPUHLG distribution. Additionally, we employed MCMC by utilizing MH algorithm to calculate BE under both symmetric and asymmetric loss functions, accompanied by their corresponding HPD interval estimates. We explored methods for selecting hyper-parameter values for the INF prior case. The simulation study revealed that BEs under the INF prior consistently outperform each of the classical estimates as well as BEs under the Non-INF prior case. We also identified the optimal censoring scheme for life testing experiments, considering three criteria measures, a crucial aspect for practitioners in the field of reliability. The flood data set was employed for all estimations within our research study as a real data application. Future research directions could involve delving into neurotrophic statistics applied to the GPUHLG distribution. Furthermore, there is potential to model COVID-19 data using various progressive censoring schemes, presenting an avenue for further investigation.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research is supported by researcher support project number (RSPD2023R860), King Saud University, Riyadh, Saudi Arabia.
The authors declare no conflicts of interest.
[1] |
P. Shi, L. Dong, Existence and exponential stability of anti-periodic solutions of Hopfield neural networks with impulses, Appl. Math. Comput., 216 (2010), 623–630. https://doi.org/10.1016/j.amc.2010.01.095 doi: 10.1016/j.amc.2010.01.095
![]() |
[2] |
W. Wang, Anti-periodic solution for impulsive high-order Hopfield neural networks with time-varying delays in the leakage terms, Adv. Differ. Equations, 2013 (2013), 1–15. https://doi.org/10.1186/1687-1847-2013-273 doi: 10.1186/1687-1847-2013-273
![]() |
[3] |
L. Zhao, Y. Li, B. Li, Weighted pseudo-almost automorphic solutions of high-order Hopfield neural networks with neutral distributed delays, Neural Comput. Appl., 29 (2018), 513–527. https://doi.org/10.1007/s00521-016-2553-8 doi: 10.1007/s00521-016-2553-8
![]() |
[4] |
C. Aouiti, E. A. Assali, Stability analysis for a class of impulsive high-order Hopfield neural networks with leakage time-varying delays, Neural Comput. Appl., 31 (2018), 7781–7803. https://doi.org/10.1007/s00521-018-3585-z doi: 10.1007/s00521-018-3585-z
![]() |
[5] |
L. Yang, Y. Fei, W. Wu, Periodic solution for ∇-stochastic high-order Hopfield neural networks with time delays on time scales, Neural Process. Lett., 49 (2018), 1681–1696. https://doi.org/10.1007/s11063-018-9896-3 doi: 10.1007/s11063-018-9896-3
![]() |
[6] |
Z. He, C. Li, H. Li, Q. Zhang, Global exponential stability of high-order Hopfield neural networks with state-dependent impulses, Phys. A: Stat. Mech. Appl., 542 (2020), 123434. https://doi.org/10.1016/j.physa.2019.123434 doi: 10.1016/j.physa.2019.123434
![]() |
[7] |
L. Yao, Global exponential stability on anti-periodic solutions in proportional delayed HIHNNs, J. Exp. Theor. Artif. Intell., 33 (2021), 47–61. https://doi.org/10.1080/0952813X.2020.1721571 doi: 10.1080/0952813X.2020.1721571
![]() |
[8] |
Y. Liu, D. Zhang, J. Lu, J. Cao, Global μ-stability criteria for quaternion-valued neural networks with unbounded time-varying delays, Inf. Sci., 360 (2016), 273–288. https://doi.org/10.1016/j.ins.2016.04.033 doi: 10.1016/j.ins.2016.04.033
![]() |
[9] |
Y. Liu, D. Zhang, J. Lu, Global exponential stability for quaternion-valued recurrent neural networks with time-varying delays, Nonlinear Dynam., 87 (2017), 553–565. https://doi.org/10.1007/s11071-016-3060-2 doi: 10.1007/s11071-016-3060-2
![]() |
[10] |
Z. Tu, J. Cao, A. Alsaedi, T. Hayat, Global dissipativity analysis for delayed quaternion-valued neural networks, Neural Networks, 89 (2017), 97–104. https://doi.org/10.1016/j.neunet.2017.01.006 doi: 10.1016/j.neunet.2017.01.006
![]() |
[11] |
J. Zhu, J. Sun, Stability of quaternion-valued neural networks with mixed delays, Neural Process. Lett., 49 (2019), 819–833. https://doi.org/10.1007/s11063-018-9849-x doi: 10.1007/s11063-018-9849-x
![]() |
[12] |
Z. Tu, X. Yang, L. Wang, N. Ding, Stability and stabilization of quaternion-valued neural networks with uncertain time-delayed impulses: Direct quaternion method, Phys. A: Stat. Mech. Appl., 535 (2019), 122358. https://doi.org/10.1016/j.physa.2019.122358 doi: 10.1016/j.physa.2019.122358
![]() |
[13] |
Y. Li, X. Meng, Existence and global exponential stability of pseudo almost periodic solutions for neutral type quaternion-valued neural networks with delays in the leakage term on time scales, Complexity, 2017 (2017), 1–15. https://doi.org/10.1155/2017/9878369 doi: 10.1155/2017/9878369
![]() |
[14] |
Y. Li, X. Meng, Almost automorphic solutions for quaternion-valued Hopfield neural networks with mixed time-varying delays and leakage delays, J. Syst. Sci. Complex., 33 (2020), 100–121. https://doi.org/10.1007/s11424-019-8051-1 doi: 10.1007/s11424-019-8051-1
![]() |
[15] |
Y. Li, J. Qin, B. Li, Anti-periodic solutions for quaternion-valued high-order Hopfield neural networks with time-varying delays, Neural Process. Lett., 49 (2018), 1217–1237. https://doi.org/10.1007/s11063-018-9867-8 doi: 10.1007/s11063-018-9867-8
![]() |
[16] |
N. Huo, B. Li, Y. Li, Existence and exponential stability of anti-periodic solutions for inertial quaternion-valued high-order Hopfield neural networks with state-dependent delays, IEEE Access, 7 (2019), 60010–60019. https://doi.org/10.1109/ACCESS.2019.2915935 doi: 10.1109/ACCESS.2019.2915935
![]() |
[17] |
Z. Cai, L. Huang, L. Zhang, New exponential synchronization criteria for time-varying delayed neural networks with discontinuous activations, Neural Networks, 65 (2015), 105–114. https://doi.org/10.1016/j.neunet.2015.02.001 doi: 10.1016/j.neunet.2015.02.001
![]() |
[18] |
W. Yang, W. Yu, J. Cao, F. E. Alsaadi, T. Hayat, Global exponential stability and lag synchronization for delayed memristive fuzzy Cohen-Grossberg BAM neural networks with impulses, Neural Networks, 98 (2018), 122–153. https://doi.org/10.1016/j.neunet.2017.11.001 doi: 10.1016/j.neunet.2017.11.001
![]() |
[19] |
L. Ke, W. Li, Exponential synchronization in inertial neural networks with time delays, Electronics, 8 (2019), 356–369. https://doi.org/10.3390/electronics8030356 doi: 10.3390/electronics8030356
![]() |
[20] |
U. Kumar, S. Das, C. Huang, J. Cao, Fixed-time synchronization of quaternion-valued neural networks with time-varying delay, Proc. Royal Soc. A: Math., Phys. Eng. Sci., 476 (2020). https://doi.org/10.1098/rspa.2020.0324 doi: 10.1098/rspa.2020.0324
![]() |
[21] |
Z. Cai, L. Huang, D. Wang, L. Zhang, Periodic synchronization in delayed memristive neural networks based on Filippov syetems, J. Franklin Inst., 352 (2015), 4638–4663. https://doi.org/10.1016/j.jfranklin.2015.07.014 doi: 10.1016/j.jfranklin.2015.07.014
![]() |
[22] |
Y. Li, Y. Fang, J. Qin, Anti-periodic synchronization of quaternion-valued generalized cellular neural networks with time-varying delays and impulsive effects, Int. J. Control, Autom. Sys., 17 (2019), 1191–1208. https://doi.org/10.1007/s12555-018-0385-2 doi: 10.1007/s12555-018-0385-2
![]() |
[23] |
Y. Li, H. Wang, X. Meng, Almost automorphic synchronization of quaternion-valued high-order Hopfield neural networks with time-varying and distributed delays, IMA J. Math. Control Infor., 36 (2019), 983–1013. https://doi.org/10.1093/imamci/dny015 doi: 10.1093/imamci/dny015
![]() |
[24] |
K. L. Babcock, R. M. Westervelt, Dynamics of simple electronic neural networks, Phys. D, 28 (1987), 305–316. https://doi.org/10.1016/0167-2789(87)90021-2 doi: 10.1016/0167-2789(87)90021-2
![]() |
[25] |
C. Huang, L. Yang, B. Liu, New results on periodicity of non-autonomous inertial neural networks involving non-reduced order method, Neural Process. Lett., 50 (2019), 595–606. https://doi.org/10.1007/s11063-019-10055-3 doi: 10.1007/s11063-019-10055-3
![]() |
[26] |
C. Huang, H. Zhang, Periodicity of non-autonomous inertial neural networks involving proportional delays and non-reduced order method, Int. J. Biomath., 12 (2019), 1950016. https://doi.org/10.1142/S1793524519500165 doi: 10.1142/S1793524519500165
![]() |
[27] |
C. Huang, Exponential stability of inertial neural networks involving proportional delays and non-reduced order method, J. Exp. Theor. Artif. Intell., 32 (2019), 133–146. https://doi.org/10.1080/0952813X.2019.1635654 doi: 10.1080/0952813X.2019.1635654
![]() |
[28] |
L. Yao, Global exponential stability on anti-periodic solutions in proportional delayed HIHNNs, J. Exp. Theor. Artif. Intell., 32 (2021), 47–61. https://doi.org/10.1080/0952813X.2020.1721571 doi: 10.1080/0952813X.2020.1721571
![]() |
[29] |
Q. Cao, X. Guo, Anti-periodic dynamics on high-order inertial Hopfield neural networks involving time-varying delays, AIMS Math., 5 (2020), 5402–5421. https://doi.org/10.3934/math.2020347 doi: 10.3934/math.2020347
![]() |
[30] |
S. Chen, H. Jiang, B. Lu, Z. Yu, L. Li, Pinning bipartite synchronization for inertial coupled delayed neural networks with signed digraph via non-reduced order method, Neural Networks, 129 (2020), 392–402. https://doi.org/10.1016/j.neunet.2020.06.017 doi: 10.1016/j.neunet.2020.06.017
![]() |
[31] |
X. Wei, Z. Zhang, C. Lin, J. Chen, Synchronization and anti-synchronization for complex-valued inertial neural networks with time-varying delays, Appl. Math. Comput., 403 (2021), 126194. https://doi.org/10.1016/j.amc.2021.126194 doi: 10.1016/j.amc.2021.126194
![]() |
[32] |
Y. Yu, Z. Zhang, M. Zhong, Z. Wang, Pinning synchronization and adaptive synchronization of complex-valued inertial neural networks with time-varying delays in fixed-time interval, J. Franklin Inst., 359 (2022), 1434–1456. https://doi.org/10.1016/j.jfranklin.2021.11.036 doi: 10.1016/j.jfranklin.2021.11.036
![]() |
[33] |
X. Chen, Z. Li, Q. Song, J. Hu, Y. Tan, Robust stability analysis of quaternion-valued neural networks with time delays and parameter uncertainties, Neural Networks, 91 (2017), 55–65. https://doi.org/10.1016/j.neunet.2017.04.006 doi: 10.1016/j.neunet.2017.04.006
![]() |
[34] |
K. Ratchagit, Asymptotic stability of delay-difference system of hopfield neural networks via matrix inequalities and application, Int. J. Neural Syst., 17 (2007), 425–430. https://doi.org/10.1142/S0129065707001263 doi: 10.1142/S0129065707001263
![]() |
[35] |
A. Pratap, R. Raja, J. Alzabut, J. Cao, G. Rajchakit, C. Huang, Mittag-Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field, Math. Methods Appl. Sci., 43 (2020), 6223–6253. https://doi.org/10.1002/mma.6367 doi: 10.1002/mma.6367
![]() |
[36] |
R. Sriraman, G. Rajchakit, C. Lim, P. Chanthorn, R. Samidurai, Discrete-time stochastic quaternion-valued neural networks with time delays: An asymptotic stability analysis, Symmetry, 12 (2020), 936. https://doi.org/10.3390/sym12060936 doi: 10.3390/sym12060936
![]() |
[37] |
Q. Zhou, J. Shao, Positive almost periodic solutions for a single population model with hereditary effect and mixed delays, Math. Methods Appl. Sci., 38 (2015), 4982–5004. https://doi.org/10.1002/mma.3419 doi: 10.1002/mma.3419
![]() |
[38] |
Y. Yu, S. Gong, Z. Ning, New studies on dynamic analysis of asymptotically almost periodic recurrent neural networks involving mixed delays, Adv. Differ. Equations, 2018 (2018), 417. https://doi.org/10.1186/s13662-018-1872-8 doi: 10.1186/s13662-018-1872-8
![]() |
[39] |
J. Zhang, C. Huang, Dynamics analysis on a class of delayed neural networks involving inertial terms, Adv. Differ. Equations, 2020 (2020), 120. https://doi.org/10.1186/s13662-020-02566-4 doi: 10.1186/s13662-020-02566-4
![]() |
[40] |
X. Wang, H. Wu, J. Cao, Global leader-following consensus in finite time for fractional-order multi-agent systems with discontinuous inherent dynamics subject to nonlinear growth, Nonlinear Anal.: Hybrid Syst., 37 (2020), 100888. https://doi.org/10.1016/j.nahs.2020.100888 doi: 10.1016/j.nahs.2020.100888
![]() |
[41] |
R. Li, H. Wu, J. Cao, Impulsive exponential synchronization of fractional-order complex dynamical networks with derivative couplings via feedback control based on discrete time state observations, Acta Math. Sci., 42 (2022), 737–754. https://doi.org/10.1007/s10473-022-0219-4 doi: 10.1007/s10473-022-0219-4
![]() |
[42] |
B. Liu, Finite-time stability of CNNs with neutral proportional delays and time-varying leakage delays, Math. Methods Appl. Sci., 40 (2016), 167–174. https://doi.org/10.1002/mma.3976 doi: 10.1002/mma.3976
![]() |
n | m | Censoring Scheme (R1,R2,…,Rm) | Scheme |
20 | 10 | (10,0∗9) | R1 |
(0∗9,10) | R2 | ||
(0∗4,5,5,0∗4) | R3 | ||
(1∗10) | R4 | ||
15 | (5,0∗14) | R5 | |
(0∗14,5) | R6 | ||
(0∗7,2,3,0∗7) | R7 | ||
(1∗5,0∗10) | R8 | ||
30 | 20 | (10,0∗19) | R9 |
(0∗19,10) | R10 | ||
(0∗9,5,5,0∗9) | R11 | ||
(1∗10,0∗10) | R12 | ||
25 | (5,0∗24) | R13 | |
(0∗24,5) | R14 | ||
(0∗12,5,0∗12) | R15 | ||
(1∗5,0∗20) | R16 | ||
40 | 20 | (20,0∗19) | R17 |
(0∗19,20) | R18 | ||
(0∗9,10,10,0∗9) | R19 | ||
(1∗20) | R20 | ||
30 | (10,0∗29) | R21 | |
(0∗29,10) | R22 | ||
(0∗14,5,5,0∗14) | R23 | ||
(1∗10,0∗20) | R24 | ||
60 | 40 | (20,0∗39) | R25 |
(0∗39,20) | R26 | ||
(0∗19,10,10,0∗19) | R27 | ||
(1∗20,0∗20) | R28 | ||
50 | (10,0∗49) | R29 | |
(0∗49,10) | R30 | ||
(0∗24,5,5,0∗24) | R31 | ||
(1∗10,0∗30) | R32 |
n | m | Scheme | Classical | BE: Non-INF | BE: INF | ||||||||
MLE | MPS | SE | LN1 | LN2 | SE | LN1 | LN2 | ||||||
20 | 10 | R1 | Avg. | 0.4765 | 0.2380 | 0.9846 | 0.9935 | 0.4801 | 0.4454 | 0.4502 | 0.4407 | ||
RMSE | 0.4441 | 0.3613 | 2.0388 | 2.4955 | 0.5909 | 0.1304 | 0.1298 | 0.1311 | |||||
R2 | Avg. | 0.4091 | 0.3442 | 0.7972 | 0.8928 | 0.4799 | 0.4641 | 0.4686 | 0.4597 | ||||
RMSE | 0.3798 | 0.3491 | 1.6437 | 2.2714 | 0.6062 | 0.1487 | 0.1493 | 0.1483 | |||||
R3 | Avg. | 0.4332 | 0.2202 | 0.9129 | 0.7361 | 0.4940 | 0.4576 | 0.4622 | 0.4531 | ||||
RMSE | 0.4277 | 0.3734 | 1.8939 | 2.0204 | 0.6852 | 0.1508 | 0.1512 | 0.1505 | |||||
R4 | Avg. | 0.4361 | 0.2869 | 0.8717 | 1.0763 | 0.4961 | 0.4662 | 0.4709 | 0.4617 | ||||
RMSE | 0.4019 | 0.3500 | 1.7581 | 2.5829 | 0.7831 | 0.1327 | 0.1331 | 0.1325 | |||||
15 | R5 | Avg. | 0.4591 | 0.2873 | 0.7439 | 1.1386 | 0.5258 | 0.4764 | 0.4813 | 0.4717 | |||
RMSE | 0.3731 | 0.3332 | 1.3680 | 2.5534 | 0.6915 | 0.1004 | 0.1006 | 0.1005 | |||||
R6 | Avg. | 0.4389 | 0.3453 | 0.6972 | 1.0921 | 0.4856 | 0.4886 | 0.4933 | 0.4840 | ||||
RMSE | 0.3344 | 0.3099 | 1.1001 | 2.4799 | 0.4603 | 0.1070 | 0.1078 | 0.1063 | |||||
R7 | Avg. | 0.4426 | 0.2826 | 0.7559 | 1.2912 | 0.4837 | 0.4850 | 0.4897 | 0.4803 | ||||
RMSE | 0.3620 | 0.3343 | 1.3448 | 2.8913 | 0.4890 | 0.1117 | 0.1124 | 0.1111 | |||||
R8 | Avg. | 0.4538 | 0.2880 | 0.8059 | 1.1692 | 0.4735 | 0.4824 | 0.4873 | 0.4778 | ||||
RMSE | 0.3740 | 0.3347 | 1.5222 | 2.6285 | 0.4553 | 0.1016 | 0.1021 | 0.1014 | |||||
30 | 20 | R9 | Avg. | 0.4485 | 0.3078 | 0.5471 | 0.9019 | 0.4331 | 0.5034 | 0.5082 | 0.4986 | ||
RMSE | 0.2936 | 0.2849 | 0.6704 | 1.7669 | 0.2984 | 0.0824 | 0.0838 | 0.0814 | |||||
R10 | Avg. | 0.4323 | 0.3668 | 0.5274 | 0.8331 | 0.4448 | 0.5238 | 0.5285 | 0.5193 | ||||
RMSE | 0.2648 | 0.2602 | 0.6618 | 1.7338 | 0.3150 | 0.0926 | 0.0948 | 0.0906 | |||||
R11 | Avg. | 0.4362 | 0.3034 | 0.5479 | 0.9766 | 0.4466 | 0.5200 | 0.5248 | 0.5154 | ||||
RMSE | 0.2899 | 0.2892 | 0.6457 | 2.0462 | 0.4408 | 0.0969 | 0.0991 | 0.0949 | |||||
R12 | Avg. | 0.4412 | 0.3081 | 0.5295 | 1.0421 | 0.4448 | 0.5151 | 0.5200 | 0.5104 | ||||
RMSE | 0.2929 | 0.2870 | 0.6151 | 2.1183 | 0.4526 | 0.0904 | 0.0923 | 0.0887 | |||||
25 | R13 | Avg. | 0.4434 | 0.3232 | 0.5299 | 0.8705 | 0.4386 | 0.5121 | 0.5167 | 0.5077 | |||
RMSE | 0.2865 | 0.2784 | 0.6843 | 1.6652 | 0.2974 | 0.0737 | 0.0755 | 0.0722 | |||||
R14 | Avg. | 0.4369 | 0.3555 | 0.4885 | 0.7234 | 0.4391 | 0.5210 | 0.5255 | 0.5167 | ||||
RMSE | 0.2657 | 0.2574 | 0.3718 | 1.3427 | 0.2772 | 0.0770 | 0.0792 | 0.0751 | |||||
R15 | Avg. | 0.4385 | 0.3222 | 0.5079 | 0.9652 | 0.4424 | 0.5209 | 0.5255 | 0.5165 | ||||
RMSE | 0.2847 | 0.2789 | 0.4529 | 2.0063 | 0.3065 | 0.0795 | 0.0817 | 0.0775 | |||||
R16 | Avg. | 0.4422 | 0.3250 | 0.5143 | 0.8986 | 0.4416 | 0.5145 | 0.5190 | 0.5100 | ||||
RMSE | 0.2873 | 0.2784 | 0.5201 | 1.7517 | 0.3040 | 0.0754 | 0.0772 | 0.0738 | |||||
40 | 20 | R17 | Avg. | 0.4543 | 0.3089 | 0.4947 | 0.7791 | 0.4277 | 0.4994 | 0.5041 | 0.4948 | ||
RMSE | 0.2894 | 0.2816 | 0.4169 | 1.4385 | 0.2869 | 0.0782 | 0.0793 | 0.0775 | |||||
R18 | Avg. | 0.4285 | 0.3771 | 0.4773 | 0.7596 | 0.4307 | 0.5296 | 0.5340 | 0.5252 | ||||
RMSE | 0.2650 | 0.2618 | 0.3458 | 1.4479 | 0.2763 | 0.1024 | 0.1047 | 0.1002 | |||||
R19 | Avg. | 0.4374 | 0.3010 | 0.4890 | 0.8803 | 0.4314 | 0.5250 | 0.5297 | 0.5205 | ||||
RMSE | 0.2922 | 0.2920 | 0.4109 | 1.7176 | 0.3209 | 0.1014 | 0.1037 | 0.0994 | |||||
R20 | Avg. | 0.4375 | 0.3392 | 0.4915 | 0.6960 | 0.4331 | 0.5245 | 0.5291 | 0.5200 | ||||
RMSE | 0.2719 | 0.2687 | 0.5183 | 1.1427 | 0.3153 | 0.0941 | 0.0963 | 0.0921 | |||||
30 | R21 | Avg. | 0.4398 | 0.3361 | 0.4652 | 0.5819 | 0.4318 | 0.5220 | 0.5264 | 0.5177 | |||
RMSE | 0.2580 | 0.2581 | 0.3050 | 0.6697 | 0.2642 | 0.0755 | 0.0778 | 0.0735 | |||||
R22 | Avg. | 0.4334 | 0.3748 | 0.4622 | 0.5112 | 0.4345 | 0.5368 | 0.5411 | 0.5326 | ||||
RMSE | 0.2388 | 0.2363 | 0.2776 | 0.3785 | 0.2462 | 0.0816 | 0.0844 | 0.0791 | |||||
R23 | Avg. | 0.4348 | 0.3350 | 0.4699 | 0.6156 | 0.4344 | 0.5354 | 0.5398 | 0.5310 | ||||
RMSE | 0.2577 | 0.2597 | 0.3094 | 1.0343 | 0.2655 | 0.0852 | 0.0879 | 0.0826 | |||||
R24 | Avg. | 0.4376 | 0.3377 | 0.4631 | 0.5999 | 0.4298 | 0.5294 | 0.5339 | 0.5251 | ||||
RMSE | 0.2596 | 0.2588 | 0.3035 | 0.8299 | 0.2660 | 0.0793 | 0.0819 | 0.0769 | |||||
60 | 40 | R25 | Avg. | 0.4405 | 0.3549 | 0.4486 | 0.4854 | 0.4293 | 0.5313 | 0.5355 | 0.5272 | ||
RMSE | 0.2210 | 0.2267 | 0.2443 | 0.3704 | 0.2267 | 0.0717 | 0.0743 | 0.0693 | |||||
R26 | Avg. | 0.4368 | 0.3943 | 0.4521 | 0.4731 | 0.4369 | 0.5492 | 0.5532 | 0.5452 | ||||
RMSE | 0.2004 | 0.2023 | 0.2185 | 0.2436 | 0.2081 | 0.0818 | 0.0849 | 0.0790 | |||||
R27 | Avg. | 0.4372 | 0.3552 | 0.4514 | 0.4806 | 0.4321 | 0.5487 | 0.5529 | 0.5446 | ||||
RMSE | 0.2200 | 0.2282 | 0.2433 | 0.2829 | 0.2281 | 0.0827 | 0.0859 | 0.0797 | |||||
R28 | Avg. | 0.4383 | 0.3572 | 0.4509 | 0.4824 | 0.4314 | 0.5426 | 0.5469 | 0.5384 | ||||
RMSE | 0.2205 | 0.2268 | 0.2436 | 0.3004 | 0.2270 | 0.0782 | 0.0813 | 0.0754 | |||||
50 | R29 | Avg. | 0.4323 | 0.3614 | 0.4420 | 0.4608 | 0.4274 | 0.5402 | 0.5442 | 0.5363 | |||
RMSE | 0.1918 | 0.2080 | 0.2080 | 0.2308 | 0.1989 | 0.0768 | 0.0796 | 0.0742 | |||||
R30 | Avg. | 0.4316 | 0.3832 | 0.4419 | 0.4564 | 0.4298 | 0.5460 | 0.5498 | 0.5422 | ||||
RMSE | 0.1816 | 0.1913 | 0.1930 | 0.2031 | 0.1871 | 0.0800 | 0.0828 | 0.0773 | |||||
R31 | Avg. | 0.4312 | 0.3624 | 0.4432 | 0.4611 | 0.4290 | 0.5475 | 0.5516 | 0.5436 | ||||
RMSE | 0.1908 | 0.2071 | 0.2063 | 0.2214 | 0.1984 | 0.0814 | 0.0844 | 0.0786 | |||||
R32 | Avg. | 0.4321 | 0.3635 | 0.4414 | 0.4617 | 0.4269 | 0.5419 | 0.5460 | 0.5379 | ||||
RMSE | 0.1920 | 0.2073 | 0.2087 | 0.2512 | 0.1997 | 0.0776 | 0.0805 | 0.0749 |
n | m | Scheme | Classical | BE: Non-INF | BE: INF | ||||||||
MLE | MPS | SE | LN1 | LN2 | SE | LN1 | LN2 | ||||||
20 | 10 | R1 | Avg. | 1.7721 | 2.3772 | 1.9696 | 2.0637 | 1.8813 | 1.1786 | 1.1833 | 1.1741 | ||
RMSE | 0.6475 | 1.1949 | 0.8568 | 0.9146 | 0.8111 | 0.3598 | 0.3559 | 0.3636 | |||||
R2 | Avg. | 1.8662 | 2.0620 | 1.9848 | 2.0582 | 1.9140 | 1.2272 | 1.2320 | 1.2225 | ||||
RMSE | 0.7424 | 0.8617 | 0.8921 | 0.9282 | 0.8637 | 0.4044 | 0.4015 | 0.4073 | |||||
R3 | Avg. | 1.8394 | 2.3798 | 1.9934 | 2.0731 | 1.9169 | 1.2184 | 1.2232 | 1.2136 | ||||
RMSE | 0.7082 | 1.2040 | 0.8852 | 0.9245 | 0.8546 | 0.3489 | 0.3456 | 0.3521 | |||||
R4 | Avg. | 1.8076 | 2.1490 | 1.9565 | 2.0315 | 1.8842 | 1.1983 | 1.2030 | 1.1936 | ||||
RMSE | 0.6521 | 0.9279 | 0.8278 | 0.8680 | 0.7953 | 0.3423 | 0.3385 | 0.3461 | |||||
15 | R5 | Avg. | 1.7452 | 2.1438 | 1.8621 | 1.9333 | 1.7937 | 1.1700 | 1.1747 | 1.1655 | |||
RMSE | 0.5699 | 0.9062 | 0.7314 | 0.7689 | 0.7015 | 0.3429 | 0.3386 | 0.3472 | |||||
R6 | Avg. | 1.7552 | 1.9731 | 1.8415 | 1.9030 | 1.7818 | 1.1819 | 1.1866 | 1.1773 | ||||
RMSE | 0.5667 | 0.7302 | 0.6866 | 0.7179 | 0.6613 | 0.3337 | 0.3295 | 0.3380 | |||||
R7 | Avg. | 1.7670 | 2.1367 | 1.8801 | 1.9459 | 1.8164 | 1.1849 | 1.1896 | 1.1803 | ||||
RMSE | 0.5879 | 0.8991 | 0.7258 | 0.7592 | 0.6988 | 0.3332 | 0.3290 | 0.3374 | |||||
R8 | Avg. | 1.7505 | 2.1170 | 1.8693 | 1.9356 | 1.8046 | 1.1769 | 1.1815 | 1.1723 | ||||
RMSE | 0.5712 | 0.8722 | 0.7035 | 0.7389 | 0.6750 | 0.3377 | 0.3334 | 0.3420 | |||||
30 | 20 | R9 | Avg. | 1.6654 | 1.9584 | 1.7773 | 1.8248 | 1.7310 | 1.1903 | 1.1947 | 1.1860 | ||
RMSE | 0.4334 | 0.6564 | 0.5360 | 0.5649 | 0.5110 | 0.3170 | 0.3128 | 0.3211 | |||||
R10 | Avg. | 1.6761 | 1.8228 | 1.7498 | 1.7903 | 1.7102 | 1.2080 | 1.2123 | 1.2037 | ||||
RMSE | 0.4335 | 0.5349 | 0.5112 | 0.5334 | 0.4921 | 0.3042 | 0.3001 | 0.3082 | |||||
R11 | Avg. | 1.6814 | 1.9459 | 1.7806 | 1.8243 | 1.7377 | 1.2106 | 1.2150 | 1.2063 | ||||
RMSE | 0.4442 | 0.6433 | 0.5415 | 0.5649 | 0.5217 | 0.3022 | 0.2982 | 0.3063 | |||||
R12 | Avg. | 1.6722 | 1.9322 | 1.7805 | 1.8245 | 1.7373 | 1.2053 | 1.2097 | 1.2010 | ||||
RMSE | 0.4343 | 0.6262 | 0.5381 | 0.5625 | 0.5173 | 0.3051 | 0.3010 | 0.3092 | |||||
30 | 25 | R13 | Avg. | 1.6717 | 1.9147 | 1.7567 | 1.7981 | 1.7161 | 1.1986 | 1.2029 | 1.1943 | ||
RMSE | 0.4221 | 0.5972 | 0.5087 | 0.5337 | 0.4871 | 0.3065 | 0.3023 | 0.3106 | |||||
R14 | Avg. | 1.6674 | 1.8303 | 1.7325 | 1.7695 | 1.6961 | 1.2062 | 1.2105 | 1.2019 | ||||
RMSE | 0.4060 | 0.5111 | 0.4729 | 0.4943 | 0.4542 | 0.2997 | 0.2956 | 0.3038 | |||||
R15 | Avg. | 1.6760 | 1.9057 | 1.7580 | 1.7979 | 1.7188 | 1.2070 | 1.2113 | 1.2027 | ||||
RMSE | 0.4222 | 0.5868 | 0.5152 | 0.5376 | 0.4955 | 0.2990 | 0.2949 | 0.3031 | |||||
R16 | Avg. | 1.6708 | 1.9006 | 1.7512 | 1.7917 | 1.7115 | 1.2036 | 1.2080 | 1.1993 | ||||
RMSE | 0.4174 | 0.5804 | 0.5006 | 0.5241 | 0.4802 | 0.3018 | 0.2976 | 0.3059 | |||||
40 | 20 | R17 | Avg. | 1.6423 | 1.9368 | 1.7615 | 1.8045 | 1.7198 | 1.2053 | 1.2095 | 1.2011 | ||
RMSE | 0.4002 | 0.6245 | 0.5011 | 0.5285 | 0.4772 | 0.3026 | 0.2986 | 0.3066 | |||||
R18 | Avg. | 1.6707 | 1.7935 | 1.7531 | 1.7878 | 1.7191 | 1.2422 | 1.2464 | 1.2380 | ||||
RMSE | 0.4195 | 0.5051 | 0.4935 | 0.5120 | 0.4775 | 0.2803 | 0.2766 | 0.2840 | |||||
R19 | Avg. | 1.6661 | 1.9161 | 1.7755 | 1.8133 | 1.7383 | 1.2417 | 1.2459 | 1.2375 | ||||
RMSE | 0.4163 | 0.6018 | 0.5165 | 0.5354 | 0.5006 | 0.2777 | 0.2740 | 0.2815 | |||||
R20 | Avg. | 1.6556 | 1.8383 | 1.7492 | 1.7841 | 1.7149 | 1.2351 | 1.2393 | 1.2310 | ||||
RMSE | 0.4008 | 0.5261 | 0.4867 | 0.5055 | 0.4703 | 0.2806 | 0.2768 | 0.2844 | |||||
30 | R21 | Avg. | 1.6506 | 1.8522 | 1.7232 | 1.7565 | 1.6905 | 1.2214 | 1.2256 | 1.2173 | |||
RMSE | 0.3815 | 0.5203 | 0.4436 | 0.4639 | 0.4255 | 0.2849 | 0.2809 | 0.2888 | |||||
R22 | Avg. | 1.6472 | 1.7643 | 1.7021 | 1.7306 | 1.6740 | 1.2325 | 1.2367 | 1.2284 | ||||
RMSE | 0.3663 | 0.4364 | 0.4206 | 0.4370 | 0.4059 | 0.2737 | 0.2697 | 0.2776 | |||||
R23 | Avg. | 1.6552 | 1.8408 | 1.7213 | 1.7521 | 1.6909 | 1.2344 | 1.2386 | 1.2303 | ||||
RMSE | 0.3830 | 0.5095 | 0.4434 | 0.4611 | 0.4277 | 0.2731 | 0.2692 | 0.2771 | |||||
R24 | Avg. | 1.6502 | 1.8340 | 1.7250 | 1.7561 | 1.6944 | 1.2308 | 1.2350 | 1.2267 | ||||
RMSE | 0.3765 | 0.5002 | 0.4431 | 0.4613 | 0.4270 | 0.2757 | 0.2717 | 0.2796 | |||||
60 | 40 | R25 | Avg. | 1.6030 | 1.7586 | 1.6638 | 1.6874 | 1.6405 | 1.2544 | 1.2584 | 1.2504 | ||
RMSE | 0.2937 | 0.3927 | 0.3486 | 0.3630 | 0.3357 | 0.2522 | 0.2483 | 0.2560 | |||||
R26 | Avg. | 1.5999 | 1.6826 | 1.6436 | 1.6634 | 1.6239 | 1.2714 | 1.2753 | 1.2675 | ||||
RMSE | 0.2813 | 0.3275 | 0.3297 | 0.3404 | 0.3200 | 0.2355 | 0.2318 | 0.2392 | |||||
R27 | Avg. | 1.6060 | 1.7448 | 1.6650 | 1.6865 | 1.6437 | 1.2727 | 1.2766 | 1.2688 | ||||
RMSE | 0.2925 | 0.3799 | 0.3512 | 0.3628 | 0.3407 | 0.2343 | 0.2306 | 0.2380 | |||||
R28 | Avg. | 1.6029 | 1.7395 | 1.6603 | 1.6818 | 1.6391 | 1.2704 | 1.2744 | 1.2665 | ||||
RMSE | 0.2875 | 0.3722 | 0.3404 | 0.3524 | 0.3296 | 0.2364 | 0.2327 | 0.2401 | |||||
50 | R29 | Avg. | 1.6029 | 1.7340 | 1.6472 | 1.6676 | 1.6270 | 1.2656 | 1.2696 | 1.2617 | |||
RMSE | 0.2684 | 0.3534 | 0.3059 | 0.3182 | 0.2947 | 0.2406 | 0.2368 | 0.2444 | |||||
R30 | Avg. | 1.5979 | 1.6890 | 1.6329 | 1.6511 | 1.6148 | 1.2744 | 1.2783 | 1.2705 | ||||
RMSE | 0.2559 | 0.3099 | 0.2854 | 0.2962 | 0.2754 | 0.2319 | 0.2282 | 0.2356 | |||||
R31 | Avg. | 1.6025 | 1.7255 | 1.6466 | 1.6663 | 1.6271 | 1.2742 | 1.2782 | 1.2703 | ||||
RMSE | 0.2660 | 0.3449 | 0.3082 | 0.3200 | 0.2975 | 0.2321 | 0.2284 | 0.2358 | |||||
R32 | Avg. | 1.6008 | 1.7235 | 1.6465 | 1.6662 | 1.6270 | 1.2721 | 1.2760 | 1.2682 | ||||
RMSE | 0.2633 | 0.3415 | 0.3039 | 0.3158 | 0.2931 | 0.2342 | 0.2305 | 0.2379 |
n | m | Scheme | Asy-CI | Boot-p | Boot-t | HPD: Non-INF | HPD: INF | |||||||
AIL | CP | AIL | CP | AIL | CP | AIL | CP | AIL | CP | |||||
20 | 10 | R1 | 1.4189 | 95.9 | 1.5415 | 95.9 | 0.7608 | 88.4 | 4.8626 | 95.0 | 0.5204 | 99.1 | ||
R2 | 1.1619 | 96.1 | 1.2247 | 98.2 | 0.6802 | 89.5 | 3.2465 | 95.1 | 0.6088 | 97.7 | ||||
R3 | 1.3180 | 96.5 | 1.4333 | 97.4 | 0.5603 | 91.3 | 3.9636 | 95.1 | 0.6048 | 99.5 | ||||
R4 | 1.2576 | 96.4 | 1.3209 | 95.5 | 0.8746 | 92.0 | 3.6755 | 95.0 | 0.5620 | 99.2 | ||||
15 | R5 | 1.2277 | 95.6 | 1.2477 | 96.1 | 0.6493 | 92.6 | 2.6191 | 95.1 | 0.3386 | 99.5 | |||
R6 | 1.1148 | 95.5 | 1.1275 | 96.5 | 0.5890 | 90.4 | 2.3954 | 95.0 | 0.3972 | 99.7 | ||||
R7 | 1.1773 | 95.2 | 1.1608 | 96.8 | 0.6258 | 89.5 | 2.8261 | 95.1 | 0.4248 | 99.7 | ||||
R8 | 1.2193 | 95.3 | 1.2128 | 95.9 | 0.5943 | 88.9 | 3.0876 | 95.1 | 0.3578 | 99.2 | ||||
30 | 20 | R9 | 1.0927 | 96.7 | 1.0943 | 95.1 | 0.6490 | 91.3 | 1.3973 | 95.1 | 0.2841 | 99.5 | ||
R10 | 0.9981 | 96.3 | 0.9243 | 97.7 | 0.5944 | 93.0 | 1.1855 | 95.2 | 0.3108 | 98.7 | ||||
R11 | 1.0667 | 96.1 | 1.0269 | 98.2 | 0.5948 | 92.1 | 1.4141 | 95.0 | 0.3176 | 99.3 | ||||
R12 | 1.0805 | 96.1 | 1.0777 | 98.2 | 0.6145 | 89.9 | 1.3295 | 95.0 | 0.3026 | 98.3 | ||||
25 | R13 | 1.0243 | 95.1 | 0.9469 | 96.3 | 0.6274 | 95.1 | 1.2047 | 95.2 | 0.2698 | 99.1 | |||
R14 | 0.9742 | 96.0 | 0.8937 | 95.4 | 0.6363 | 92.3 | 1.0922 | 95.1 | 0.2675 | 98.0 | ||||
R15 | 1.0104 | 95.7 | 0.9589 | 97.3 | 0.6613 | 91.1 | 1.1901 | 95.2 | 0.2783 | 98.4 | ||||
R16 | 1.0229 | 95.1 | 0.9508 | 96.1 | 0.6376 | 90.6 | 1.1745 | 95.0 | 0.2655 | 98.7 | ||||
40 | 20 | R17 | 1.0921 | 96.7 | 1.0707 | 95.2 | 0.6702 | 91.7 | 1.1492 | 95.1 | 0.2697 | 98.8 | ||
R18 | 0.9883 | 96.7 | 0.9653 | 95.2 | 0.5982 | 93.2 | 1.0353 | 95.1 | 0.3432 | 99.9 | ||||
R19 | 1.0724 | 96.3 | 1.0343 | 97.8 | 0.6204 | 93.0 | 1.1892 | 95.0 | 0.3265 | 99.9 | ||||
R20 | 1.0230 | 96.5 | 0.9883 | 95.0 | 0.6683 | 92.6 | 1.0704 | 95.1 | 0.3059 | 99.9 | ||||
30 | R21 | 0.9616 | 96.3 | 0.8855 | 95.4 | 0.6230 | 94.4 | 0.9886 | 96.0 | 0.2726 | 99.6 | |||
R22 | 0.9058 | 96.0 | 0.7910 | 95.0 | 0.6209 | 94.7 | 0.9068 | 95.2 | 0.2673 | 98.8 | ||||
R23 | 0.9501 | 95.9 | 0.8675 | 98.0 | 0.5978 | 95.1 | 1.0082 | 95.1 | 0.2681 | 98.3 | ||||
R24 | 0.9603 | 95.9 | 0.8720 | 97.5 | 0.6431 | 94.9 | 0.9898 | 95.2 | 0.2638 | 99.1 | ||||
60 | 40 | R25 | 0.8883 | 95.7 | 0.7760 | 98.3 | 0.6047 | 93.4 | 0.8285 | 95.3 | 0.2492 | 97.9 | ||
R26 | 0.8094 | 96.8 | 0.6893 | 96.5 | 0.6022 | 96.0 | 0.7593 | 95.9 | 0.2528 | 97.7 | ||||
R27 | 0.8834 | 96.4 | 0.7516 | 98.1 | 0.6123 | 95.2 | 0.8392 | 95.2 | 0.2500 | 98.7 | ||||
R28 | 0.8865 | 96.3 | 0.7366 | 95.7 | 0.5882 | 95.6 | 0.8417 | 95.9 | 0.2486 | 96.9 | ||||
50 | R29 | 0.8015 | 96.8 | 0.6950 | 95.0 | 0.6217 | 91.8 | 0.7084 | 96.3 | 0.2395 | 97.3 | |||
R30 | 0.7498 | 96.7 | 0.6383 | 97.1 | 0.5683 | 94.6 | 0.6648 | 95.9 | 0.2446 | 97.9 | ||||
R31 | 0.7953 | 96.9 | 0.6675 | 96.4 | 0.5653 | 95.0 | 0.7297 | 95.2 | 0.2433 | 97.3 | ||||
R32 | 0.8015 | 96.9 | 0.6834 | 94.2 | 0.5587 | 93.5 | 0.7211 | 95.3 | 0.2435 | 97.7 |
n | m | Scheme | Asy-CI | Boot-p | Boot-t | HPD: Non-INF | HPD: INF | |||||||
AIL | CP | AIL | CP | AIL | CP | AIL | CP | AIL | CP | |||||
20 | 10 | R1 | 2.3107 | 96.1 | 2.1366 | 94.0 | 2.0951 | 93.1 | 2.7333 | 97.2 | 0.3973 | 95.1 | ||
R2 | 2.3761 | 95.6 | 2.3699 | 95.1 | 2.1587 | 96.4 | 2.7816 | 97.9 | 0.6140 | 95.1 | ||||
R3 | 2.4083 | 95.7 | 2.2643 | 96.0 | 2.3124 | 92.4 | 2.8226 | 97.5 | 0.5531 | 95.1 | ||||
R4 | 2.2859 | 96.3 | 2.1960 | 98.0 | 2.2039 | 93.4 | 2.6721 | 97.0 | 0.4768 | 95.0 | ||||
15 | R5 | 2.0615 | 95.7 | 1.8408 | 95.2 | 1.8885 | 92.9 | 2.3849 | 97.7 | 0.2278 | 96.0 | |||
R6 | 1.9783 | 95.9 | 1.8272 | 94.9 | 1.8646 | 91.8 | 2.2227 | 97.2 | 0.2610 | 95.2 | ||||
R7 | 2.0682 | 95.7 | 1.8650 | 95.0 | 1.9044 | 93.2 | 2.3365 | 97.6 | 0.3140 | 95.1 | ||||
R8 | 2.0407 | 95.5 | 1.8657 | 95.0 | 1.9896 | 92.9 | 2.2907 | 96.9 | 0.2497 | 95.5 | ||||
30 | 20 | R9 | 1.7057 | 96.7 | 1.5668 | 97.3 | 1.6037 | 94.6 | 1.7739 | 96.0 | 0.2086 | 97.1 | ||
R10 | 1.6217 | 95.9 | 1.4839 | 96.7 | 1.6509 | 94.0 | 1.6737 | 96.7 | 0.2075 | 96.5 | ||||
R11 | 1.6993 | 96.4 | 1.5414 | 97.0 | 1.6649 | 93.9 | 1.7660 | 96.7 | 0.2179 | 96.1 | ||||
R12 | 1.6768 | 96.3 | 1.5368 | 96.3 | 1.6548 | 96.4 | 1.7178 | 97.6 | 0.2140 | 96.4 | ||||
25 | R13 | 1.5994 | 97.5 | 1.4491 | 97.1 | 1.5323 | 93.1 | 1.6573 | 96.8 | 0.1837 | 97.9 | |||
R14 | 1.5289 | 97.1 | 1.4021 | 98.3 | 1.4219 | 93.0 | 1.5820 | 96.0 | 0.1882 | 96.4 | ||||
R15 | 1.5880 | 97.1 | 1.4487 | 98.0 | 1.4920 | 90.6 | 1.6958 | 96.9 | 0.1899 | 96.4 | ||||
R16 | 1.5784 | 97.3 | 1.4300 | 97.5 | 1.5311 | 94.3 | 1.6675 | 96.5 | 0.1898 | 96.7 | ||||
40 | 20 | R17 | 1.6089 | 96.7 | 1.4261 | 93.2 | 1.4952 | 94.2 | 1.5914 | 96.8 | 0.2241 | 97.1 | ||
R18 | 1.5611 | 96.0 | 1.4436 | 94.2 | 1.5665 | 92.3 | 1.5812 | 97.2 | 0.2495 | 95.9 | ||||
R19 | 1.6019 | 96.5 | 1.4577 | 92.0 | 1.5229 | 94.5 | 1.6767 | 97.1 | 0.2508 | 96.0 | ||||
R20 | 1.5287 | 96.3 | 1.4226 | 96.4 | 1.4079 | 95.6 | 1.5991 | 96.9 | 0.2252 | 96.1 | ||||
30 | R21 | 1.4275 | 96.7 | 1.2919 | 98.0 | 1.3891 | 94.0 | 1.4599 | 96.1 | 0.2088 | 97.2 | |||
R22 | 1.3438 | 96.4 | 1.2161 | 97.3 | 1.2368 | 96.0 | 1.3826 | 95.5 | 0.2077 | 95.9 | ||||
R23 | 1.4091 | 96.0 | 1.2930 | 98.8 | 1.3777 | 94.6 | 1.4867 | 97.1 | 0.2088 | 96.3 | ||||
R24 | 1.3959 | 96.4 | 1.2764 | 97.4 | 1.2923 | 94.7 | 1.4635 | 95.5 | 0.2031 | 96.9 | ||||
60 | 40 | R25 | 1.1996 | 97.7 | 1.0889 | 95.4 | 1.1660 | 93.3 | 1.1783 | 95.7 | 0.2253 | 98.4 | ||
R26 | 1.1140 | 97.3 | 1.0045 | 96.1 | 1.0582 | 94.7 | 1.0678 | 96.3 | 0.2103 | 96.9 | ||||
R27 | 1.1718 | 97.7 | 1.0669 | 96.0 | 1.1131 | 94.8 | 1.1786 | 95.9 | 0.2103 | 96.4 | ||||
R28 | 1.1594 | 97.9 | 1.0421 | 96.7 | 1.0855 | 95.8 | 1.1774 | 96.1 | 0.2136 | 97.9 | ||||
50 | R29 | 1.1143 | 98.0 | 1.0070 | 97.4 | 1.0414 | 94.0 | 1.0306 | 96.0 | 0.2038 | 98.0 | |||
R30 | 1.0557 | 98.1 | 0.9460 | 95.8 | 0.9877 | 98.1 | 0.9522 | 97.2 | 0.1999 | 97.6 | ||||
R31 | 1.0961 | 98.3 | 0.9732 | 96.1 | 1.0344 | 95.4 | 1.0251 | 97.2 | 0.2044 | 97.6 | ||||
R32 | 1.0912 | 98.0 | 0.9802 | 95.6 | 1.0566 | 96.2 | 1.0332 | 96.7 | 0.2008 | 97.7 |
0.0321 | 0.0591 | 0.0697 | 0.0880 | 0.1156 | 0.1383 | 0.1767 | 0.1867 | 0.1979 | 0.2214 |
0.2374 | 0.2408 | 0.2487 | 0.2709 | 0.2728 | 0.2921 | 0.3040 | 0.3068 | 0.3071 | 0.3481 |
0.3563 | 0.3599 | 0.3949 | 0.4030 | 0.4215 | 0.4298 | 0.4531 | 0.4627 | 0.4651 | 0.4741 |
0.4947 | 0.5421 | 0.5430 | 0.5535 | 0.5623 | 0.5656 | 0.5827 | 0.6006 | 0.6165 | 0.6260 |
0.6267 | 0.6358 | 0.6530 | 0.6821 | 0.7341 | 0.7648 | 0.7798 | 0.8341 | 0.9472 | 0.9705 |
0.2650 | 0.2690 | 0.2970 | 0.3150 | 0.3235 | 0.3380 | 0.3790 | 0.3790 | 0.3920 | 0.4020 |
0.4120 | 0.4160 | 0.4180 | 0.4230 | 0.4490 | 0.4840 | 0.4940 | 0.6130 | 0.6540 | 0.7400 |
Estimate | NLC | AIC | BIC | K-S | P-value | ||
GPUHLG | 0.0054 | 6.4977 | -16.1649 | -28.3298 | -26.3384 | 0.1177 | 0.9447 |
GEx | 57.5089 | 0.0908 | -16.1383 | -28.2766 | -26.2852 | 0.1217 | 0.9285 |
IGa | 14.5702 | 5.7347 | -15.7329 | -27.4659 | -25.4744 | 0.1271 | 0.9032 |
We | 3.5258 | 0.4688 | -13.2640 | -22.5280 | -20.5365 | 0.1987 | 0.4084 |
beta | 6.7564 | 9.1108 | -14.0622 | -24.1244 | -22.1330 | 0.1987 | 0.4081 |
Kum | 3.3633 | 11.7902 | -12.8660 | -21.0265 | -19.7409 | 0.2109 | 0.3359 |
n | m | Scheme | Classical | BE: MCMC | ||||||
MLE | MPS | SEL | LN1 | LN2 | ||||||
20 | 10 | R1 | θ | Est. | 0.0136 | 0.0045 | 0.0104 | 0.0106 | 0.0102 | |
St.Er | 0.0201 | 0.0048 | 0.0285 | 0.0302 | 0.0277 | |||||
α | Est. | 6.0779 | 7.3007 | 9.3911 | 11.2794 | 7.4286 | ||||
St.Er | 1.5177 | 1.2496 | 2.9862 | 3.1285 | 2.9233 | |||||
R2 | θ | Est. | 0.0356 | 0.0315 | 0.0036 | 0.0037 | 0.0036 | |||
St.Er | 0.0490 | 0.0462 | 0.0056 | 0.0059 | 0.0057 | |||||
α | Est. | 5.4831 | 5.7276 | 8.9865 | 10.0021 | 8.2808 | ||||
St.Er | 1.5587 | 1.6848 | 1.8498 | 1.9445 | 1.8511 | |||||
R3 | θ | Est. | 0.0293 | 0.0130 | 0.0758 | 0.0792 | 0.0727 | |||
St.Er | 0.0419 | 0.0201 | 0.1144 | 0.1057 | 0.1152 | |||||
α | Est. | 5.6885 | 6.6484 | 5.7250 | 6.4814 | 5.0367 | ||||
St.Er | 1.5768 | 1.7430 | 1.7178 | 1.6895 | 1.7214 | |||||
R4 | θ | Est. | 0.0166 | 0.0059 | 0.0297 | 0.0305 | 0.0289 | |||
St.Er | 0.0256 | 0.0069 | 0.0554 | 0.0289 | 0.0551 | |||||
α | Est. | 5.8469 | 6.9524 | 6.7183 | 7.6361 | 5.8656 | ||||
St.Er | 1.5669 | 1.2739 | 1.9392 | 1.8330 | 1.9531 | |||||
15 | R5 | θ | Est. | 0.0049 | 0.0026 | 0.0018 | 0.0018 | 0.0018 | ||
St.Er | 0.0068 | 0.0011 | 0.0027 | 0.0028 | 0.0026 | |||||
α | Est. | 6.5072 | 7.1806 | 8.5326 | 9.2548 | 7.8853 | ||||
St.Er | 1.3548 | 0.6462 | 1.6942 | 1.5213 | 1.7025 | |||||
R6 | θ | Est. | 0.0664 | 0.0554 | 0.0550 | 0.0559 | 0.0541 | |||
St.Er | 0.0653 | 0.0580 | 0.0596 | 0.0622 | 0.0589 | |||||
α | Est. | 4.4391 | 4.6638 | 5.0685 | 5.3604 | 4.7860 | ||||
St.Er | 1.0389 | 1.1172 | 1.0750 | 1.0973 | 1.1163 | |||||
R7 | θ | Est. | 0.0110 | 0.0049 | 0.0225 | 0.0229 | 0.0220 | |||
St.Er | 0.0146 | 0.0044 | 0.0431 | 0.0458 | 0.0420 | |||||
α | Est. | 5.9344 | 6.7844 | 6.0844 | 6.5910 | 5.6045 | ||||
St.Er | 1.3495 | 0.9911 | 1.4046 | 1.4709 | 1.3821 | |||||
R8 | θ | Est. | 0.0058 | 0.0020 | 0.0017 | 0.0017 | 0.0017 | |||
St.Er | 0.0081 | 0.0003 | 0.0032 | 0.0033 | 0.0031 | |||||
α | Est. | 6.6795 | 7.8283 | 8.7660 | 9.3073 | 8.2410 | ||||
St.Er | 1.4660 | 0.4950 | 1.4727 | 1.5300 | 1.4465 | |||||
20 | Complete | θ | Est. | 0.0054 | 0.0044 | 0.0053 | 0.0053 | 0.0053 | ||
St.Er | 0.0067 | 0.0035 | 0.0001 | 0.0001 | 0.0001 | |||||
α | Est. | 6.4977 | 6.1805 | 6.5046 | 6.5420 | 6.4684 | ||||
St.Er | 1.2688 | 0.9650 | 0.3838 | 0.3831 | 0.3871 |
n | m | Scheme | Asy-CI | Boot-p | Boot-t | HPD: Non-INF | ||
20 | 10 | R1 | θ | (0.0000, 0.0530) | (0.0001, 0.1115) | (0.0000, 1.9533) | (0.0000, 0.0636) | |
α | (3.1032, 9.0526) | (4.3132, 12.1106) | (0.0000, 13.3042) | (4.1305, 14.3879) | ||||
R2 | θ | (0.0000, 0.1317) | (0.0000, 0.0937) | (0.0000, 1.3141) | (0.0000, 0.0117) | |||
α | (2.4281, 8.5380) | (4.1321, 15.1568) | (0.0000, 15.1879) | (6.1364, 13.4784) | ||||
R3 | θ | (0.0000, 0.1115) | (0.0001, 0.2209) | (0.0000, 0.6662) | (0.0004, 0.3388) | |||
α | (2.5981, 8.7789) | (4.1054, 10.9713) | (3.7289, 17.0075) | (2.3982, 9.0098) | ||||
R4 | θ | (0.0000, 0.0668) | (0.0000, 0.2016) | (0.0000, 22.2738) | (0.0001, 0.1472) | |||
α | (2.7758, 8.9180) | (3.7858, 13.4185) | (0.0000, 12.7341) | (3.1100, 10.0225) | ||||
15 | R5 | θ | (0.0000, 0.0182) | (0.0001, 0.0292) | (0.0000, 0.2996) | (0.0000, 0.0069) | ||
α | (3.8518, 9.1627) | (4.9720, 10.2566) | (0.0000, 13.8741) | (5.7423, 11.6252) | ||||
R6 | θ | (0.0000, 0.1944) | (0.0004, 0.1331) | (0.0000, 0.2994) | (0.0031, 0.1831) | |||
α | (2.4029, 6.4753) | (3.6820, 10.0842) | (3.5814, 9.6642) | (2.9210, 7.0976) | ||||
R7 | θ | (0.0000, 0.0396) | (0.0001, 0.0971) | (0.0000, 1.7671) | (0.0003, 0.0721) | |||
α | (3.2894, 8.5794) | (4.1532, 10.3699) | (0.0000, 16.7183) | (3.6938, 9.2988) | ||||
R8 | θ | (0.0000, 0.0217) | (0.0000, 0.0556) | (0.0000, 0.8662) | (0.0000, 0.0065) | |||
α | (3.8062, 9.5529) | (4.6246, 12.0765) | (0.0000, 12.2860) | (5.9434, 11.6350) | ||||
20 | Complete | θ | (0.0000, 0.0184) | (0.0001, 0.0387) | (0.0000, 0.3996) | (0.0051, 0.0054) | ||
α | (4.0108, 8.9845) | (4.6717, 10.5509) | (0.0000, 13.0766) | (5.7553, 7.2060) |
n | m | Scheme | Criterion 1 | Criterion 2 | Criterion 3 | ||
u=0.25 | u=0.5 | u=0.75 | |||||
20 | 10 | R1 | 0.03506 | 0.83682 | 0.11268 | 0.07976 | 0.05729 |
R2 | 0.01217 | 0.64069 | 0.06442 | 0.04715 | 0.04140 | ||
R3 | 0.01998 | 0.79471 | 0.07253 | 0.06173 | 0.05435 | ||
R4 | 0.01523 | 0.62961 | 0.07420 | 0.05620 | 0.04626 | ||
15 | R5 | 0.01297 | 0.49835 | 0.07986 | 0.05236 | 0.03773 | |
R6 | 0.00896 | 0.44197 | 0.06528 | 0.04037 | 0.02931 | ||
R7 | 0.01077 | 0.50202 | 0.06663 | 0.04458 | 0.03420 | ||
R8 | 0.01328 | 0.52928 | 0.07711 | 0.05219 | 0.03785 | ||
30 | 20 | R9 | 0.00700 | 0.35165 | 0.06254 | 0.04127 | 0.02893 |
R10 | 0.00384 | 0.28795 | 0.04490 | 0.02887 | 0.02167 | ||
R11 | 0.00480 | 0.33571 | 0.04582 | 0.03353 | 0.02681 | ||
R12 | 0.00559 | 0.33819 | 0.05100 | 0.03700 | 0.02830 | ||
25 | R13 | 0.00432 | 0.28031 | 0.05162 | 0.03272 | 0.02292 | |
R14 | 0.00333 | 0.25036 | 0.04523 | 0.02778 | 0.01949 | ||
R15 | 0.00373 | 0.27659 | 0.04456 | 0.02914 | 0.02169 | ||
R16 | 0.00433 | 0.28334 | 0.04939 | 0.03218 | 0.02287 | ||
40 | 20 | R17 | 0.00603 | 0.31757 | 0.05918 | 0.04126 | 0.02910 |
R18 | 0.00272 | 0.27014 | 0.03429 | 0.02544 | 0.02131 | ||
R19 | 0.00429 | 0.33148 | 0.03842 | 0.03314 | 0.02797 | ||
R20 | 0.00353 | 0.28271 | 0.03848 | 0.02951 | 0.02350 | ||
30 | R21 | 0.00294 | 0.22649 | 0.04286 | 0.02747 | 0.01906 | |
R22 | 0.00188 | 0.19031 | 0.03415 | 0.02132 | 0.01522 | ||
R23 | 0.00223 | 0.21707 | 0.03406 | 0.02338 | 0.01786 | ||
R24 | 0.00266 | 0.22059 | 0.03809 | 0.02631 | 0.01922 | ||
60 | 40 | R25 | 0.00154 | 0.16089 | 0.03263 | 0.02116 | 0.01457 |
R26 | 0.00087 | 0.13226 | 0.02284 | 0.01473 | 0.01079 | ||
R27 | 0.00109 | 0.15160 | 0.02398 | 0.01768 | 0.01377 | ||
R28 | 0.00120 | 0.15151 | 0.02599 | 0.01897 | 0.01425 | ||
50 | R29 | 0.00104 | 0.13316 | 0.02634 | 0.01657 | 0.01144 | |
R30 | 0.00077 | 0.11752 | 0.02294 | 0.01409 | 0.00969 | ||
R31 | 0.00085 | 0.12752 | 0.02335 | 0.01529 | 0.01111 | ||
R32 | 0.00096 | 0.12957 | 0.02508 | 0.01646 | 0.01153 |
n | m | Scheme | Criterion 1 | Criterion 2 | Criterion 3 | ||
u=0.25 | u=0.5 | u=0.75 | |||||
20 | 10 | R1 | 5.44E-03 | 2.53956 | 0.00627 | 0.00688 | 0.01037 |
R2 | 5.41E-04 | 1.33875 | 0.02476 | 0.00472 | 0.00364 | ||
R3 | 1.87E-03 | 1.94060 | 0.00908 | 0.00952 | 0.01424 | ||
R4 | 8.52E-03 | 2.40327 | 0.00616 | 0.00637 | 0.01045 | ||
15 | R5 | 3.10E-05 | 1.66920 | 0.00621 | 0.00561 | 0.00789 | |
R6 | 1.03E-05 | 1.07840 | 0.00936 | 0.00383 | 0.00284 | ||
R7 | 1.31E-04 | 1.56659 | 0.00660 | 0.00573 | 0.00532 | ||
R8 | 1.77E-05 | 2.09906 | 0.00476 | 0.00443 | 0.00667 | ||
20 | Complete | 4.46E-07 | 1.21885 | 0.00250 | 0.00199 | 0.00262 |
n | m | Censoring Scheme (R1,R2,…,Rm) | Scheme |
20 | 10 | (10,0∗9) | R1 |
(0∗9,10) | R2 | ||
(0∗4,5,5,0∗4) | R3 | ||
(1∗10) | R4 | ||
15 | (5,0∗14) | R5 | |
(0∗14,5) | R6 | ||
(0∗7,2,3,0∗7) | R7 | ||
(1∗5,0∗10) | R8 | ||
30 | 20 | (10,0∗19) | R9 |
(0∗19,10) | R10 | ||
(0∗9,5,5,0∗9) | R11 | ||
(1∗10,0∗10) | R12 | ||
25 | (5,0∗24) | R13 | |
(0∗24,5) | R14 | ||
(0∗12,5,0∗12) | R15 | ||
(1∗5,0∗20) | R16 | ||
40 | 20 | (20,0∗19) | R17 |
(0∗19,20) | R18 | ||
(0∗9,10,10,0∗9) | R19 | ||
(1∗20) | R20 | ||
30 | (10,0∗29) | R21 | |
(0∗29,10) | R22 | ||
(0∗14,5,5,0∗14) | R23 | ||
(1∗10,0∗20) | R24 | ||
60 | 40 | (20,0∗39) | R25 |
(0∗39,20) | R26 | ||
(0∗19,10,10,0∗19) | R27 | ||
(1∗20,0∗20) | R28 | ||
50 | (10,0∗49) | R29 | |
(0∗49,10) | R30 | ||
(0∗24,5,5,0∗24) | R31 | ||
(1∗10,0∗30) | R32 |
n | m | Scheme | Classical | BE: Non-INF | BE: INF | ||||||||
MLE | MPS | SE | LN1 | LN2 | SE | LN1 | LN2 | ||||||
20 | 10 | R1 | Avg. | 0.4765 | 0.2380 | 0.9846 | 0.9935 | 0.4801 | 0.4454 | 0.4502 | 0.4407 | ||
RMSE | 0.4441 | 0.3613 | 2.0388 | 2.4955 | 0.5909 | 0.1304 | 0.1298 | 0.1311 | |||||
R2 | Avg. | 0.4091 | 0.3442 | 0.7972 | 0.8928 | 0.4799 | 0.4641 | 0.4686 | 0.4597 | ||||
RMSE | 0.3798 | 0.3491 | 1.6437 | 2.2714 | 0.6062 | 0.1487 | 0.1493 | 0.1483 | |||||
R3 | Avg. | 0.4332 | 0.2202 | 0.9129 | 0.7361 | 0.4940 | 0.4576 | 0.4622 | 0.4531 | ||||
RMSE | 0.4277 | 0.3734 | 1.8939 | 2.0204 | 0.6852 | 0.1508 | 0.1512 | 0.1505 | |||||
R4 | Avg. | 0.4361 | 0.2869 | 0.8717 | 1.0763 | 0.4961 | 0.4662 | 0.4709 | 0.4617 | ||||
RMSE | 0.4019 | 0.3500 | 1.7581 | 2.5829 | 0.7831 | 0.1327 | 0.1331 | 0.1325 | |||||
15 | R5 | Avg. | 0.4591 | 0.2873 | 0.7439 | 1.1386 | 0.5258 | 0.4764 | 0.4813 | 0.4717 | |||
RMSE | 0.3731 | 0.3332 | 1.3680 | 2.5534 | 0.6915 | 0.1004 | 0.1006 | 0.1005 | |||||
R6 | Avg. | 0.4389 | 0.3453 | 0.6972 | 1.0921 | 0.4856 | 0.4886 | 0.4933 | 0.4840 | ||||
RMSE | 0.3344 | 0.3099 | 1.1001 | 2.4799 | 0.4603 | 0.1070 | 0.1078 | 0.1063 | |||||
R7 | Avg. | 0.4426 | 0.2826 | 0.7559 | 1.2912 | 0.4837 | 0.4850 | 0.4897 | 0.4803 | ||||
RMSE | 0.3620 | 0.3343 | 1.3448 | 2.8913 | 0.4890 | 0.1117 | 0.1124 | 0.1111 | |||||
R8 | Avg. | 0.4538 | 0.2880 | 0.8059 | 1.1692 | 0.4735 | 0.4824 | 0.4873 | 0.4778 | ||||
RMSE | 0.3740 | 0.3347 | 1.5222 | 2.6285 | 0.4553 | 0.1016 | 0.1021 | 0.1014 | |||||
30 | 20 | R9 | Avg. | 0.4485 | 0.3078 | 0.5471 | 0.9019 | 0.4331 | 0.5034 | 0.5082 | 0.4986 | ||
RMSE | 0.2936 | 0.2849 | 0.6704 | 1.7669 | 0.2984 | 0.0824 | 0.0838 | 0.0814 | |||||
R10 | Avg. | 0.4323 | 0.3668 | 0.5274 | 0.8331 | 0.4448 | 0.5238 | 0.5285 | 0.5193 | ||||
RMSE | 0.2648 | 0.2602 | 0.6618 | 1.7338 | 0.3150 | 0.0926 | 0.0948 | 0.0906 | |||||
R11 | Avg. | 0.4362 | 0.3034 | 0.5479 | 0.9766 | 0.4466 | 0.5200 | 0.5248 | 0.5154 | ||||
RMSE | 0.2899 | 0.2892 | 0.6457 | 2.0462 | 0.4408 | 0.0969 | 0.0991 | 0.0949 | |||||
R12 | Avg. | 0.4412 | 0.3081 | 0.5295 | 1.0421 | 0.4448 | 0.5151 | 0.5200 | 0.5104 | ||||
RMSE | 0.2929 | 0.2870 | 0.6151 | 2.1183 | 0.4526 | 0.0904 | 0.0923 | 0.0887 | |||||
25 | R13 | Avg. | 0.4434 | 0.3232 | 0.5299 | 0.8705 | 0.4386 | 0.5121 | 0.5167 | 0.5077 | |||
RMSE | 0.2865 | 0.2784 | 0.6843 | 1.6652 | 0.2974 | 0.0737 | 0.0755 | 0.0722 | |||||
R14 | Avg. | 0.4369 | 0.3555 | 0.4885 | 0.7234 | 0.4391 | 0.5210 | 0.5255 | 0.5167 | ||||
RMSE | 0.2657 | 0.2574 | 0.3718 | 1.3427 | 0.2772 | 0.0770 | 0.0792 | 0.0751 | |||||
R15 | Avg. | 0.4385 | 0.3222 | 0.5079 | 0.9652 | 0.4424 | 0.5209 | 0.5255 | 0.5165 | ||||
RMSE | 0.2847 | 0.2789 | 0.4529 | 2.0063 | 0.3065 | 0.0795 | 0.0817 | 0.0775 | |||||
R16 | Avg. | 0.4422 | 0.3250 | 0.5143 | 0.8986 | 0.4416 | 0.5145 | 0.5190 | 0.5100 | ||||
RMSE | 0.2873 | 0.2784 | 0.5201 | 1.7517 | 0.3040 | 0.0754 | 0.0772 | 0.0738 | |||||
40 | 20 | R17 | Avg. | 0.4543 | 0.3089 | 0.4947 | 0.7791 | 0.4277 | 0.4994 | 0.5041 | 0.4948 | ||
RMSE | 0.2894 | 0.2816 | 0.4169 | 1.4385 | 0.2869 | 0.0782 | 0.0793 | 0.0775 | |||||
R18 | Avg. | 0.4285 | 0.3771 | 0.4773 | 0.7596 | 0.4307 | 0.5296 | 0.5340 | 0.5252 | ||||
RMSE | 0.2650 | 0.2618 | 0.3458 | 1.4479 | 0.2763 | 0.1024 | 0.1047 | 0.1002 | |||||
R19 | Avg. | 0.4374 | 0.3010 | 0.4890 | 0.8803 | 0.4314 | 0.5250 | 0.5297 | 0.5205 | ||||
RMSE | 0.2922 | 0.2920 | 0.4109 | 1.7176 | 0.3209 | 0.1014 | 0.1037 | 0.0994 | |||||
R20 | Avg. | 0.4375 | 0.3392 | 0.4915 | 0.6960 | 0.4331 | 0.5245 | 0.5291 | 0.5200 | ||||
RMSE | 0.2719 | 0.2687 | 0.5183 | 1.1427 | 0.3153 | 0.0941 | 0.0963 | 0.0921 | |||||
30 | R21 | Avg. | 0.4398 | 0.3361 | 0.4652 | 0.5819 | 0.4318 | 0.5220 | 0.5264 | 0.5177 | |||
RMSE | 0.2580 | 0.2581 | 0.3050 | 0.6697 | 0.2642 | 0.0755 | 0.0778 | 0.0735 | |||||
R22 | Avg. | 0.4334 | 0.3748 | 0.4622 | 0.5112 | 0.4345 | 0.5368 | 0.5411 | 0.5326 | ||||
RMSE | 0.2388 | 0.2363 | 0.2776 | 0.3785 | 0.2462 | 0.0816 | 0.0844 | 0.0791 | |||||
R23 | Avg. | 0.4348 | 0.3350 | 0.4699 | 0.6156 | 0.4344 | 0.5354 | 0.5398 | 0.5310 | ||||
RMSE | 0.2577 | 0.2597 | 0.3094 | 1.0343 | 0.2655 | 0.0852 | 0.0879 | 0.0826 | |||||
R24 | Avg. | 0.4376 | 0.3377 | 0.4631 | 0.5999 | 0.4298 | 0.5294 | 0.5339 | 0.5251 | ||||
RMSE | 0.2596 | 0.2588 | 0.3035 | 0.8299 | 0.2660 | 0.0793 | 0.0819 | 0.0769 | |||||
60 | 40 | R25 | Avg. | 0.4405 | 0.3549 | 0.4486 | 0.4854 | 0.4293 | 0.5313 | 0.5355 | 0.5272 | ||
RMSE | 0.2210 | 0.2267 | 0.2443 | 0.3704 | 0.2267 | 0.0717 | 0.0743 | 0.0693 | |||||
R26 | Avg. | 0.4368 | 0.3943 | 0.4521 | 0.4731 | 0.4369 | 0.5492 | 0.5532 | 0.5452 | ||||
RMSE | 0.2004 | 0.2023 | 0.2185 | 0.2436 | 0.2081 | 0.0818 | 0.0849 | 0.0790 | |||||
R27 | Avg. | 0.4372 | 0.3552 | 0.4514 | 0.4806 | 0.4321 | 0.5487 | 0.5529 | 0.5446 | ||||
RMSE | 0.2200 | 0.2282 | 0.2433 | 0.2829 | 0.2281 | 0.0827 | 0.0859 | 0.0797 | |||||
R28 | Avg. | 0.4383 | 0.3572 | 0.4509 | 0.4824 | 0.4314 | 0.5426 | 0.5469 | 0.5384 | ||||
RMSE | 0.2205 | 0.2268 | 0.2436 | 0.3004 | 0.2270 | 0.0782 | 0.0813 | 0.0754 | |||||
50 | R29 | Avg. | 0.4323 | 0.3614 | 0.4420 | 0.4608 | 0.4274 | 0.5402 | 0.5442 | 0.5363 | |||
RMSE | 0.1918 | 0.2080 | 0.2080 | 0.2308 | 0.1989 | 0.0768 | 0.0796 | 0.0742 | |||||
R30 | Avg. | 0.4316 | 0.3832 | 0.4419 | 0.4564 | 0.4298 | 0.5460 | 0.5498 | 0.5422 | ||||
RMSE | 0.1816 | 0.1913 | 0.1930 | 0.2031 | 0.1871 | 0.0800 | 0.0828 | 0.0773 | |||||
R31 | Avg. | 0.4312 | 0.3624 | 0.4432 | 0.4611 | 0.4290 | 0.5475 | 0.5516 | 0.5436 | ||||
RMSE | 0.1908 | 0.2071 | 0.2063 | 0.2214 | 0.1984 | 0.0814 | 0.0844 | 0.0786 | |||||
R32 | Avg. | 0.4321 | 0.3635 | 0.4414 | 0.4617 | 0.4269 | 0.5419 | 0.5460 | 0.5379 | ||||
RMSE | 0.1920 | 0.2073 | 0.2087 | 0.2512 | 0.1997 | 0.0776 | 0.0805 | 0.0749 |
n | m | Scheme | Classical | BE: Non-INF | BE: INF | ||||||||
MLE | MPS | SE | LN1 | LN2 | SE | LN1 | LN2 | ||||||
20 | 10 | R1 | Avg. | 1.7721 | 2.3772 | 1.9696 | 2.0637 | 1.8813 | 1.1786 | 1.1833 | 1.1741 | ||
RMSE | 0.6475 | 1.1949 | 0.8568 | 0.9146 | 0.8111 | 0.3598 | 0.3559 | 0.3636 | |||||
R2 | Avg. | 1.8662 | 2.0620 | 1.9848 | 2.0582 | 1.9140 | 1.2272 | 1.2320 | 1.2225 | ||||
RMSE | 0.7424 | 0.8617 | 0.8921 | 0.9282 | 0.8637 | 0.4044 | 0.4015 | 0.4073 | |||||
R3 | Avg. | 1.8394 | 2.3798 | 1.9934 | 2.0731 | 1.9169 | 1.2184 | 1.2232 | 1.2136 | ||||
RMSE | 0.7082 | 1.2040 | 0.8852 | 0.9245 | 0.8546 | 0.3489 | 0.3456 | 0.3521 | |||||
R4 | Avg. | 1.8076 | 2.1490 | 1.9565 | 2.0315 | 1.8842 | 1.1983 | 1.2030 | 1.1936 | ||||
RMSE | 0.6521 | 0.9279 | 0.8278 | 0.8680 | 0.7953 | 0.3423 | 0.3385 | 0.3461 | |||||
15 | R5 | Avg. | 1.7452 | 2.1438 | 1.8621 | 1.9333 | 1.7937 | 1.1700 | 1.1747 | 1.1655 | |||
RMSE | 0.5699 | 0.9062 | 0.7314 | 0.7689 | 0.7015 | 0.3429 | 0.3386 | 0.3472 | |||||
R6 | Avg. | 1.7552 | 1.9731 | 1.8415 | 1.9030 | 1.7818 | 1.1819 | 1.1866 | 1.1773 | ||||
RMSE | 0.5667 | 0.7302 | 0.6866 | 0.7179 | 0.6613 | 0.3337 | 0.3295 | 0.3380 | |||||
R7 | Avg. | 1.7670 | 2.1367 | 1.8801 | 1.9459 | 1.8164 | 1.1849 | 1.1896 | 1.1803 | ||||
RMSE | 0.5879 | 0.8991 | 0.7258 | 0.7592 | 0.6988 | 0.3332 | 0.3290 | 0.3374 | |||||
R8 | Avg. | 1.7505 | 2.1170 | 1.8693 | 1.9356 | 1.8046 | 1.1769 | 1.1815 | 1.1723 | ||||
RMSE | 0.5712 | 0.8722 | 0.7035 | 0.7389 | 0.6750 | 0.3377 | 0.3334 | 0.3420 | |||||
30 | 20 | R9 | Avg. | 1.6654 | 1.9584 | 1.7773 | 1.8248 | 1.7310 | 1.1903 | 1.1947 | 1.1860 | ||
RMSE | 0.4334 | 0.6564 | 0.5360 | 0.5649 | 0.5110 | 0.3170 | 0.3128 | 0.3211 | |||||
R10 | Avg. | 1.6761 | 1.8228 | 1.7498 | 1.7903 | 1.7102 | 1.2080 | 1.2123 | 1.2037 | ||||
RMSE | 0.4335 | 0.5349 | 0.5112 | 0.5334 | 0.4921 | 0.3042 | 0.3001 | 0.3082 | |||||
R11 | Avg. | 1.6814 | 1.9459 | 1.7806 | 1.8243 | 1.7377 | 1.2106 | 1.2150 | 1.2063 | ||||
RMSE | 0.4442 | 0.6433 | 0.5415 | 0.5649 | 0.5217 | 0.3022 | 0.2982 | 0.3063 | |||||
R12 | Avg. | 1.6722 | 1.9322 | 1.7805 | 1.8245 | 1.7373 | 1.2053 | 1.2097 | 1.2010 | ||||
RMSE | 0.4343 | 0.6262 | 0.5381 | 0.5625 | 0.5173 | 0.3051 | 0.3010 | 0.3092 | |||||
30 | 25 | R13 | Avg. | 1.6717 | 1.9147 | 1.7567 | 1.7981 | 1.7161 | 1.1986 | 1.2029 | 1.1943 | ||
RMSE | 0.4221 | 0.5972 | 0.5087 | 0.5337 | 0.4871 | 0.3065 | 0.3023 | 0.3106 | |||||
R14 | Avg. | 1.6674 | 1.8303 | 1.7325 | 1.7695 | 1.6961 | 1.2062 | 1.2105 | 1.2019 | ||||
RMSE | 0.4060 | 0.5111 | 0.4729 | 0.4943 | 0.4542 | 0.2997 | 0.2956 | 0.3038 | |||||
R15 | Avg. | 1.6760 | 1.9057 | 1.7580 | 1.7979 | 1.7188 | 1.2070 | 1.2113 | 1.2027 | ||||
RMSE | 0.4222 | 0.5868 | 0.5152 | 0.5376 | 0.4955 | 0.2990 | 0.2949 | 0.3031 | |||||
R16 | Avg. | 1.6708 | 1.9006 | 1.7512 | 1.7917 | 1.7115 | 1.2036 | 1.2080 | 1.1993 | ||||
RMSE | 0.4174 | 0.5804 | 0.5006 | 0.5241 | 0.4802 | 0.3018 | 0.2976 | 0.3059 | |||||
40 | 20 | R17 | Avg. | 1.6423 | 1.9368 | 1.7615 | 1.8045 | 1.7198 | 1.2053 | 1.2095 | 1.2011 | ||
RMSE | 0.4002 | 0.6245 | 0.5011 | 0.5285 | 0.4772 | 0.3026 | 0.2986 | 0.3066 | |||||
R18 | Avg. | 1.6707 | 1.7935 | 1.7531 | 1.7878 | 1.7191 | 1.2422 | 1.2464 | 1.2380 | ||||
RMSE | 0.4195 | 0.5051 | 0.4935 | 0.5120 | 0.4775 | 0.2803 | 0.2766 | 0.2840 | |||||
R19 | Avg. | 1.6661 | 1.9161 | 1.7755 | 1.8133 | 1.7383 | 1.2417 | 1.2459 | 1.2375 | ||||
RMSE | 0.4163 | 0.6018 | 0.5165 | 0.5354 | 0.5006 | 0.2777 | 0.2740 | 0.2815 | |||||
R20 | Avg. | 1.6556 | 1.8383 | 1.7492 | 1.7841 | 1.7149 | 1.2351 | 1.2393 | 1.2310 | ||||
RMSE | 0.4008 | 0.5261 | 0.4867 | 0.5055 | 0.4703 | 0.2806 | 0.2768 | 0.2844 | |||||
30 | R21 | Avg. | 1.6506 | 1.8522 | 1.7232 | 1.7565 | 1.6905 | 1.2214 | 1.2256 | 1.2173 | |||
RMSE | 0.3815 | 0.5203 | 0.4436 | 0.4639 | 0.4255 | 0.2849 | 0.2809 | 0.2888 | |||||
R22 | Avg. | 1.6472 | 1.7643 | 1.7021 | 1.7306 | 1.6740 | 1.2325 | 1.2367 | 1.2284 | ||||
RMSE | 0.3663 | 0.4364 | 0.4206 | 0.4370 | 0.4059 | 0.2737 | 0.2697 | 0.2776 | |||||
R23 | Avg. | 1.6552 | 1.8408 | 1.7213 | 1.7521 | 1.6909 | 1.2344 | 1.2386 | 1.2303 | ||||
RMSE | 0.3830 | 0.5095 | 0.4434 | 0.4611 | 0.4277 | 0.2731 | 0.2692 | 0.2771 | |||||
R24 | Avg. | 1.6502 | 1.8340 | 1.7250 | 1.7561 | 1.6944 | 1.2308 | 1.2350 | 1.2267 | ||||
RMSE | 0.3765 | 0.5002 | 0.4431 | 0.4613 | 0.4270 | 0.2757 | 0.2717 | 0.2796 | |||||
60 | 40 | R25 | Avg. | 1.6030 | 1.7586 | 1.6638 | 1.6874 | 1.6405 | 1.2544 | 1.2584 | 1.2504 | ||
RMSE | 0.2937 | 0.3927 | 0.3486 | 0.3630 | 0.3357 | 0.2522 | 0.2483 | 0.2560 | |||||
R26 | Avg. | 1.5999 | 1.6826 | 1.6436 | 1.6634 | 1.6239 | 1.2714 | 1.2753 | 1.2675 | ||||
RMSE | 0.2813 | 0.3275 | 0.3297 | 0.3404 | 0.3200 | 0.2355 | 0.2318 | 0.2392 | |||||
R27 | Avg. | 1.6060 | 1.7448 | 1.6650 | 1.6865 | 1.6437 | 1.2727 | 1.2766 | 1.2688 | ||||
RMSE | 0.2925 | 0.3799 | 0.3512 | 0.3628 | 0.3407 | 0.2343 | 0.2306 | 0.2380 | |||||
R28 | Avg. | 1.6029 | 1.7395 | 1.6603 | 1.6818 | 1.6391 | 1.2704 | 1.2744 | 1.2665 | ||||
RMSE | 0.2875 | 0.3722 | 0.3404 | 0.3524 | 0.3296 | 0.2364 | 0.2327 | 0.2401 | |||||
50 | R29 | Avg. | 1.6029 | 1.7340 | 1.6472 | 1.6676 | 1.6270 | 1.2656 | 1.2696 | 1.2617 | |||
RMSE | 0.2684 | 0.3534 | 0.3059 | 0.3182 | 0.2947 | 0.2406 | 0.2368 | 0.2444 | |||||
R30 | Avg. | 1.5979 | 1.6890 | 1.6329 | 1.6511 | 1.6148 | 1.2744 | 1.2783 | 1.2705 | ||||
RMSE | 0.2559 | 0.3099 | 0.2854 | 0.2962 | 0.2754 | 0.2319 | 0.2282 | 0.2356 | |||||
R31 | Avg. | 1.6025 | 1.7255 | 1.6466 | 1.6663 | 1.6271 | 1.2742 | 1.2782 | 1.2703 | ||||
RMSE | 0.2660 | 0.3449 | 0.3082 | 0.3200 | 0.2975 | 0.2321 | 0.2284 | 0.2358 | |||||
R32 | Avg. | 1.6008 | 1.7235 | 1.6465 | 1.6662 | 1.6270 | 1.2721 | 1.2760 | 1.2682 | ||||
RMSE | 0.2633 | 0.3415 | 0.3039 | 0.3158 | 0.2931 | 0.2342 | 0.2305 | 0.2379 |
n | m | Scheme | Asy-CI | Boot-p | Boot-t | HPD: Non-INF | HPD: INF | |||||||
AIL | CP | AIL | CP | AIL | CP | AIL | CP | AIL | CP | |||||
20 | 10 | R1 | 1.4189 | 95.9 | 1.5415 | 95.9 | 0.7608 | 88.4 | 4.8626 | 95.0 | 0.5204 | 99.1 | ||
R2 | 1.1619 | 96.1 | 1.2247 | 98.2 | 0.6802 | 89.5 | 3.2465 | 95.1 | 0.6088 | 97.7 | ||||
R3 | 1.3180 | 96.5 | 1.4333 | 97.4 | 0.5603 | 91.3 | 3.9636 | 95.1 | 0.6048 | 99.5 | ||||
R4 | 1.2576 | 96.4 | 1.3209 | 95.5 | 0.8746 | 92.0 | 3.6755 | 95.0 | 0.5620 | 99.2 | ||||
15 | R5 | 1.2277 | 95.6 | 1.2477 | 96.1 | 0.6493 | 92.6 | 2.6191 | 95.1 | 0.3386 | 99.5 | |||
R6 | 1.1148 | 95.5 | 1.1275 | 96.5 | 0.5890 | 90.4 | 2.3954 | 95.0 | 0.3972 | 99.7 | ||||
R7 | 1.1773 | 95.2 | 1.1608 | 96.8 | 0.6258 | 89.5 | 2.8261 | 95.1 | 0.4248 | 99.7 | ||||
R8 | 1.2193 | 95.3 | 1.2128 | 95.9 | 0.5943 | 88.9 | 3.0876 | 95.1 | 0.3578 | 99.2 | ||||
30 | 20 | R9 | 1.0927 | 96.7 | 1.0943 | 95.1 | 0.6490 | 91.3 | 1.3973 | 95.1 | 0.2841 | 99.5 | ||
R10 | 0.9981 | 96.3 | 0.9243 | 97.7 | 0.5944 | 93.0 | 1.1855 | 95.2 | 0.3108 | 98.7 | ||||
R11 | 1.0667 | 96.1 | 1.0269 | 98.2 | 0.5948 | 92.1 | 1.4141 | 95.0 | 0.3176 | 99.3 | ||||
R12 | 1.0805 | 96.1 | 1.0777 | 98.2 | 0.6145 | 89.9 | 1.3295 | 95.0 | 0.3026 | 98.3 | ||||
25 | R13 | 1.0243 | 95.1 | 0.9469 | 96.3 | 0.6274 | 95.1 | 1.2047 | 95.2 | 0.2698 | 99.1 | |||
R14 | 0.9742 | 96.0 | 0.8937 | 95.4 | 0.6363 | 92.3 | 1.0922 | 95.1 | 0.2675 | 98.0 | ||||
R15 | 1.0104 | 95.7 | 0.9589 | 97.3 | 0.6613 | 91.1 | 1.1901 | 95.2 | 0.2783 | 98.4 | ||||
R16 | 1.0229 | 95.1 | 0.9508 | 96.1 | 0.6376 | 90.6 | 1.1745 | 95.0 | 0.2655 | 98.7 | ||||
40 | 20 | R17 | 1.0921 | 96.7 | 1.0707 | 95.2 | 0.6702 | 91.7 | 1.1492 | 95.1 | 0.2697 | 98.8 | ||
R18 | 0.9883 | 96.7 | 0.9653 | 95.2 | 0.5982 | 93.2 | 1.0353 | 95.1 | 0.3432 | 99.9 | ||||
R19 | 1.0724 | 96.3 | 1.0343 | 97.8 | 0.6204 | 93.0 | 1.1892 | 95.0 | 0.3265 | 99.9 | ||||
R20 | 1.0230 | 96.5 | 0.9883 | 95.0 | 0.6683 | 92.6 | 1.0704 | 95.1 | 0.3059 | 99.9 | ||||
30 | R21 | 0.9616 | 96.3 | 0.8855 | 95.4 | 0.6230 | 94.4 | 0.9886 | 96.0 | 0.2726 | 99.6 | |||
R22 | 0.9058 | 96.0 | 0.7910 | 95.0 | 0.6209 | 94.7 | 0.9068 | 95.2 | 0.2673 | 98.8 | ||||
R23 | 0.9501 | 95.9 | 0.8675 | 98.0 | 0.5978 | 95.1 | 1.0082 | 95.1 | 0.2681 | 98.3 | ||||
R24 | 0.9603 | 95.9 | 0.8720 | 97.5 | 0.6431 | 94.9 | 0.9898 | 95.2 | 0.2638 | 99.1 | ||||
60 | 40 | R25 | 0.8883 | 95.7 | 0.7760 | 98.3 | 0.6047 | 93.4 | 0.8285 | 95.3 | 0.2492 | 97.9 | ||
R26 | 0.8094 | 96.8 | 0.6893 | 96.5 | 0.6022 | 96.0 | 0.7593 | 95.9 | 0.2528 | 97.7 | ||||
R27 | 0.8834 | 96.4 | 0.7516 | 98.1 | 0.6123 | 95.2 | 0.8392 | 95.2 | 0.2500 | 98.7 | ||||
R28 | 0.8865 | 96.3 | 0.7366 | 95.7 | 0.5882 | 95.6 | 0.8417 | 95.9 | 0.2486 | 96.9 | ||||
50 | R29 | 0.8015 | 96.8 | 0.6950 | 95.0 | 0.6217 | 91.8 | 0.7084 | 96.3 | 0.2395 | 97.3 | |||
R30 | 0.7498 | 96.7 | 0.6383 | 97.1 | 0.5683 | 94.6 | 0.6648 | 95.9 | 0.2446 | 97.9 | ||||
R31 | 0.7953 | 96.9 | 0.6675 | 96.4 | 0.5653 | 95.0 | 0.7297 | 95.2 | 0.2433 | 97.3 | ||||
R32 | 0.8015 | 96.9 | 0.6834 | 94.2 | 0.5587 | 93.5 | 0.7211 | 95.3 | 0.2435 | 97.7 |
n | m | Scheme | Asy-CI | Boot-p | Boot-t | HPD: Non-INF | HPD: INF | |||||||
AIL | CP | AIL | CP | AIL | CP | AIL | CP | AIL | CP | |||||
20 | 10 | R1 | 2.3107 | 96.1 | 2.1366 | 94.0 | 2.0951 | 93.1 | 2.7333 | 97.2 | 0.3973 | 95.1 | ||
R2 | 2.3761 | 95.6 | 2.3699 | 95.1 | 2.1587 | 96.4 | 2.7816 | 97.9 | 0.6140 | 95.1 | ||||
R3 | 2.4083 | 95.7 | 2.2643 | 96.0 | 2.3124 | 92.4 | 2.8226 | 97.5 | 0.5531 | 95.1 | ||||
R4 | 2.2859 | 96.3 | 2.1960 | 98.0 | 2.2039 | 93.4 | 2.6721 | 97.0 | 0.4768 | 95.0 | ||||
15 | R5 | 2.0615 | 95.7 | 1.8408 | 95.2 | 1.8885 | 92.9 | 2.3849 | 97.7 | 0.2278 | 96.0 | |||
R6 | 1.9783 | 95.9 | 1.8272 | 94.9 | 1.8646 | 91.8 | 2.2227 | 97.2 | 0.2610 | 95.2 | ||||
R7 | 2.0682 | 95.7 | 1.8650 | 95.0 | 1.9044 | 93.2 | 2.3365 | 97.6 | 0.3140 | 95.1 | ||||
R8 | 2.0407 | 95.5 | 1.8657 | 95.0 | 1.9896 | 92.9 | 2.2907 | 96.9 | 0.2497 | 95.5 | ||||
30 | 20 | R9 | 1.7057 | 96.7 | 1.5668 | 97.3 | 1.6037 | 94.6 | 1.7739 | 96.0 | 0.2086 | 97.1 | ||
R10 | 1.6217 | 95.9 | 1.4839 | 96.7 | 1.6509 | 94.0 | 1.6737 | 96.7 | 0.2075 | 96.5 | ||||
R11 | 1.6993 | 96.4 | 1.5414 | 97.0 | 1.6649 | 93.9 | 1.7660 | 96.7 | 0.2179 | 96.1 | ||||
R12 | 1.6768 | 96.3 | 1.5368 | 96.3 | 1.6548 | 96.4 | 1.7178 | 97.6 | 0.2140 | 96.4 | ||||
25 | R13 | 1.5994 | 97.5 | 1.4491 | 97.1 | 1.5323 | 93.1 | 1.6573 | 96.8 | 0.1837 | 97.9 | |||
R14 | 1.5289 | 97.1 | 1.4021 | 98.3 | 1.4219 | 93.0 | 1.5820 | 96.0 | 0.1882 | 96.4 | ||||
R15 | 1.5880 | 97.1 | 1.4487 | 98.0 | 1.4920 | 90.6 | 1.6958 | 96.9 | 0.1899 | 96.4 | ||||
R16 | 1.5784 | 97.3 | 1.4300 | 97.5 | 1.5311 | 94.3 | 1.6675 | 96.5 | 0.1898 | 96.7 | ||||
40 | 20 | R17 | 1.6089 | 96.7 | 1.4261 | 93.2 | 1.4952 | 94.2 | 1.5914 | 96.8 | 0.2241 | 97.1 | ||
R18 | 1.5611 | 96.0 | 1.4436 | 94.2 | 1.5665 | 92.3 | 1.5812 | 97.2 | 0.2495 | 95.9 | ||||
R19 | 1.6019 | 96.5 | 1.4577 | 92.0 | 1.5229 | 94.5 | 1.6767 | 97.1 | 0.2508 | 96.0 | ||||
R20 | 1.5287 | 96.3 | 1.4226 | 96.4 | 1.4079 | 95.6 | 1.5991 | 96.9 | 0.2252 | 96.1 | ||||
30 | R21 | 1.4275 | 96.7 | 1.2919 | 98.0 | 1.3891 | 94.0 | 1.4599 | 96.1 | 0.2088 | 97.2 | |||
R22 | 1.3438 | 96.4 | 1.2161 | 97.3 | 1.2368 | 96.0 | 1.3826 | 95.5 | 0.2077 | 95.9 | ||||
R23 | 1.4091 | 96.0 | 1.2930 | 98.8 | 1.3777 | 94.6 | 1.4867 | 97.1 | 0.2088 | 96.3 | ||||
R24 | 1.3959 | 96.4 | 1.2764 | 97.4 | 1.2923 | 94.7 | 1.4635 | 95.5 | 0.2031 | 96.9 | ||||
60 | 40 | R25 | 1.1996 | 97.7 | 1.0889 | 95.4 | 1.1660 | 93.3 | 1.1783 | 95.7 | 0.2253 | 98.4 | ||
R26 | 1.1140 | 97.3 | 1.0045 | 96.1 | 1.0582 | 94.7 | 1.0678 | 96.3 | 0.2103 | 96.9 | ||||
R27 | 1.1718 | 97.7 | 1.0669 | 96.0 | 1.1131 | 94.8 | 1.1786 | 95.9 | 0.2103 | 96.4 | ||||
R28 | 1.1594 | 97.9 | 1.0421 | 96.7 | 1.0855 | 95.8 | 1.1774 | 96.1 | 0.2136 | 97.9 | ||||
50 | R29 | 1.1143 | 98.0 | 1.0070 | 97.4 | 1.0414 | 94.0 | 1.0306 | 96.0 | 0.2038 | 98.0 | |||
R30 | 1.0557 | 98.1 | 0.9460 | 95.8 | 0.9877 | 98.1 | 0.9522 | 97.2 | 0.1999 | 97.6 | ||||
R31 | 1.0961 | 98.3 | 0.9732 | 96.1 | 1.0344 | 95.4 | 1.0251 | 97.2 | 0.2044 | 97.6 | ||||
R32 | 1.0912 | 98.0 | 0.9802 | 95.6 | 1.0566 | 96.2 | 1.0332 | 96.7 | 0.2008 | 97.7 |
0.0321 | 0.0591 | 0.0697 | 0.0880 | 0.1156 | 0.1383 | 0.1767 | 0.1867 | 0.1979 | 0.2214 |
0.2374 | 0.2408 | 0.2487 | 0.2709 | 0.2728 | 0.2921 | 0.3040 | 0.3068 | 0.3071 | 0.3481 |
0.3563 | 0.3599 | 0.3949 | 0.4030 | 0.4215 | 0.4298 | 0.4531 | 0.4627 | 0.4651 | 0.4741 |
0.4947 | 0.5421 | 0.5430 | 0.5535 | 0.5623 | 0.5656 | 0.5827 | 0.6006 | 0.6165 | 0.6260 |
0.6267 | 0.6358 | 0.6530 | 0.6821 | 0.7341 | 0.7648 | 0.7798 | 0.8341 | 0.9472 | 0.9705 |
0.2650 | 0.2690 | 0.2970 | 0.3150 | 0.3235 | 0.3380 | 0.3790 | 0.3790 | 0.3920 | 0.4020 |
0.4120 | 0.4160 | 0.4180 | 0.4230 | 0.4490 | 0.4840 | 0.4940 | 0.6130 | 0.6540 | 0.7400 |
Estimate | NLC | AIC | BIC | K-S | P-value | ||
GPUHLG | 0.0054 | 6.4977 | -16.1649 | -28.3298 | -26.3384 | 0.1177 | 0.9447 |
GEx | 57.5089 | 0.0908 | -16.1383 | -28.2766 | -26.2852 | 0.1217 | 0.9285 |
IGa | 14.5702 | 5.7347 | -15.7329 | -27.4659 | -25.4744 | 0.1271 | 0.9032 |
We | 3.5258 | 0.4688 | -13.2640 | -22.5280 | -20.5365 | 0.1987 | 0.4084 |
beta | 6.7564 | 9.1108 | -14.0622 | -24.1244 | -22.1330 | 0.1987 | 0.4081 |
Kum | 3.3633 | 11.7902 | -12.8660 | -21.0265 | -19.7409 | 0.2109 | 0.3359 |
n | m | Scheme | Classical | BE: MCMC | ||||||
MLE | MPS | SEL | LN1 | LN2 | ||||||
20 | 10 | R1 | θ | Est. | 0.0136 | 0.0045 | 0.0104 | 0.0106 | 0.0102 | |
St.Er | 0.0201 | 0.0048 | 0.0285 | 0.0302 | 0.0277 | |||||
α | Est. | 6.0779 | 7.3007 | 9.3911 | 11.2794 | 7.4286 | ||||
St.Er | 1.5177 | 1.2496 | 2.9862 | 3.1285 | 2.9233 | |||||
R2 | θ | Est. | 0.0356 | 0.0315 | 0.0036 | 0.0037 | 0.0036 | |||
St.Er | 0.0490 | 0.0462 | 0.0056 | 0.0059 | 0.0057 | |||||
α | Est. | 5.4831 | 5.7276 | 8.9865 | 10.0021 | 8.2808 | ||||
St.Er | 1.5587 | 1.6848 | 1.8498 | 1.9445 | 1.8511 | |||||
R3 | θ | Est. | 0.0293 | 0.0130 | 0.0758 | 0.0792 | 0.0727 | |||
St.Er | 0.0419 | 0.0201 | 0.1144 | 0.1057 | 0.1152 | |||||
α | Est. | 5.6885 | 6.6484 | 5.7250 | 6.4814 | 5.0367 | ||||
St.Er | 1.5768 | 1.7430 | 1.7178 | 1.6895 | 1.7214 | |||||
R4 | θ | Est. | 0.0166 | 0.0059 | 0.0297 | 0.0305 | 0.0289 | |||
St.Er | 0.0256 | 0.0069 | 0.0554 | 0.0289 | 0.0551 | |||||
α | Est. | 5.8469 | 6.9524 | 6.7183 | 7.6361 | 5.8656 | ||||
St.Er | 1.5669 | 1.2739 | 1.9392 | 1.8330 | 1.9531 | |||||
15 | R5 | θ | Est. | 0.0049 | 0.0026 | 0.0018 | 0.0018 | 0.0018 | ||
St.Er | 0.0068 | 0.0011 | 0.0027 | 0.0028 | 0.0026 | |||||
α | Est. | 6.5072 | 7.1806 | 8.5326 | 9.2548 | 7.8853 | ||||
St.Er | 1.3548 | 0.6462 | 1.6942 | 1.5213 | 1.7025 | |||||
R6 | θ | Est. | 0.0664 | 0.0554 | 0.0550 | 0.0559 | 0.0541 | |||
St.Er | 0.0653 | 0.0580 | 0.0596 | 0.0622 | 0.0589 | |||||
α | Est. | 4.4391 | 4.6638 | 5.0685 | 5.3604 | 4.7860 | ||||
St.Er | 1.0389 | 1.1172 | 1.0750 | 1.0973 | 1.1163 | |||||
R7 | θ | Est. | 0.0110 | 0.0049 | 0.0225 | 0.0229 | 0.0220 | |||
St.Er | 0.0146 | 0.0044 | 0.0431 | 0.0458 | 0.0420 | |||||
α | Est. | 5.9344 | 6.7844 | 6.0844 | 6.5910 | 5.6045 | ||||
St.Er | 1.3495 | 0.9911 | 1.4046 | 1.4709 | 1.3821 | |||||
R8 | θ | Est. | 0.0058 | 0.0020 | 0.0017 | 0.0017 | 0.0017 | |||
St.Er | 0.0081 | 0.0003 | 0.0032 | 0.0033 | 0.0031 | |||||
α | Est. | 6.6795 | 7.8283 | 8.7660 | 9.3073 | 8.2410 | ||||
St.Er | 1.4660 | 0.4950 | 1.4727 | 1.5300 | 1.4465 | |||||
20 | Complete | θ | Est. | 0.0054 | 0.0044 | 0.0053 | 0.0053 | 0.0053 | ||
St.Er | 0.0067 | 0.0035 | 0.0001 | 0.0001 | 0.0001 | |||||
α | Est. | 6.4977 | 6.1805 | 6.5046 | 6.5420 | 6.4684 | ||||
St.Er | 1.2688 | 0.9650 | 0.3838 | 0.3831 | 0.3871 |
n | m | Scheme | Asy-CI | Boot-p | Boot-t | HPD: Non-INF | ||
20 | 10 | R1 | θ | (0.0000, 0.0530) | (0.0001, 0.1115) | (0.0000, 1.9533) | (0.0000, 0.0636) | |
α | (3.1032, 9.0526) | (4.3132, 12.1106) | (0.0000, 13.3042) | (4.1305, 14.3879) | ||||
R2 | θ | (0.0000, 0.1317) | (0.0000, 0.0937) | (0.0000, 1.3141) | (0.0000, 0.0117) | |||
α | (2.4281, 8.5380) | (4.1321, 15.1568) | (0.0000, 15.1879) | (6.1364, 13.4784) | ||||
R3 | θ | (0.0000, 0.1115) | (0.0001, 0.2209) | (0.0000, 0.6662) | (0.0004, 0.3388) | |||
α | (2.5981, 8.7789) | (4.1054, 10.9713) | (3.7289, 17.0075) | (2.3982, 9.0098) | ||||
R4 | θ | (0.0000, 0.0668) | (0.0000, 0.2016) | (0.0000, 22.2738) | (0.0001, 0.1472) | |||
α | (2.7758, 8.9180) | (3.7858, 13.4185) | (0.0000, 12.7341) | (3.1100, 10.0225) | ||||
15 | R5 | θ | (0.0000, 0.0182) | (0.0001, 0.0292) | (0.0000, 0.2996) | (0.0000, 0.0069) | ||
α | (3.8518, 9.1627) | (4.9720, 10.2566) | (0.0000, 13.8741) | (5.7423, 11.6252) | ||||
R6 | θ | (0.0000, 0.1944) | (0.0004, 0.1331) | (0.0000, 0.2994) | (0.0031, 0.1831) | |||
α | (2.4029, 6.4753) | (3.6820, 10.0842) | (3.5814, 9.6642) | (2.9210, 7.0976) | ||||
R7 | θ | (0.0000, 0.0396) | (0.0001, 0.0971) | (0.0000, 1.7671) | (0.0003, 0.0721) | |||
α | (3.2894, 8.5794) | (4.1532, 10.3699) | (0.0000, 16.7183) | (3.6938, 9.2988) | ||||
R8 | θ | (0.0000, 0.0217) | (0.0000, 0.0556) | (0.0000, 0.8662) | (0.0000, 0.0065) | |||
α | (3.8062, 9.5529) | (4.6246, 12.0765) | (0.0000, 12.2860) | (5.9434, 11.6350) | ||||
20 | Complete | θ | (0.0000, 0.0184) | (0.0001, 0.0387) | (0.0000, 0.3996) | (0.0051, 0.0054) | ||
α | (4.0108, 8.9845) | (4.6717, 10.5509) | (0.0000, 13.0766) | (5.7553, 7.2060) |
n | m | Scheme | Criterion 1 | Criterion 2 | Criterion 3 | ||
u=0.25 | u=0.5 | u=0.75 | |||||
20 | 10 | R1 | 0.03506 | 0.83682 | 0.11268 | 0.07976 | 0.05729 |
R2 | 0.01217 | 0.64069 | 0.06442 | 0.04715 | 0.04140 | ||
R3 | 0.01998 | 0.79471 | 0.07253 | 0.06173 | 0.05435 | ||
R4 | 0.01523 | 0.62961 | 0.07420 | 0.05620 | 0.04626 | ||
15 | R5 | 0.01297 | 0.49835 | 0.07986 | 0.05236 | 0.03773 | |
R6 | 0.00896 | 0.44197 | 0.06528 | 0.04037 | 0.02931 | ||
R7 | 0.01077 | 0.50202 | 0.06663 | 0.04458 | 0.03420 | ||
R8 | 0.01328 | 0.52928 | 0.07711 | 0.05219 | 0.03785 | ||
30 | 20 | R9 | 0.00700 | 0.35165 | 0.06254 | 0.04127 | 0.02893 |
R10 | 0.00384 | 0.28795 | 0.04490 | 0.02887 | 0.02167 | ||
R11 | 0.00480 | 0.33571 | 0.04582 | 0.03353 | 0.02681 | ||
R12 | 0.00559 | 0.33819 | 0.05100 | 0.03700 | 0.02830 | ||
25 | R13 | 0.00432 | 0.28031 | 0.05162 | 0.03272 | 0.02292 | |
R14 | 0.00333 | 0.25036 | 0.04523 | 0.02778 | 0.01949 | ||
R15 | 0.00373 | 0.27659 | 0.04456 | 0.02914 | 0.02169 | ||
R16 | 0.00433 | 0.28334 | 0.04939 | 0.03218 | 0.02287 | ||
40 | 20 | R17 | 0.00603 | 0.31757 | 0.05918 | 0.04126 | 0.02910 |
R18 | 0.00272 | 0.27014 | 0.03429 | 0.02544 | 0.02131 | ||
R19 | 0.00429 | 0.33148 | 0.03842 | 0.03314 | 0.02797 | ||
R20 | 0.00353 | 0.28271 | 0.03848 | 0.02951 | 0.02350 | ||
30 | R21 | 0.00294 | 0.22649 | 0.04286 | 0.02747 | 0.01906 | |
R22 | 0.00188 | 0.19031 | 0.03415 | 0.02132 | 0.01522 | ||
R23 | 0.00223 | 0.21707 | 0.03406 | 0.02338 | 0.01786 | ||
R24 | 0.00266 | 0.22059 | 0.03809 | 0.02631 | 0.01922 | ||
60 | 40 | R25 | 0.00154 | 0.16089 | 0.03263 | 0.02116 | 0.01457 |
R26 | 0.00087 | 0.13226 | 0.02284 | 0.01473 | 0.01079 | ||
R27 | 0.00109 | 0.15160 | 0.02398 | 0.01768 | 0.01377 | ||
R28 | 0.00120 | 0.15151 | 0.02599 | 0.01897 | 0.01425 | ||
50 | R29 | 0.00104 | 0.13316 | 0.02634 | 0.01657 | 0.01144 | |
R30 | 0.00077 | 0.11752 | 0.02294 | 0.01409 | 0.00969 | ||
R31 | 0.00085 | 0.12752 | 0.02335 | 0.01529 | 0.01111 | ||
R32 | 0.00096 | 0.12957 | 0.02508 | 0.01646 | 0.01153 |
n | m | Scheme | Criterion 1 | Criterion 2 | Criterion 3 | ||
u=0.25 | u=0.5 | u=0.75 | |||||
20 | 10 | R1 | 5.44E-03 | 2.53956 | 0.00627 | 0.00688 | 0.01037 |
R2 | 5.41E-04 | 1.33875 | 0.02476 | 0.00472 | 0.00364 | ||
R3 | 1.87E-03 | 1.94060 | 0.00908 | 0.00952 | 0.01424 | ||
R4 | 8.52E-03 | 2.40327 | 0.00616 | 0.00637 | 0.01045 | ||
15 | R5 | 3.10E-05 | 1.66920 | 0.00621 | 0.00561 | 0.00789 | |
R6 | 1.03E-05 | 1.07840 | 0.00936 | 0.00383 | 0.00284 | ||
R7 | 1.31E-04 | 1.56659 | 0.00660 | 0.00573 | 0.00532 | ||
R8 | 1.77E-05 | 2.09906 | 0.00476 | 0.00443 | 0.00667 | ||
20 | Complete | 4.46E-07 | 1.21885 | 0.00250 | 0.00199 | 0.00262 |