In this paper, we generate some non-classical variants of Julia and Mandelbrot sets, utilizing the Jungck-Ishikawa fixed point iteration system equipped with $ s $-convexity. We establish a novel escape criterion for complex polynomials of a higher degree of the form $ z^n + az^2 -bz + c $, where $ a, \; b $ and $ c $ are complex numbers and furnish some graphical illustrations of the generated complex fractals. In the sequel, we discuss the errors committed by the majority of researchers in developing the escape criterion utilizing distinct fixed point iterations equipped with $ s $-convexity. We conclude the paper by examining variation in images and the impact of parameters on the deviation of dynamics, color and appearance of fractals. It is fascinating to notice that some of our fractals represent the traditional Kachhi Thread Works found in the Kutch district of Gujarat (India) which is useful in the Textile Industry.
Citation: Swati Antal, Anita Tomar, Darshana J. Prajapati, Mohammad Sajid. Variants of Julia and Mandelbrot sets as fractals via Jungck-Ishikawa fixed point iteration system with $ s $-convexity[J]. AIMS Mathematics, 2022, 7(6): 10939-10957. doi: 10.3934/math.2022611
In this paper, we generate some non-classical variants of Julia and Mandelbrot sets, utilizing the Jungck-Ishikawa fixed point iteration system equipped with $ s $-convexity. We establish a novel escape criterion for complex polynomials of a higher degree of the form $ z^n + az^2 -bz + c $, where $ a, \; b $ and $ c $ are complex numbers and furnish some graphical illustrations of the generated complex fractals. In the sequel, we discuss the errors committed by the majority of researchers in developing the escape criterion utilizing distinct fixed point iterations equipped with $ s $-convexity. We conclude the paper by examining variation in images and the impact of parameters on the deviation of dynamics, color and appearance of fractals. It is fascinating to notice that some of our fractals represent the traditional Kachhi Thread Works found in the Kutch district of Gujarat (India) which is useful in the Textile Industry.
[1] | S. Antal, A. Tomar, D. J. Parjapati, M. Sajid, Fractals as Julia sets of complex sine function via fixed point iterations, Fractal Fract., 5 (2021), 1–17. https://doi.org/10.3390/fractalfract5040272 doi: 10.3390/fractalfract5040272 |
[2] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. |
[3] | M. F. Barnsley, Fractals everywhere, San Francisca: Morgan Kaufmann, 1993. |
[4] | N. Cohen, Fractal antenna applications in wireless telecommunications, Prof. Program Proc. Electron. Ind. Forum New Engl., 1997, 43–49. https://doi.org/10.1109/EIF.1997.605374 doi: 10.1109/EIF.1997.605374 |
[5] | W. D. Crowe, R. Hasson, P. J. Rippon, P. E. D. Strain-Clark, On the structure of the Mandelbar set, Nonlinearity, 2 (1989), 541–553. |
[6] | R. L. Devaney, A first course in chaotic dynamical systems: Theory and experiment, Boca Raton: CRC Press, 1992. https://doi.org/10.1201/9780429503481 |
[7] | P. Domínguez, N. Fagella, Residual Julia sets of rational and transcendental functions, In: P. J. Rippon, G. M. Stallard, Transcendental dynamics and complex analysis, Cambridge University Press, 2008,138–164. |
[8] | E. F. D. Goufo, A biomathematical view on the fractional dynamics of cellulose degradation, Fract. Calc. Appl. Anal., 18 (2015), 554–564. https://doi.org/10.1515/fca-2015-0034 doi: 10.1515/fca-2015-0034 |
[9] | P. Fatou, Sur les équations fonctionnelles, Bull. S. M. F., 47 (1919), 161–271. |
[10] | G. Julia, Mémoire sur l'itération des fonctions rationnelles, J. Math. Pures Appl., 8 (1918), 47–245. |
[11] | S. M. Kang, A. Rafiq, A. Latif, A. A. Shahid, Y. C. Kwun, Tricorns and multicorns of S-iteration scheme, J. Funct. Space., 2015 (2015), 1–7. https://doi.org/10.1155/2015/417167 doi: 10.1155/2015/417167 |
[12] | S. M. Kang, A. Rafiq, M. Tanveer, F. Ali, Y. C. Kwun, Julia and Mandelbrot sets in modified Jungck three-step orbit, Wulfenia, 22 (2015), 167–185. |
[13] | N. C. Kenkel, D. J. Walker, Fractals in the biological sciences, Coenoses, 11 (1996), 77–100. |
[14] | L. Koss, Elliptic functions with disconnected Julia sets, Int. J. Bifurcat. Chaos, 26 (2016), 1650095. https://doi.org/10.1142/S0218127416500954 doi: 10.1142/S0218127416500954 |
[15] | B. B. Mandelbrot, The fractal geometry of nature, San Francisco: Freeman, 1982. |
[16] | K. Nakamura, Iterated inversion system: An algorithm for efficiently visualizing Kleinian groups and extending the possibilities of fractal art, J. Math. Arts, 15 (2021), 106–136. https://doi.org/10.1080/17513472.2021.1943998 doi: 10.1080/17513472.2021.1943998 |
[17] | S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150. https://doi.org/10.1090/S0002-9939-1974-0336469-5 doi: 10.1090/S0002-9939-1974-0336469-5 |
[18] | L. O. Jolaoso, S. H. Khan, Some escape time results for general complex polynomials and biomorphs generation by a new iteration process, Mathematics, 8 (2020), 1–18. https://doi.org/10.3390/math8122172 doi: 10.3390/math8122172 |
[19] | S. Kumari, M. Kumari, R. Chugh, Dynamics of superior fractals via Jungck SP orbit with s-convexity, An. Univ. Craiova Math. Comput. Sci. Ser., 46 (2019), 344–365. |
[20] | D. J. Liu, W. G. Zhou, X. Song, Z. M. Qiu, Fractal simulation of flocculation processes using a diffusion-limited aggregation model, Fractal Fract., 1 (2017), 1–14. https://doi.org/10.3390/fractalfract1010012 doi: 10.3390/fractalfract1010012 |
[21] | P. Muthukumar, P. Balasubramaniam, Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography, Nonlinear Dyn., 74 (2013), 1169–1181. https://doi.org/10.1007/s11071-013-1032-3 doi: 10.1007/s11071-013-1032-3 |
[22] | W. Nazeer, S. M. Kang, M. Tanveer, A. A. Shahid, Fixed point results in the generation of Julia and Mandelbrot sets, J. Inequal. Appl., 2015 (2015), 298. https://doi.org/10.1186/s13660-015-0820-3 doi: 10.1186/s13660-015-0820-3 |
[23] | M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042 doi: 10.1006/jmaa.2000.7042 |
[24] | F. Orsucci, Complexity science, living systems, and reflexing interfaces: New models and perspectives, Hershey, PA: IGI Global, 2012. |
[25] | M. O. Olatinwo, C. O. Imoru, Some convergence results for the Jungck-Mann and the Jungck-Ishikawa iteration processes in the class of generalized Zamfirescu operators, Acta Math. Univ. Comenianae, 77 (2008), 299–304. |
[26] | P. C. Ouyang, K. W. Chung, A. Nicolas, K. Gdawiec, Self-similar fractal drawings inspired by M. C. Escher's print square limit, ACM Trans. Graphic., 40 (2021), 1–34. https://doi.org/10.1145/3456298 doi: 10.1145/3456298 |
[27] | F. Peherstorfer, C. Stroh, Connectedness of Julia sets of rational functions, Comput. Methods Funct. Theory, 1 (2001), 61–79. https://doi.org/10.1007/BF03320977 doi: 10.1007/BF03320977 |
[28] | C. C. King, Fractal and chaotic dynamics in nervous systems, Prog. Neurobiol., 36 (1991), 279–308. https://doi.org/10.1016/0301-0082(91)90003-J doi: 10.1016/0301-0082(91)90003-J |
[29] | Y. C. Kwun, A. A. Shahid, W. Nazeer, M. Abbas, S. M. Kang, Fractal generation via CR iteration scheme with s-convexity, IEEE Access, 7 (2019), 69986-69997. https://doi.org/10.1109/ACCESS.2019.2919520 doi: 10.1109/ACCESS.2019.2919520 |
[30] | M. Rani, V. Kumar, Superior Julia sets, J. Korea Soc. Math. Edu. Ser. D Res. Math. Edu., 8 (2004), 261–277. |
[31] | M. Rani, V. Kumar, Superior Mandelbrot set, J. Korea Soc. Math. Edu. Ser. D Res. Math. Edu., 8 (2004), 279–291. |
[32] | A. A. Shahid, W. Nazeer, K. Gdawiec, The Picard-Mann iteration with s-convexity in the generation of Mandelbrot and Julia sets, Monatsh. Math., 195 (2021), 565–584. https://doi.org/10.1007/s00605-021-01591-z doi: 10.1007/s00605-021-01591-z |
[33] | K. R. Sreenivasan, Fractals and multifractals in fluid turbulence, Annu. Rev. Fluid Mech., 23 (1991), 539–604. https://doi.org/10.1146/annurev.fl.23.010191.002543 doi: 10.1146/annurev.fl.23.010191.002543 |
[34] | M. Tanveer, W. Nazeer, K. Gdawiec, New escape criteria for complex fractals generation in Jungck-CR orbit, Indian J. Pure Appl. Math., 51 (2020), 1285–1303. https://doi.org/10.1007/s13226-020-0466-9 doi: 10.1007/s13226-020-0466-9 |
[35] | G. I. Usurelu, A. Bejenaru, M. Postolache, Newton-like methods and polynomiographic visualization of modified Thakur processes, Int. J. Comput. Math., 98 (2021), 1049–1068. https://doi.org/10.1080/00207160.2020.1802017 doi: 10.1080/00207160.2020.1802017 |
[36] | J. J. Ventrella, Evolving the Mandelbrot set to imitate figurative art, In: P. F. Hingston, L. C. Barone, Z. Michalewicz, Design by evolution, Berlin, Heidelberg: Springer, 2008,145–167. https://doi.org/10.1007/978-3-540-74111-4_9 |
[37] | D. Wang, S. C. Zhao, K. Chen, S. T. Liu, Parameter estimation of the classical fractal map based on a given Julia set's shape, Fractals, 29 (2021), 2150247. https://doi.org/10.1142/S0218348X21502479 doi: 10.1142/S0218348X21502479 |
[38] | Y. P. Wang, S. T. Liu, H. Li, Fractional diffusion-limited aggregation: Anisotropy originating from memory, Fractals, 27 (2019), 1950137. https://doi.org/10.1142/S0218348X19501378 doi: 10.1142/S0218348X19501378 |
[39] | B. B. Xu, D. Y. Chen, H. Zhang, R. Zhou, Dynamic analysis and modeling of a novel fractional-order hydro-turbine-generator unit, Nonlinear Dyn., 81 (2015), 1263–1274. https://doi.org/10.1007/s11071-015-2066-5 doi: 10.1007/s11071-015-2066-5 |
[40] | H. X. Zhang, M. Tanveer, Y. X. Li, Q. X. Peng, N. A. Shah, Fixed point results of an implicit iterative scheme for fractal generations, AIMS Math., 6 (2021), 13170–13186. https://doi.org/10.3934/math.2021761 doi: 10.3934/math.2021761 |
[41] | W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. https://doi.org/10.2307/2032162 doi: 10.2307/2032162 |
[42] | E. Picard, Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives, J. Math. Pures Appl., 6 (1890), 145–210. |