The aim of this paper is to propose a novel Noor iteration technique, called the CT-iteration for approximating a fixed point of continuous functions on closed interval. Then, a necessary and sufficient condition for the convergence of the CT-iteration of continuous functions on closed interval is established. We also compare the rate of convergence between the proposed iteration and some other iteration processes in the literature. Specifically, our main result shows that CT-iteration converges faster than CP-iteration to the fixed point. We finally give numerical examples to compare the result with Mann, Ishikawa, Noor, SP and CP iterations. Our findings improve corresponding results in the contemporary literature.
Citation: Chonjaroen Chairatsiripong, Tanakit Thianwan. Novel Noor iterations technique for solving nonlinear equations[J]. AIMS Mathematics, 2022, 7(6): 10958-10976. doi: 10.3934/math.2022612
The aim of this paper is to propose a novel Noor iteration technique, called the CT-iteration for approximating a fixed point of continuous functions on closed interval. Then, a necessary and sufficient condition for the convergence of the CT-iteration of continuous functions on closed interval is established. We also compare the rate of convergence between the proposed iteration and some other iteration processes in the literature. Specifically, our main result shows that CT-iteration converges faster than CP-iteration to the fixed point. We finally give numerical examples to compare the result with Mann, Ishikawa, Noor, SP and CP iterations. Our findings improve corresponding results in the contemporary literature.
[1] | W. R. Mann, Mean value method in iteration, Proc. Am. Math. Soc., 4 (1953), 506–510. https://doi.org/10.1090/S0002-9939-1953-0054846-3 doi: 10.1090/S0002-9939-1953-0054846-3 |
[2] | S. Ishikawa, Fixed points by a new iteration method, Proc. Am. Math. Soc., 44 (1974), 147–150. https://doi.org/10.1090/S0002-9939-1974-0336469-5 doi: 10.1090/S0002-9939-1974-0336469-5 |
[3] | M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042 doi: 10.1006/jmaa.2000.7042 |
[4] | W. Phuengrattana, S. Suantai, On the rate of convergence of mann ishikawa. noor and sp iterations for continuous function on an arbitrary interval, J. Comput. Appl. Math., 235 (2011), 3006–3014. |
[5] | P. Cholamjiak, N. Pholasa, Approximating fixed points for continuous functions on an arbitrary interval, J. Inequal. Appl., 214 (2013). https://doi.org/10.1186/1029-242X-2013-214 |
[6] | D. Borwein, J. Borwein, Fixed point iterations for real function, J. Math. Anal. Appl., 157 (1991), 112–126. https://doi.org/10.1016/0022-247X(91)90139-Q doi: 10.1016/0022-247X(91)90139-Q |
[7] | Y. Qing, L. Qihou, The necessary and sufficient condition for the convergence of ishikawa iteration on an arbitrary interval, J. Math. Anal. Appl., 323 (2006), 1383–1386. https://doi.org/10.1016/j.jmaa.2005.11.058 doi: 10.1016/j.jmaa.2005.11.058 |
[8] | Q. Yuan, S. Y. Cho, X. Qin, Convergence of ishikawa iteration with error terms on an arbitrary interval, Commun. Korean Math. Soc., 26 (2011), 229–235. https://doi.org/10.4134/CKMS.2011.26.2.229 doi: 10.4134/CKMS.2011.26.2.229 |
[9] | M. Rani, R. Chugh, Julia sets and Mandelbrot sets in Noor orbit, Appl. Math. Comput., 228 (2014), 615–631. https://doi.org/10.1016/j.amc.2013.11.077 doi: 10.1016/j.amc.2013.11.077 |
[10] | M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput., 152 (2004), 199–277. https://doi.org/10.1016/S0096-3003(03)00558-7 doi: 10.1016/S0096-3003(03)00558-7 |
[11] | M. A. Noor, K. I. Noor, M. T. Rassias, New trends in general variational inequalities, Acta Appl. Mathematicae, 170 (2020), 986–1046. https://doi.org/10.1007/s10440-020-00366-2 doi: 10.1007/s10440-020-00366-2 |
[12] | S. M. Kang, W. Nazeer, M. Tanveer, A. A. Shahid, New fixed point results for fractal generation in jungck Noor orbit with s-convexity, J. Function Space., 2015 (2015), Article ID 963016, 7 pages. https://doi.org/10.1155/2015/963016 |
[13] | B. E. Rhoades, Comments on two fixed point iteration methods, J. Math. Anal. Appl., 56 (1976), 741–750. https://doi.org/10.1016/0022-247X(76)90038-X doi: 10.1016/0022-247X(76)90038-X |
[14] | V. Berinde, Picard iteration converges faster than mann iteration for a class of quasi-contractive operators, Fixed Point Theory Appl., 2 (2004), 97–105. https://doi.org/10.1155/S1687182004311058 doi: 10.1155/S1687182004311058 |
[15] | O. Popescu, Picard iteration converges faster than mann iteration for a class of quasi-contractive operators, Math. Commun., 12 (2007), 195–202. |
[16] | S. M. Soltuz, The equivalence of picard, mann and ishikawa iterations dealing with quasi-contractive operators, Math. Commun., 10 (2005), 81–88. |
[17] | G. Babu, K. N. V. V. Vara Prasad, Mann iteration converges faster than ishikawa iteration for the class of zamfirescu operators, Fixed Point Theory Appl., 6 (2006). https://doi.org/10.1155/FPTA/2006/49615 |
[18] | Y. Qing, B. E. Rhoades, Comments on the rate of convergence between mann and ishikawa iterations applied to zamfirescu operators, Fixed Point Theory Appl., 3 (2008). https://doi.org/10.1155/2008/387504 |
[19] | Q. L. Dong, S. He, X. Liu, Rate of convergence of mann, ishikawa and noor iterations for continuous functions on an arbitrary interval, J. Inequal. Appl., 269 (2013). https://doi.org/10.1186/1029-242X-2013-269 |