In the current paper, the power series based on the $ M $-fractional derivative is formally introduced. More peciesely, the Taylor and Maclaurin expansions are generalized for fractional-order differentiable functions in accordance with the $ M $-fractional derivative. Some new definitions, theorems, and corollaries regarding the power series in the $ M $ sense are presented and formally proved. Several ordinary differential equations (ODEs) involving the $ M $-fractional derivative are solved to examine the validity of the results presented in the current study.
Citation: A. Khoshkenar, M. Ilie, K. Hosseini, D. Baleanu, S. Salahshour, C. Park, J. R. Lee. Further studies on ordinary differential equations involving the $ M $-fractional derivative[J]. AIMS Mathematics, 2022, 7(6): 10977-10993. doi: 10.3934/math.2022613
In the current paper, the power series based on the $ M $-fractional derivative is formally introduced. More peciesely, the Taylor and Maclaurin expansions are generalized for fractional-order differentiable functions in accordance with the $ M $-fractional derivative. Some new definitions, theorems, and corollaries regarding the power series in the $ M $ sense are presented and formally proved. Several ordinary differential equations (ODEs) involving the $ M $-fractional derivative are solved to examine the validity of the results presented in the current study.
[1] | S. Yang, H. Zhou, S. Zhang, L. Wang, Analytical solutions of advective-dispersive transport in porous media involving conformable derivative, Appl. Math. Lett., 92 (2019) 85–92. https://doi.org/10.1016/j.aml.2019.01.004 doi: 10.1016/j.aml.2019.01.004 |
[2] | K. Hosseini, M. Mirzazadeh, M. Ilie, J. F. Gómez-Aguilar, Biswas-Arshed equation with the beta time derivative: Optical solitons and other solutions, Optik, 217 (2020), 164801. https://doi.org/10.1016/j.ijleo.2020.164801 doi: 10.1016/j.ijleo.2020.164801 |
[3] | K. Hosseini, M. Ilie, M. Mirzazadeh, A. Yusuf, T. A. Sulaiman, D. Baleanu, S. Salahshour, An effective computational method to deal with a time-fractional nonlinear water wave equation in the Caputo sense, Math. Comput. Simul., 187 (2021), 248–260. https://doi.org/10.1016/j.matcom.2021.02.021 doi: 10.1016/j.matcom.2021.02.021 |
[4] | T. A. Sulaiman, M. Yavuz, H. Bulut, H. M. Baskonus, Investigation of the fractional coupled viscous Burger's equation involving Mittag-Leffler kernel, Physica A, 527 (2019), 121126. https://doi.org/10.1016/j.physa.2019.121126 doi: 10.1016/j.physa.2019.121126 |
[5] | R. Khalil, M. Al-Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002 |
[6] | M. Abu Hammad, R. Khalil, Abel's formula and Wronskian for conformable fractional differential equations, Int. J. Differ. Equ. Appl., 13 (2014), 177–183. http://doi.org/10.12732/ijdea.v13i3.1753 doi: 10.12732/ijdea.v13i3.1753 |
[7] | M. S. Osman, A. Korkmaz, H. Rezazadeh, M. Mirzazadeh, M. Eslami, Q. Zhou, The unified method for conformable time fractional Schrödinger equation with perturbation terms, Chinese J. Phys., 56 (2018), 2500–2506. https://doi.org/10.1016/j.cjph.2018.06.009 doi: 10.1016/j.cjph.2018.06.009 |
[8] | K. Hosseini, K. Sadri, M. Mirzazadeh, A. Ahmadian, Y. M. Chu, S. Salahshour, Reliable methods to look for analytical and numerical solutions of a nonlinear differential equation arising in heat transfer with the conformable derivative, Math. Method. Appl. Sci., 2021. https://doi.org/10.1002/mma.7582 |
[9] | A. Atangana, D. Baleanu, A. Alsaedi, Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal, Open Phys., 14 (2016), 145–149. https://doi.org/10.1515/phys-2016-0010 doi: 10.1515/phys-2016-0010 |
[10] | A. Atangana, R. T. Alqahtani, Modelling the spread of river blindness disease via the Caputo fractional derivative and the beta-derivative, Entropy, 18 (2016), 40. https://doi.org/10.3390/e18020040 doi: 10.3390/e18020040 |
[11] | B. Ghanbari, J. F. Gómez-Aguilar, The generalized exponential rational function method for Radhakrishnan-Kundu-Lakshmanan equation with $\beta$-conformable time derivative, Rev. Mex. Fís., 65 (2019), 503–518. |
[12] | K. Hosseini, M. Mirzazadeh, M. Ilie, J. F. Gómez-Aguilar, Soliton solutions of the Sasa-Satsuma equation in the monomode optical fibers including the beta-derivatives, Optik, 224 (2020), 165425. https://doi.org/10.1016/j.ijleo.2020.165425 doi: 10.1016/j.ijleo.2020.165425 |
[13] | M. Caputo, Linear models of dissipation whose $Q$ is almost frequency independent-II, Geophys. J. R. Astron. Soc., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x |
[14] | I. Podlubny, Fractional differential equations, Math. Sci. Eng., 198 (1999), 41–119. |
[15] | M. Awais, F. S. Alshammari, S. Ullah, M. Altaf Khan, S. Islam, Modeling and simulation of the novel coronavirus in Caputo derivative, Results Phys., 19 (2020), 103588. https://doi.org/10.1016/j.rinp.2020.103588 doi: 10.1016/j.rinp.2020.103588 |
[16] | A. Yokus, H. Durur, D. Kaya, H. Ahmad, T. A. Nofal, Numerical comparison of Caputo and conformable derivatives of time fractional Burgers-Fisher equation, Results Phys., 25 (2021), 104247. https://doi.org/10.1016/j.rinp.2021.104247 doi: 10.1016/j.rinp.2021.104247 |
[17] | A. Atangana, D. Baleanu, New fractional derivative with nonlocal and non-singular kernel, theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A |
[18] | D. Avci, A. Yetim, Cauchy and source problems for an advection-diffusion equation with Atangana-Baleanu derivative on the real line, Chaos Soliton. Fract., 118 (2019), 361–365. https://doi.org/10.1016/j.chaos.2018.11.035 doi: 10.1016/j.chaos.2018.11.035 |
[19] | Z. Korpinar, M. Inc, M. Bayram, Theory and application for the system of fractional Burger equations with Mittag Leffler kernel, Appl. Math. Comput., 367 (2020), 124781. https://doi.org/10.1016/j.amc.2019.124781 doi: 10.1016/j.amc.2019.124781 |
[20] | K. Hosseini, M. Ilie, M. Mirzazadeh, D. Baleanu, An analytic study on the approximate solution of a nonlinear time-fractional Cauchy reaction-diffusion equation with the Mittag-Leffler law, Math. Method. Appl. Sci., 44 (2021), 6247–6258. https://doi.org/10.1002/mma.7059 doi: 10.1002/mma.7059 |
[21] | S. G. Samko, B. Ross, Integration and differentiation to a variable fractional order, Integr. Transf. Spec. F., 1 (1993), 277–300. https://doi.org/10.1080/10652469308819027 doi: 10.1080/10652469308819027 |
[22] | X. Zheng, H. Wang, An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes, SIAM J. Numer. Anal., 58 (2020), 330–352. https://doi.org/10.1137/19M1245621 doi: 10.1137/19M1245621 |
[23] | X. Zheng, H. Wang, An error estimate of a numerical approximation to a hidden-memory variable-order space-time fractional diffusion equation, SIAM J. Numer. Anal., 58 (2020), 2492–2514. https://doi.org/10.1137/20M132420X doi: 10.1137/20M132420X |
[24] | X. Zheng, H. Wang, Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions, IMA J. Numer. Anal., 41 (2021), 1522–1545. |
[25] | X. Zheng, H. Wang, A hidden-memory variable-order time-fractional optimal control model: Analysis and approximation, SIAM J. Control Optim., 59 (2021), 1851–1880. https://doi.org/10.1137/20M1344962 doi: 10.1137/20M1344962 |
[26] | X. Zheng, H. Wang, Analysis and discretization of a variable-order fractional wave equation, Commun. Nonlinear Sci., 104 (2022), 106047. https://doi.org/10.1016/j.cnsns.2021.106047 doi: 10.1016/j.cnsns.2021.106047 |
[27] | J. Singh, A. Ahmadian, S. Rathore, D. Kumar, D. Baleanu, M. Salimi, et al. An efficient computational approach for local fractional Poisson equation in fractal media, Numer. Meth. Part. D. E., 37 (2021), 1439–1448. ttps://doi.org/10.1002/num.22589 doi: 10.1002/num.22589 |
[28] | M. Rahaman, S. P. Mondal, A. A. Shaikh, A. Ahmadian, N. Senu, S. Salahshour, Arbitrary-order economic production quantity model with and without deterioration: generalized point of view, Adv. Differ. Equ., 2020 (2020), 16. https://doi.org/10.1186/s13662-019-2465-x doi: 10.1186/s13662-019-2465-x |
[29] | S. Ahmad, A. Ullah, K. Shah, S. Salahshour, A. Ahmadian, T. Ciano, Fuzzy fractional-order model of the novel coronavirus, Adv. Differ. Equ., 2020 (2020), 472. https://doi.org/10.1186/s13662-020-02934-0 doi: 10.1186/s13662-020-02934-0 |
[30] | K. Shah, M. Arfan, I. Mahariq, A. Ahmadian, S. Salahshour, M. Ferrara, Fractal-fractional mathematical model addressing the situation of corona virus in Pakistan, Results Phys., 19 (2020), 103560. https://doi.org/10.1016/j.rinp.2020.103560 doi: 10.1016/j.rinp.2020.103560 |
[31] | J. Vanterler da C. Sousa, E. Capelas de Oliveira, A new truncated $M$-fractional derivative type unifying some fractional derivative types with classical properties, Int. J. Anal. Appl., 16 (2018), 83–96. https://doi.org/10.28924/2291-8639-16-2018-83 doi: 10.28924/2291-8639-16-2018-83 |
[32] | A. Yusuf, M. Inc, D. Baleanu, Optical solitons with $M$-truncated and beta derivatives in nonlinear optics, Front. Phys., 7 (2019), 126. https://doi.org/10.3389/fphy.2019.00126 doi: 10.3389/fphy.2019.00126 |
[33] | Y. S. Özkan, On the exact solutions to Biswas-Arshed equation involving truncated $M$-fractional space-time derivative terms, Optik, 227 (2021), 166109. https://doi.org/10.1016/j.ijleo.2020.166109 doi: 10.1016/j.ijleo.2020.166109 |
[34] | K. U. Tariq, M. Younis, S. T. R. Rizvi, H. Bulut, $M$-truncated fractional optical solitons and other periodic wave structures with Schrödinger-Hirota equation, Mod. Phys. Lett. B, 34 (2020), 2050427. https://doi.org/10.1142/S0217984920504278 doi: 10.1142/S0217984920504278 |
[35] | A. Zafar, A. Bekir, M. Raheel, W. Razzaq, Optical soliton solutions to Biswas-Arshed model with truncated $M$-fractional derivative, Optik, 222 (2020), 165355. https://doi.org/10.1016/j.ijleo.2020.165355 doi: 10.1016/j.ijleo.2020.165355 |
[36] | R. Goreno, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler functions, related topics and applications, Berlin: Springer, 2014. |
[37] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016 |
[38] | T. M. Apostol, Mathematical analysis, New York: Addison-Wesley Publishing Company, 1981. |
[39] | W. Rudin, Principle of mathematical analysis, New York: McGraw-Hill, 1976. |
[40] | M. Ilie, J. Biazar, Z. Ayati, Optimal homotopy asymptotic method for first-order conformable fractional differential equations, J. Fract. Calc. Appl., 10 (2019), 33–45. |