Research article Special Issues

A remark for Gauss sums of order 3 and some applications for cubic congruence equations

  • Received: 03 October 2021 Revised: 17 March 2022 Accepted: 21 March 2022 Published: 30 March 2022
  • MSC : 11T23, 11T24

  • In this paper, we give some relations between Gauss sums of order 3. As application, we give the number of solutions of some cubic diagonal equations. These generalize the earlier results obtained by Hong-Zhu and solve the sign problem raised by Zhang-Zhang.

    Citation: Wenxu Ge, Weiping Li, Tianze Wang. A remark for Gauss sums of order 3 and some applications for cubic congruence equations[J]. AIMS Mathematics, 2022, 7(6): 10671-10680. doi: 10.3934/math.2022595

    Related Papers:

  • In this paper, we give some relations between Gauss sums of order 3. As application, we give the number of solutions of some cubic diagonal equations. These generalize the earlier results obtained by Hong-Zhu and solve the sign problem raised by Zhang-Zhang.



    加载中


    [1] B. Berndt, R. Evans, K. Williams, Gauss and Jacobi sums, Math. Gaz., 83 (1999), 349–351. https://doi.org/10.2307/3619097 doi: 10.2307/3619097
    [2] S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502–506. https://doi.org/10.1016/0022-314X(77)90010-5 doi: 10.1016/0022-314X(77)90010-5
    [3] S. Chowla, J. Cowles, M. Cowles, The number of zeroes of $x^3 + y^3 + cz^3$ in certain finite fields, J. Reine Angew. Math., 299 (1978), 406–410. https://doi.org/10.1515/crll.1978.299-300.406 doi: 10.1515/crll.1978.299-300.406
    [4] C. F. Gauss, Disquisitiones arithmeticae, New Haven: Yale UnYale University Press, 1966.
    [5] H. Ito, An application of a product formula for the cubic Gauss sum, J. Number Theory, 135 (2014), 139–150. https://doi.org/10.1016/j.jnt.2013.08.005 doi: 10.1016/j.jnt.2013.08.005
    [6] H. Ito, A note on a product formula for the cubic Gauss sum, Acta Arith., 152 (2012), 11–21. https://doi.org/10.4064/aa152-1-2 doi: 10.4064/aa152-1-2
    [7] S. F. Hong, C. X. Zhu, On the number of zeros of diagonal cubic forms over finite fields, Forum Math., 33 (2021), 697–708. https://doi.org/10.1515/forum-2020-0354 doi: 10.1515/forum-2020-0354
    [8] X. Liu, Some identities involving Gauss sums, AIMS Math., 7 (2022), 3250–3257. https://doi.org/10.3934/math.2022180 doi: 10.3934/math.2022180
    [9] X. X. Lv, W. P. Zhang, The generalized quadratic Gauss sums and its sixth power mean, AIMS Math., 6 (2021), 11275–11285. https://doi.org/10.3934/math.2021654 doi: 10.3934/math.2021654
    [10] K. Momihara, Pure Gauss sums and skew Hadamard difference sets, Finite Fields Th. App., 77 (2022), 101932. https://doi.org/10.1016/j.ffa.2021.101932 doi: 10.1016/j.ffa.2021.101932
    [11] Y. Zhao, W. P. Zhang, X. X. Lv, A certain new Gauss sum and its fourth power mean, AIMS Math., 5 (2020), 5004–5011. https://doi.org/10.3934/math.2020321 doi: 10.3934/math.2020321
    [12] W. P. Zhang, J. Y. Hu, The number of solutons of the diagonal cubic congruence equation mod $p$, Math. Rep., 20 (2018), 73–80.
    [13] W. P. Zhang, X. D. Yuan, On the classical Gauss sums and their some new identities, AIMS Math., 7 (2022), 5860–5870. https://doi.org/10.3934/math.2022325 doi: 10.3934/math.2022325
    [14] H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Math. Rep., 19 (2017), 75–83.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1513) PDF downloads(84) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog