Research article

Universal enveloping Hom-algebras of regular Hom-Poisson algebras

  • Received: 19 November 2021 Revised: 23 December 2021 Accepted: 06 January 2022 Published: 11 January 2022
  • MSC : 16S10, 16W10, 17B35, 17B63

  • In this paper, we introduce universal enveloping Hom-algebras of Hom-Poisson algebras. Some properties of universal enveloping Hom-algebras of regular Hom-Poisson algebras are discussed. Furthermore, in the involutive case, it is proved that the category of involutive Hom-Poisson modules over an involutive Hom-Poisson algebra $ A $ is equivalent to the category of involutive Hom-associative modules over its universal enveloping Hom-algebra $ U_{eh}(A) $.

    Citation: Xianguo Hu. Universal enveloping Hom-algebras of regular Hom-Poisson algebras[J]. AIMS Mathematics, 2022, 7(4): 5712-5727. doi: 10.3934/math.2022316

    Related Papers:

  • In this paper, we introduce universal enveloping Hom-algebras of Hom-Poisson algebras. Some properties of universal enveloping Hom-algebras of regular Hom-Poisson algebras are discussed. Furthermore, in the involutive case, it is proved that the category of involutive Hom-Poisson modules over an involutive Hom-Poisson algebra $ A $ is equivalent to the category of involutive Hom-associative modules over its universal enveloping Hom-algebra $ U_{eh}(A) $.



    加载中


    [1] F. Ammar, A. Makhlouf, Hom-Lie superalgebras and Hom-Lie admissible superalgebras, J. Algebra, 324 (2010), 1513–1528. https://doi.org/10.1016/j.jalgebra.2010.06.014 doi: 10.1016/j.jalgebra.2010.06.014
    [2] S. Caenepeel, I. Goyvaerts, Monoidal Hom-Hopf algebras, Comm. Algebra, 39 (2011), 2216–2240. https://doi.org/10.1080/00927872.2010.490800 doi: 10.1080/00927872.2010.490800
    [3] M. De Wilde, P. Lecomte, Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys., 7 (1983), 487–496. https://doi.org/10.1007/BF00402248 doi: 10.1007/BF00402248
    [4] B. Fedosov, A simple geometrical construction of deformation quantization, J. Differential Geom., 40 (1994), 213–238. https://doi.org/10.4310/jdg/1214455536 doi: 10.4310/jdg/1214455536
    [5] M. T. Guo, X. G. Hu, J. F. Lü, X. T. Wang, The structures on the universal enveloping algebras of differential graded Poisson Hopf algebras, Comm. Algebra, 46 (2018), 2714–2729. https://doi.org/10.1080/00927872.2017.1408811 doi: 10.1080/00927872.2017.1408811
    [6] L. Guo, B. Zhang, S. Zheng, Universal enveloping algebras and Poincaré-Birkhoff-Witt theorem for involutive Hom-Lie algebras, J. Lie Theory, 28 (2018), 739–759.
    [7] J. T. Hartwig, D. Larsson, S. D. Silvestrov, Deformations of Lie algebras using $\sigma$-derivations, J. Algebra, 295 (2006), 314–361. https://doi.org/10.1016/j.jalgebra.2005.07.036 doi: 10.1016/j.jalgebra.2005.07.036
    [8] X. G. Hu, J. F. Lü, X. T. Wang, PBW-Basis for Universal Enveloping Algebras of Differential Graded Poisson Algebras, Bull. Malays. Math. Sci. Soc., 42 (2019), 3343–3377. https://doi.org/10.1007/s40840-018-0673-2 doi: 10.1007/s40840-018-0673-2
    [9] M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys., 66 (2003), 157–216. https://doi.org/10.1023/B:MATH.0000027508.00421.bf doi: 10.1023/B:MATH.0000027508.00421.bf
    [10] C. Laurent-Gengoux, A. Makhlouf, J. Teles, Universal algebra of a Hom-Lie algebra and group-like elements, J. Pure Appl. Algebra, 222 (2018), 1139–1163. https://doi.org/10.1016/j.jpaa.2017.06.012 doi: 10.1016/j.jpaa.2017.06.012
    [11] D. Larsson, S. D. Silvestrov, Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities, J. Algebra, 288 (2005), 321–344. https://doi.org/10.1016/j.jalgebra.2005.02.032 doi: 10.1016/j.jalgebra.2005.02.032
    [12] J. F. Lü, X. T. Wang, G. B. Zhuang, Universal enveloping algebras of Poisson Hopf algebras, J. Algebra, 426 (2015), 92–136. https://doi.org/10.1016/j.jalgebra.2014.12.010 doi: 10.1016/j.jalgebra.2014.12.010
    [13] J. F. Lü, X. T. Wang, G. B. Zhuang, DG Poisson algebra and its universal enveloping algebra, Sci. China Math., 59 (2016), 849–860. https://doi.org/10.1007/s11425-016-5127-4 doi: 10.1007/s11425-016-5127-4
    [14] A. Makhlouf, F. Panaite, Hom-L-R-smash products, Hom-diagonal crossed products and the Drinfeld double of a Hom-Hopf algebra, J. Algebra, 441 (2015), 314–343. https://doi.org/10.1016/j.jalgebra.2015.05.032 doi: 10.1016/j.jalgebra.2015.05.032
    [15] A. Makhlouf, S. Silvestrov, Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras, Forum Math., 22 (2010), 715–739. https://doi.org/10.1515/forum.2010.040 doi: 10.1515/forum.2010.040
    [16] A. Makhlouf, S. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl., 9 (2010), 553–589. https://doi.org/10.1142/S0219498810004117 doi: 10.1142/S0219498810004117
    [17] A. Makhlouf, S. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl., 2 (2008), 51–64. https://doi.org/10.4303/jglta/S070206 doi: 10.4303/jglta/S070206
    [18] S. Q. Oh, Poisson enveloping algebras, Comm. Algebra, 27 (1999), 2181–2186. https://doi.org/10.1080/00927879908826556 doi: 10.1080/00927879908826556
    [19] Y. H. Sheng, Representations of hom-Lie algebras, Algebr. Represent. Theory, 15 (2012), 1081–1098. https://doi.org/10.1007/s10468-011-9280-8 doi: 10.1007/s10468-011-9280-8
    [20] Y. H. Sheng, C. M. Bai, A new approach to hom-Lie bialgebras, J. Algebra, 399 (2014), 232–250. https://doi.org/10.1016/j.jalgebra.2013.08.046 doi: 10.1016/j.jalgebra.2013.08.046
    [21] U. Umirbaev, Universal enveloping algebras and universal derivations of Poisson algebras, J. Algebra, 354 (2012), 77–94. https://doi.org/10.1016/j.jalgebra.2012.01.003 doi: 10.1016/j.jalgebra.2012.01.003
    [22] M. Van den Bergh, Double Poisson algebras, Trans. Amer. Math. Soc., 360 (2008), 5711–5769. https://doi.org/10.1090/S0002-9947-08-04518-2 doi: 10.1090/S0002-9947-08-04518-2
    [23] Y. Yao, Y. Ye, P. Zhang, Quiver Poisson Algebras, J. Algebra, 312 (2007), 570–589. https://doi.org/10.1016/j.jalgebra.2007.03.034 doi: 10.1016/j.jalgebra.2007.03.034
    [24] D. Yau, Hom-algebras and homology, J. Lie Theory, 19 (2009), 409–421.
    [25] D. Yau, Non-commutative Hom-Poisson algebras, arXiv, (2010), 1010.3408.
    [26] S. Zheng, L. Guo, Free involutive Hom-semigroups and Hom-associative algebras, Front. Math. China, 11 (2016), 497–508. https://doi.org/10.1007/s11464-015-0448-0 doi: 10.1007/s11464-015-0448-0
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1554) PDF downloads(88) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog