In this paper, we introduce universal enveloping Hom-algebras of Hom-Poisson algebras. Some properties of universal enveloping Hom-algebras of regular Hom-Poisson algebras are discussed. Furthermore, in the involutive case, it is proved that the category of involutive Hom-Poisson modules over an involutive Hom-Poisson algebra $ A $ is equivalent to the category of involutive Hom-associative modules over its universal enveloping Hom-algebra $ U_{eh}(A) $.
Citation: Xianguo Hu. Universal enveloping Hom-algebras of regular Hom-Poisson algebras[J]. AIMS Mathematics, 2022, 7(4): 5712-5727. doi: 10.3934/math.2022316
In this paper, we introduce universal enveloping Hom-algebras of Hom-Poisson algebras. Some properties of universal enveloping Hom-algebras of regular Hom-Poisson algebras are discussed. Furthermore, in the involutive case, it is proved that the category of involutive Hom-Poisson modules over an involutive Hom-Poisson algebra $ A $ is equivalent to the category of involutive Hom-associative modules over its universal enveloping Hom-algebra $ U_{eh}(A) $.
[1] | F. Ammar, A. Makhlouf, Hom-Lie superalgebras and Hom-Lie admissible superalgebras, J. Algebra, 324 (2010), 1513–1528. https://doi.org/10.1016/j.jalgebra.2010.06.014 doi: 10.1016/j.jalgebra.2010.06.014 |
[2] | S. Caenepeel, I. Goyvaerts, Monoidal Hom-Hopf algebras, Comm. Algebra, 39 (2011), 2216–2240. https://doi.org/10.1080/00927872.2010.490800 doi: 10.1080/00927872.2010.490800 |
[3] | M. De Wilde, P. Lecomte, Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys., 7 (1983), 487–496. https://doi.org/10.1007/BF00402248 doi: 10.1007/BF00402248 |
[4] | B. Fedosov, A simple geometrical construction of deformation quantization, J. Differential Geom., 40 (1994), 213–238. https://doi.org/10.4310/jdg/1214455536 doi: 10.4310/jdg/1214455536 |
[5] | M. T. Guo, X. G. Hu, J. F. Lü, X. T. Wang, The structures on the universal enveloping algebras of differential graded Poisson Hopf algebras, Comm. Algebra, 46 (2018), 2714–2729. https://doi.org/10.1080/00927872.2017.1408811 doi: 10.1080/00927872.2017.1408811 |
[6] | L. Guo, B. Zhang, S. Zheng, Universal enveloping algebras and Poincaré-Birkhoff-Witt theorem for involutive Hom-Lie algebras, J. Lie Theory, 28 (2018), 739–759. |
[7] | J. T. Hartwig, D. Larsson, S. D. Silvestrov, Deformations of Lie algebras using $\sigma$-derivations, J. Algebra, 295 (2006), 314–361. https://doi.org/10.1016/j.jalgebra.2005.07.036 doi: 10.1016/j.jalgebra.2005.07.036 |
[8] | X. G. Hu, J. F. Lü, X. T. Wang, PBW-Basis for Universal Enveloping Algebras of Differential Graded Poisson Algebras, Bull. Malays. Math. Sci. Soc., 42 (2019), 3343–3377. https://doi.org/10.1007/s40840-018-0673-2 doi: 10.1007/s40840-018-0673-2 |
[9] | M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys., 66 (2003), 157–216. https://doi.org/10.1023/B:MATH.0000027508.00421.bf doi: 10.1023/B:MATH.0000027508.00421.bf |
[10] | C. Laurent-Gengoux, A. Makhlouf, J. Teles, Universal algebra of a Hom-Lie algebra and group-like elements, J. Pure Appl. Algebra, 222 (2018), 1139–1163. https://doi.org/10.1016/j.jpaa.2017.06.012 doi: 10.1016/j.jpaa.2017.06.012 |
[11] | D. Larsson, S. D. Silvestrov, Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities, J. Algebra, 288 (2005), 321–344. https://doi.org/10.1016/j.jalgebra.2005.02.032 doi: 10.1016/j.jalgebra.2005.02.032 |
[12] | J. F. Lü, X. T. Wang, G. B. Zhuang, Universal enveloping algebras of Poisson Hopf algebras, J. Algebra, 426 (2015), 92–136. https://doi.org/10.1016/j.jalgebra.2014.12.010 doi: 10.1016/j.jalgebra.2014.12.010 |
[13] | J. F. Lü, X. T. Wang, G. B. Zhuang, DG Poisson algebra and its universal enveloping algebra, Sci. China Math., 59 (2016), 849–860. https://doi.org/10.1007/s11425-016-5127-4 doi: 10.1007/s11425-016-5127-4 |
[14] | A. Makhlouf, F. Panaite, Hom-L-R-smash products, Hom-diagonal crossed products and the Drinfeld double of a Hom-Hopf algebra, J. Algebra, 441 (2015), 314–343. https://doi.org/10.1016/j.jalgebra.2015.05.032 doi: 10.1016/j.jalgebra.2015.05.032 |
[15] | A. Makhlouf, S. Silvestrov, Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras, Forum Math., 22 (2010), 715–739. https://doi.org/10.1515/forum.2010.040 doi: 10.1515/forum.2010.040 |
[16] | A. Makhlouf, S. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl., 9 (2010), 553–589. https://doi.org/10.1142/S0219498810004117 doi: 10.1142/S0219498810004117 |
[17] | A. Makhlouf, S. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl., 2 (2008), 51–64. https://doi.org/10.4303/jglta/S070206 doi: 10.4303/jglta/S070206 |
[18] | S. Q. Oh, Poisson enveloping algebras, Comm. Algebra, 27 (1999), 2181–2186. https://doi.org/10.1080/00927879908826556 doi: 10.1080/00927879908826556 |
[19] | Y. H. Sheng, Representations of hom-Lie algebras, Algebr. Represent. Theory, 15 (2012), 1081–1098. https://doi.org/10.1007/s10468-011-9280-8 doi: 10.1007/s10468-011-9280-8 |
[20] | Y. H. Sheng, C. M. Bai, A new approach to hom-Lie bialgebras, J. Algebra, 399 (2014), 232–250. https://doi.org/10.1016/j.jalgebra.2013.08.046 doi: 10.1016/j.jalgebra.2013.08.046 |
[21] | U. Umirbaev, Universal enveloping algebras and universal derivations of Poisson algebras, J. Algebra, 354 (2012), 77–94. https://doi.org/10.1016/j.jalgebra.2012.01.003 doi: 10.1016/j.jalgebra.2012.01.003 |
[22] | M. Van den Bergh, Double Poisson algebras, Trans. Amer. Math. Soc., 360 (2008), 5711–5769. https://doi.org/10.1090/S0002-9947-08-04518-2 doi: 10.1090/S0002-9947-08-04518-2 |
[23] | Y. Yao, Y. Ye, P. Zhang, Quiver Poisson Algebras, J. Algebra, 312 (2007), 570–589. https://doi.org/10.1016/j.jalgebra.2007.03.034 doi: 10.1016/j.jalgebra.2007.03.034 |
[24] | D. Yau, Hom-algebras and homology, J. Lie Theory, 19 (2009), 409–421. |
[25] | D. Yau, Non-commutative Hom-Poisson algebras, arXiv, (2010), 1010.3408. |
[26] | S. Zheng, L. Guo, Free involutive Hom-semigroups and Hom-associative algebras, Front. Math. China, 11 (2016), 497–508. https://doi.org/10.1007/s11464-015-0448-0 doi: 10.1007/s11464-015-0448-0 |