Our work is based on the multiple inequalities illustrated by Josip Pečarić in 2013, 1982 and Srivastava in 2017. With the help of a positive $ \sigma $-finite measure, we generalize a number of those inequalities to a general time scale measure space. Besides that, in order to obtain some new inequalities as special cases, we also extend our inequalities to discrete and continuous calculus.
Citation: Ahmed A. El-Deeb, Inho Hwang, Choonkil Park, Omar Bazighifan. Some new dynamic Steffensen-type inequalities on a general time scale measure space[J]. AIMS Mathematics, 2022, 7(3): 4326-4337. doi: 10.3934/math.2022240
Our work is based on the multiple inequalities illustrated by Josip Pečarić in 2013, 1982 and Srivastava in 2017. With the help of a positive $ \sigma $-finite measure, we generalize a number of those inequalities to a general time scale measure space. Besides that, in order to obtain some new inequalities as special cases, we also extend our inequalities to discrete and continuous calculus.
[1] | J. F. Steffensen, On certain inequalities between mean values and their application to actuarial problems, Scand. Actuar. J., 1918 (1918), 82–97. https://doi.org/10.1080/03461238.1918.10405302 doi: 10.1080/03461238.1918.10405302 |
[2] | J. C. Evard, H. Gauchman, Steffensen type inequalities over general measure spaces, Analysis, 17 (1997), 301–322. https://doi.org/10.1524/anly.1997.17.23.301 doi: 10.1524/anly.1997.17.23.301 |
[3] | J. Jakšeti$\grave{{\rm{c}}}$, J. Pečari$\grave{{\rm{c}}}$, K. S. Kalamir, Extension of Cerone's generalizations of Steffensen's inequality, Jordan J. Math. Stat., 8 (2015), 179–194. |
[4] | Pečarić, Josip E. Notes on some general inequalities, Publ. I. Math. Beograd, 32 (1982), 131–135. |
[5] | S. H. Wu, H. M. Srivastava, Some improvements and generalizations of Steffensen's integral inequality, Appl. Math. Comput., 192 (2007), 422–428. https://doi.org/10.1016/j.amc.2007.03.020 doi: 10.1016/j.amc.2007.03.020 |
[6] | J. Pečarić, A. Perušić, K. Smoljak, Mercer and Wu-Srivastava generalisations of Steffensen's inequality, Appl. Math. Comput., 219 (2013), 10548–10558. https://doi.org/10.1016/j.amc.2013.04.028 doi: 10.1016/j.amc.2013.04.028 |
[7] | S. Hilger, Analysis on measure chains-A unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18–56. https://doi.org/10.1007/BF03323153 doi: 10.1007/BF03323153 |
[8] | F. M. KH, A. A. El-Deeb, A. Abdeldaim, Z. A. Khan, On some generalizations of dynamic Opial-type inequalities on time scales, Adv. Differ, Equ., 2019 (2019), 323. https://doi.org/10.1186/s13662-019-2268-0 doi: 10.1186/s13662-019-2268-0 |
[9] | M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Birkhäuser Boston, 2001. |
[10] | R. Agarwal, M. Bohner, A. Peterson, Inequalities on time scales: A survey, Math. Inequal. Appl., 4 (2001), 535–557. http://scholarbank.nus.edu.sg/handle/10635/103416 |
[11] | R. Agarwal, D. O'Regan, S. Saker. Dynamic inequalities on time scales, Cham: Springer, 2014. |
[12] | S. H. Saker, A. A. El-Deeb, H. M. Rezk, R. P. Agarwal, On Hilbert's inequality on time scales, Appl. Anal. Discrete Math., 11 (2017), 399–423. https://doi.org/10.2298/AADM170428001S doi: 10.2298/AADM170428001S |
[13] | Y. Tian, A. A. El-Deeb, F. Meng, Some nonlinear delay Volterra-Fredholm type dynamic integral inequalities on time scales, Discrete Dyn. Nat. Soc., 2018 (2018), 5841985. https://doi.org/10.1155/2018/5841985 doi: 10.1155/2018/5841985 |
[14] | M. U. Awan, N. Akhtar, S. Iftikhar, M. A. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for $n$-polynomial harmonically convex functions, J. Inequ. Appl., 2020 (2020), 125. https://doi.org/10.1186/s13660-020-02393-x doi: 10.1186/s13660-020-02393-x |
[15] | H. J. Hu, L. z. Liu, Weighted inequalities for a general commutator associated to a singular integral operator satisfying a variant of Hormander's condition, Math. Notes, 101 (2017), 830–840. https://doi.org/10.1134/S0001434617050091 doi: 10.1134/S0001434617050091 |
[16] | C. X. Huang, G. Sheng, L. Z. Liu, Boundedness on Morrey space for Toeplitz type operator associated to singular integral operator with variable Calderón-Zygmund kernel, J. Math. Inequal., 3 (2014), 453–464. https://doi.org/10.7153/jmi-08-33 doi: 10.7153/jmi-08-33 |
[17] | Y. M. Chu, H. Wang, T. H. Zhao, Sharp bounds for the Neuman mean in terms of the quadratic and second Seiffert means, J. Inequal. Appl., 2014 (2014), 299. https://doi.org/10.1186/1029-242X-2014-299 doi: 10.1186/1029-242X-2014-299 |
[18] | C. X. Huang, L. Z. Liu, Sharp function inequalities and boundness for Toeplitz type operator related to general fractional singular integral operator, Publ. I. Math. Beograd, 92 (2012), 165–176. https://doi.org/10.2298/PIM1206165H doi: 10.2298/PIM1206165H |
[19] | G. A. Anastassiou, Foundations of nabla fractional calculus on time scales and inequalities, Comput. Math. Appl., 59 (2010), 3750–3762. https://doi.org/10.1016/j.camwa.2010.03.072 doi: 10.1016/j.camwa.2010.03.072 |
[20] | G. A. Anastassiou, Principles of delta fractional calculus on time scales and inequalities, Math. Comput. Model., 52 (2010), 556–566. https://doi.org/10.1016/j.mcm.2010.03.055 doi: 10.1016/j.mcm.2010.03.055 |
[21] | G. A. Anastassiou, Integral operator inequalities on time scales, Int. J. Differ. Equ., 7 (2012), 111–137. |
[22] | W. N. Li, Some new dynamic inequalities on time scales, J. Math. Anal. Appl., 319 (2006), 802–814. https://doi.org/10.1016/j.jmaa.2005.06.065 doi: 10.1016/j.jmaa.2005.06.065 |
[23] | M. Sahir, Dynamic inequalities for convex functions harmonized on time scales, J. Appl. Math. Phys., 5 (2017), 2360–2370. https://doi.org/10.4236/jamp.2017.512193 doi: 10.4236/jamp.2017.512193 |
[24] | A. A. M. El-Deeb, O. Bazighifan, J. Awrejcewicz, A variety of dynamic Steffensen-type inequalities on a general time scale, Symmetry, 13 (2021), 1738. https://doi.org/10.3390/sym13091738 doi: 10.3390/sym13091738 |
[25] | A. A. El-Deeb, S. D. Makharesh, D. Baleanu, Dynamic Hilbert-type inequalities with Fenchel-Legendre transform, Symmetry, 12 (2020), 582. https://doi.org/10.3390/sym12040582 doi: 10.3390/sym12040582 |
[26] | A. A. El-Deeb, O. Bazighifan, J. Awrejcewicz, On some new weighted Steffensen-type inequalities on time scales, Mathematics, 9 (2021), 2670. https://doi.org/10.3390/math9212670 doi: 10.3390/math9212670 |
[27] | A. A. El-Deeb, D. Baleanu, New weighted Opial-type inequalities on time scales for convex functions, Symmetry, 12 (2020), 842. https://doi.org/10.3390/sym12050842 doi: 10.3390/sym12050842 |