Our work is based on the multiple inequalities illustrated by Josip Pečarić in 2013, 1982 and Srivastava in 2017. With the help of a positive σ-finite measure, we generalize a number of those inequalities to a general time scale measure space. Besides that, in order to obtain some new inequalities as special cases, we also extend our inequalities to discrete and continuous calculus.
Citation: Ahmed A. El-Deeb, Inho Hwang, Choonkil Park, Omar Bazighifan. Some new dynamic Steffensen-type inequalities on a general time scale measure space[J]. AIMS Mathematics, 2022, 7(3): 4326-4337. doi: 10.3934/math.2022240
[1] | Ahmed A. El-Deeb, Osama Moaaz, Dumitru Baleanu, Sameh S. Askar . A variety of dynamic $ \alpha $-conformable Steffensen-type inequality on a time scale measure space. AIMS Mathematics, 2022, 7(6): 11382-11398. doi: 10.3934/math.2022635 |
[2] | Mohammed S. El-Khatib, Atta A. K. Abu Hany, Mohammed M. Matar, Manar A. Alqudah, Thabet Abdeljawad . On Cerone's and Bellman's generalization of Steffensen's integral inequality via conformable sense. AIMS Mathematics, 2023, 8(1): 2062-2082. doi: 10.3934/math.2023106 |
[3] | Ahmed A. El-Deeb, Dumitru Baleanu, Nehad Ali Shah, Ahmed Abdeldaim . On some dynamic inequalities of Hilbert's-type on time scales. AIMS Mathematics, 2023, 8(2): 3378-3402. doi: 10.3934/math.2023174 |
[4] | Ahmed A. El-Deeb, Samer D. Makharesh, Sameh S. Askar, Dumitru Baleanu . Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales. AIMS Mathematics, 2022, 7(8): 14099-14116. doi: 10.3934/math.2022777 |
[5] | Elkhateeb S. Aly, Y. A. Madani, F. Gassem, A. I. Saied, H. M. Rezk, Wael W. Mohammed . Some dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus. AIMS Mathematics, 2024, 9(2): 5147-5170. doi: 10.3934/math.2024250 |
[6] | Marwa M. Ahmed, Wael S. Hassanein, Marwa Sh. Elsayed, Dumitru Baleanu, Ahmed A. El-Deeb . On Hardy-Hilbert-type inequalities with $ \alpha $-fractional derivatives. AIMS Mathematics, 2023, 8(9): 22097-22111. doi: 10.3934/math.20231126 |
[7] | Bingxian Wang, Mei Xu . Asymptotic behavior of some differential inequalities with mixed delays on time scales and their applications. AIMS Mathematics, 2024, 9(6): 16453-16467. doi: 10.3934/math.2024797 |
[8] | Jian-Mei Shen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu . Certain novel estimates within fractional calculus theory on time scales. AIMS Mathematics, 2020, 5(6): 6073-6086. doi: 10.3934/math.2020390 |
[9] | Awais Younus, Khizra Bukhsh, Manar A. Alqudah, Thabet Abdeljawad . Generalized exponential function and initial value problem for conformable dynamic equations. AIMS Mathematics, 2022, 7(7): 12050-12076. doi: 10.3934/math.2022670 |
[10] | Haytham M. Rezk, Mohammed Zakarya, Amirah Ayidh I Al-Thaqfan, Maha Ali, Belal A. Glalah . Unveiling new reverse Hilbert-type dynamic inequalities within the framework of Delta calculus on time scales. AIMS Mathematics, 2025, 10(2): 2254-2276. doi: 10.3934/math.2025104 |
Our work is based on the multiple inequalities illustrated by Josip Pečarić in 2013, 1982 and Srivastava in 2017. With the help of a positive σ-finite measure, we generalize a number of those inequalities to a general time scale measure space. Besides that, in order to obtain some new inequalities as special cases, we also extend our inequalities to discrete and continuous calculus.
The renowned integral Steffensen's inequality [1] is written as: Let f and g be integrable functions on [a,b] such that f is nonincreasing and 0≤g(J)≤1 on [a,b]. Then
∫bb−λf(J)dJ≤∫baf(J)g(J)dJ≤∫a+λaf(J)dJ, | (1.1) |
where λ=∫bag(J)dJ.
It is simple to notice that inequalities (1.1) are reversed if f is nondecreasing.
The discrete version of the Steffensen inequality [2] states:
Theorem A. Assume that {f(k)}nk=1 is a nonincreasing nonnegative real sequence and {g(k)}nk=1 is a real sequence such that 0≤g(k)≤1 for every k. Furthermore, let that λ1, λ2∈{1,…,n} be such that λ2≤∑nk=1g(k)≤λ1. Then
n∑k=n−λ2+1f(k)≤n∑k=1f(k)g(k)≤λ1∑k=1f(k). | (1.2) |
Jakšetić et al. [3] established the following interesting results among many other similar results for a positive finite measure μ. States:
Theorem B. Let ˆμ be a positive finite measure on B([a,b]), and let f, g:[a,b→R be measurable functions on [a,b] such that f is nonincreasing and 0≤g(J)≤1 for all t∈[a,b]. Further, let ˆμ([c,d])=∫[a,b]g(J)dˆμ(J), where [c,d]⊆[a,b]. Then
∫[a,b]f(J)g(J)dˆμ(J)≤∫[c,d]f(J)g(J)dˆμ(J)+∫[a,c](f(J)−f(d))g(J)dˆμ(J). |
Also, the authors proved that:
Theorem C. Let f, g:[a,b]→R be measurable functions on [a,b] such that f is nonincreasing and 0≤g(J)≤1 for all t∈[a,b]. Further, let ˆμ([c,d])=∫[a,b]g(J)dˆμ(J), where [c,d]⊆[a,b]. If ˆμ is a positive finite measure on B([a,b]), then
∫[c,d]f(J)dˆμ(J)−∫[d,b](f(c)−f(J))g(J)dˆμ(J)≤∫[a,b]f(J)g(J)dˆμ(J). |
In 1982, Pečarić [4] gave speculation of the Steffensen inequality as the following two hypotheses.
Theorem 1.1. Let ˆf, ˆg, ˆh:[a,b]→R be integrable functions on [a,b] such that ˆf/ˆh is nonincreasing and ˆh is nonnegative. Further, let 0≤ˆg(J)≤1 ∀J∈[a,b]. Then
∫baˆf(J)ˆg(J)dJ≤∫a+ˆ℘aˆfdJ, | (1.3) |
where ˆ℘ is the solution of the equation
∫a+ˆ℘aˆh(J)dJ=∫baˆh(J)ˆg(J)dJ. |
We get the reverse of (1.3), if ^f(J)/^h(J) is nondecreasing.
Theorem 1.2. Let ˆf, ˆg, ˆh:[a,b]→R be integrable functions on [a,b] such that ˆf/ˆh is nonincreasing and ˆh is nonnegative. Further, let 0≤ˆg(J)≤1 ∀J∈[a,b]. Then
∫bb−ˆ℘ˆf(J)dJ≤∫baˆf(J)ˆg(J)dJ, | (1.4) |
where ˆ℘ gives us the solution of
∫bb−ˆ℘ˆh(J)dJ=∫baˆh(J)ˆg(J)dJ. | (1.5) |
We get the reverse of (1.4), if ^f(J)/^h(J) is nondecreasing.
Wu and Srivastava in [5] acquired the accompanying result.
Theorem 1.3. Let ˆf, ˆg, ˆh:[a,b]→R be integrable functions on [a,b] such that ˆf is nonincreasing. Further, let 0≤ˆg(J)≤ˆh(J) ∀J∈[a,b]. Then the following integral inequalities hold true:
∫bb−ˆ℘ˆf(J)ˆh(J)dJ≤∫bb−ˆ℘(ˆf(J)ˆh(J)−[ˆf(J)−ˆf(b−ˆ℘)][ˆh(J)−ˆg(J)])dJ≤∫baˆf(J)ˆg(J)dJ≤∫a+ˆ℘a(ˆf(J)ˆh(J)−[ˆf(J)−ˆf(a+ˆ℘)][ˆh(J)−ˆg(J)])dJ≤∫a+ˆ℘aˆf(J)ˆh(J)dJ, |
where ˆ℘ gives us the solution of
∫a+ˆ℘aˆh(J)dJ=∫baˆg(J)dJ=∫bb−ˆ℘ˆh(J)dJ. |
The following interesting findings were published in [6].
Theorem 1.4. Suppose the integrability of ˆg, ˆh, ˆf, ψ:[a,b]→R such that ˆf is nonincreasing. Also suppose 0≤ˆψ(J)≤ˆg(J)≤ˆh(J)−ˆψ(J) for all J∈[a,b]. Then
∫baˆf(J)ˆg(J)dJ≤∫a+ˆ℘aˆf(J)ˆh(J)dJ−∫ba|(ˆf(J)−ˆf(a+ˆ℘))ψ(J)|dJ, |
where ˆ℘ is given by
∫a+ˆ℘aˆh(J)dJ=∫baˆg(J)dJ. |
Theorem 1.5. Under the hypotheses of Theorem 1.4. Then
∫bb−ˆ℘ˆf(J)ˆh(J)dJ+∫ba|(ˆf(J)−ˆf(b−ˆ℘))ˆψ(J)|dJ≤∫baˆf(J)ˆg(J)dJ, |
where ˆ℘ is given by
∫bb−ˆ℘ˆh(J)dJ=∫baˆg(J)dJ. |
The calculus of time scales with the intention to unify discrete and continuous analysis (see [7]) was proposed by Hilger [8]. For more details on the time scales calculus we refer to the book by Bohner and Peterson [9].
Lately, several dynamic inequalities on time scales has been investigated by using exclusive authors who have been inspired with the aid of a few applications (see[10,11,12,13,14,15,16,17,18]). Some authors created different results regarding fractional calculus on time scales to provide associated dynamic inequalities (see [19,20,21,22,23,24,25,26,27]).
In this article, we explore new generalizations of the integral Steffensen inequality given in [4,5,6] via general time scale measure space with a positive σ-finite measure. We also retrieve some of the integral inequalities known in the literature as special cases of our tests.
In what follows B([a,b]T) is Borel σ-algebra [a,b]. Next, we enroll the accompanying suppositions for the verifications of our primary outcomes:
(S1) ([a,b]T,B([a,b]T),ˆμ) is time scale measure space with a positive σ-finite measure on B([a,b]T).
(S2) η, Υ, Ξ:[a,b]T→R are Δˆμ-integrable functions on [a,b]T.
(S3) η/Ξ is nonincreasing and Ξ is nonnegative.
(S4) 0≤Υ(J)≤1 for all J∈[a,b]T.
(S5) ˆ℘∈[0,∞).
(S6) η is nonincreasing.
(S7) 1≤Υ(J)≤Ξ(J) for all J∈[a,b]T.
(S8) 0≤ψ(J)≤Υ(J)≤Ξ(J)−ψ(J) for all J∈[a,b]T.
(S9) 0≤M≤Υ(J)≤1−M for all J∈[a,b]T.
(S10) 0≤ψ(J)≤Υ(J)≤1−ψ(J) for all J∈[a,b]T.
ˆ℘ is the solution of the equations listed below:
(S11) ∫[a,a+ˆ℘]TΞ(J)Δˆμ=∫[a,b]TΞ(J)Υ(J)Δˆμ.
(S12) ∫[b−ˆ℘,b]TΞ(J)Δˆμ=∫[a,b]TΞ(J)Υ(J)Δˆμ.
(S13) ∫[a,a+ˆ℘]TΞ(J)Δˆμ=∫[a,b]TΥ(J)Δˆμ=∫[b−ˆ℘,b]TΞ(J)Δˆμ.
(S14) ∫[a,a+ˆ℘]TΞ(J)Δˆμ=∫[a,b]TΥ(J)Δˆμ.
(S15) ∫[b−ˆ℘,b]TΞ(J)Δˆμ=∫[a,b]TΥ(J)Δˆμ.
Presently, we are prepared to state and explain the principle results that make bigger numerous effects inside the literature.
Theorem 2.1. Let S1, S2, S3, S4, S5 and S11 be satisfied. Then
∫[a,b]Tη(J)Υ(J)Δˆμ≤∫[a,a+ˆ℘]Tη(J)Δˆμ. | (2.1) |
We get the reverse of (2.1), if η/Ξ is nondecreasing.
Proof. From our hypotheses, we observe that,
∫[a,a+ˆ℘]Tη(J)Δˆμ−∫[a,b]Tη(J)Υ(J)Δˆμ=∫[a,a+ˆ℘]TΞ(J)[1−Υ(J)]η(J)Ξ(J)Δˆμ−∫[a+ˆ℘,b]Tη(J)Υ(J)Δˆμ≥η(a+ˆ℘)Ξ(a+ˆ℘)∫[a,a+ˆ℘]TΞ(J)[1−Υ(J)]Δˆμ−∫[a+ˆ℘,b]Tη(J)Υ(J)Δˆμ=η(a+ˆ℘)Ξ(a+ˆ℘)[∫[a,a+ˆ℘]TΞ(J)Δˆμ−∫[a,a+ˆ℘]TΞ(J)Υ(J)Δˆμ]−∫[a+ˆ℘,b]Tη(J)Υ(J)Δˆμ=η(a+ˆ℘)Ξ(a+ˆ℘)[∫[a,b]TΞ(J)Υ(J)Δˆμ−∫[a,a+ˆ℘]TΞ(J)Υ(J)Δˆμ]−∫[a+ˆ℘,b]Tη(J)Υ(J)Δˆμ=η(a+ˆ℘)Ξ(a+ˆ℘)∫[a+ˆ℘,b]TΞ(J)Υ(J)Δˆμ−∫[a+ˆ℘,b]Tη(J)Υ(J)Δˆμ=∫[a+ˆ℘,b]TΞ(J)Υ(J)(η(a+ˆ℘)Ξ(a+ˆ℘)−η(J)Ξ(J))Δˆμ≥0. |
The proof is complete.
Remark 2.1. In case of T=R and related to Lebesgue measure in Theorem 2.1, we recollect [4,Theorem 1].
Theorem 2.2. Assumptions S1, S2, S3, S4, S5 and S12 imply
∫[b−ˆ℘,b]Tη(J)Δˆμ≤∫[a,b]Tη(J)Υ(J)Δˆμ. | (2.2) |
We get the reverse of (2.2), if η/Ξ is nondecreasing.
Proof. From our hypotheses, we observe that,
∫[b−ˆ℘,b]Tη(J)Δˆμ−∫[a,b]Tη(J)Υ(J)Δˆμ=∫[b−ˆ℘,b]TΞ(J)[1−Υ(J)]η(J)Ξ(J)Δˆμ−∫[a,b−ˆ℘]Tη(J)Υ(J)Δˆμ≤η(b−ˆ℘)Ξ(b−ˆ℘)∫[b−ˆ℘,b]TΞ(J)[1−Υ(J)]Δˆμ−∫[a,b−ˆ℘]Tη(J)Υ(J)Δˆμ=η(b−ˆ℘)Ξ(b−ˆ℘)[∫[b−ˆ℘,b]TΞ(J)Δˆμ−∫[b−ˆ℘,b]TΞ(J)Υ(J)Δˆμ]−∫[a,b−ˆ℘]Tη(J)Υ(J)Δˆμ=η(b−ˆ℘)Ξ(b−ˆ℘)[∫[a,b]TΞ(J)Υ(J)Δˆμ−∫[b−ˆ℘,b]TΞ(J)Υ(J)Δˆμ]−∫[a,b−ˆ℘]Tη(J)Υ(J)Δˆμ=η(b−ˆ℘)Ξ(b−ˆ℘)∫[a,b−ˆ℘]TΞ(J)Υ(J)Δˆμ−∫[a,b−ˆ℘]Tη(J)Υ(J)Δˆμ=∫[a,b−ˆ℘]TΞ(J)Υ(J)(η(b−ˆ℘)Ξ(b−ˆ℘)−η(J)Ξ(J))Δˆμ≤0. |
Remark 2.2. By observing Lebesgue measure in Theorem 2.2, and T=R, we recapture [4,Theorem 2].
We will need the following lemma to prove the subsequent results.
Lemma 2.1. Let S1, S2, S5 hold, such that
∫[a,a+ˆ℘]TΞ(J)Δˆμ=∫[a,b]TΥ(J)Δˆμ=∫[b−ˆ℘,b]TΞ(J)Δˆμ. |
Then
∫[a,b]Tη(J)Υ(J)Δˆμ=∫[a,a+ˆ℘]T(η(J)Ξ(J)−[η(J)−η(a+ˆ℘)][Ξ(J)−Υ(J)])Δˆμ+∫[a+ˆ℘,b]T[η(J)−η(a+ˆ℘)]Υ(J)Δˆμ, | (2.3) |
and
∫[a,b]Tη(J)Υ(J)Δˆμ=∫[a,b−ˆ℘]T[η(J)−η(b−ˆ℘)]Υ(J)Δˆμ+∫[b−ˆ℘,b]T(η(J)Ξ(J)−[η(J)−η(b−ˆ℘)][Ξ(J)−Υ(J)])Δˆμ. | (2.4) |
Proof. The suppositions of the Lemma imply that
a≤a+ˆ℘≤banda≤b−ˆ℘≤b. |
Firstly, we prove the validity of the integral identity (2.3). Indeed, by direct computation, and from our hypotheses, we find that
∫[a,a+ˆ℘]T(η(J)Ξ(J)−[η(J)−η(a+ˆ℘)][Ξ(J)−Υ(J)])Δˆμ−∫[a,b]Tη(J)Υ(J)Δˆμ=∫[a,a+ˆ℘]T(η(J)Ξ(J)−η(J)Υ(J)−[η(J)−η(a+ˆ℘)][Ξ(J)−Υ(J)])Δˆμ+∫[a,a+ˆ℘]Tη(J)Υ(J)Δˆμ−∫[a,b]Tη(J)Υ(J)Δˆμ=∫[a,a+ˆ℘]Tη(a+ˆ℘)[Ξ(J)−Υ(J)]Δˆμ−∫[a+ˆ℘,b]Tη(J)Υ(J)Δˆμ=η(a+ˆ℘)(∫[a,a+ˆ℘]TΞ(J)Δˆμ−∫[a,a+ˆ℘]TΥ(J)Δˆμ)−∫[a+ˆ℘,b]Tη(J)Υ(J)Δˆμ. | (2.5) |
Since
∫[a,a+ˆ℘]TΞ(J)Δˆμ=∫[a,b]TΥ(J)Δˆμ, |
we have
η(a+ˆ℘)(∫[a,a+ˆ℘]TΞ(J)Δˆμ−∫[a,a+ˆ℘]TΥ(J)Δˆμ)−∫[a+ˆ℘,b]Tη(J)Υ(J)Δˆμ=η(a+ˆ℘)(∫[a,b]TΥ(J)Δˆμ−∫[a,a+ˆ℘]TΥ(J)Δˆμ)−∫[a+ˆ℘,b]Tη(J)Υ(J)Δˆμ=η(a+ˆ℘)∫[a+ˆ℘,b]TΥ(J)Δˆμ−∫[a+ˆ℘,b]Tη(J)Υ(J)Δˆμ)=∫[a+ˆ℘,b]T[η(a+ˆ℘)−η(J)]Υ(J)Δˆμ. | (2.6) |
Combination of (2.5) and (2.6) led to the required integral identity (2.3) asserted by the Lemma. The integral identity (2.4) can be proved similarly. The proof is done.
Theorem 2.3. Suppose S1, S2, S5, S6, S7 and S13 give
∫[b−ˆ℘,b]Tη(J)Ξ(J)Δˆμ≤∫[b−ˆ℘,b]T(η(J)Ξ(J)−[η(J)−η(b−ˆ℘)][Ξ(J)−Υ(J)])Δˆμ≤∫[a,b]Tη(J)Υ(J)Δˆμ≤∫[a,a+ˆ℘]T(η(J)Ξ(J)−[η(J)−η(a+ˆ℘)][Ξ(J)−Υ(J)])Δˆμ≤∫[a,a+ˆ℘]Tη(J)Ξ(J)Δˆμ. |
Proof. From our hypotheses. In perspective of the considerations that the function η is nonincreasing on [a,b] and 0≤Υ(J)≤Ξ(J) for all J∈[a,b], we infer that
∫[a,b−ˆ℘]T[η(J)−η(b−ˆ℘)]Υ(J)Δˆμ≥0, | (2.7) |
and
∫[b−ˆ℘,b]T[η(b−ˆ℘)−η(J)][Ξ(J)−Υ(J)]Δˆμ≥0. | (2.8) |
Using (2.3), (2.7) and (2.8), we find that
∫[b−ˆ℘,b]Tη(J)Ξ(J)Δˆμ≤∫[b−ˆ℘,b]T(η(J)Ξ(J)−[η(J)−η(b−ˆ℘)][Ξ(J)−Υ(J)])Δˆμ≤∫[a,b]Tη(J)Υ(J)Δˆμ. | (2.9) |
In the same way as above, we can prove that
∫[a,b]Tη(J)Υ(J)Δˆμ≤∫[a,a+ˆ℘]T(η(J)Ξ(J)−[η(J)−η(a+ˆ℘)][Ξ(J)−Υ(J)])Δˆμ≤∫[a,a+ˆ℘]Tη(J)Ξ(J)Δˆμ, | (2.10) |
The confirmation is finished by joining the integral inequalities (2.9) and (2.10).
Remark 2.3. We can reclaim [5,Theorem 1] with the use of Lebesgue measure in Theorem 2.3, and T=R.
Theorem 2.4. Assume S1, S2, S5, S6, S8 and S13 be fulfilled. Then
∫[b−ˆ℘,b]Tη(J)Ξ(J)Δˆμ+∫[a,b]T|[η(J)−η(b−ˆ℘)]ψ(J)|Δˆμ≤∫[a,b]Tη(J)Υ(J)Δˆμ≤∫[a,a+ˆ℘]Tη(J)Ξ(J)Δˆμ−∫[a,b]T|[η(J)−η(a+ˆ℘)]ψ(J)|Δˆμ. | (2.11) |
Proof. From our hypotheses. Clearly function η is nonincreasing on [a,b] and 0≤ψ(J)≤Υ(J)≤Ξ(J)−ψ(J) for all J∈[a,b], we obtain
∫[a,a+ˆ℘]T[η(J)−η(a+ˆ℘)][Ξ(J)−Υ(J)]Δˆμ+∫[a+ˆ℘,b]T[η(a+ˆ℘)−η(J)]Υ(J)Δˆμ=∫[a,a+ˆ℘]T|η(J)−η(a+ˆ℘)|[Ξ(J)−Υ(J)]Δˆμ+∫[a+ˆ℘,b]T|η(a+ˆ℘)−η(J)|Υ(J)Δˆμ≥∫[a,a+ˆ℘]T|η(J)−η(a+ˆ℘)|ψ(J)Δˆμ+∫[a+ˆ℘,b]T|η(a+ˆ℘)−η(J)|ψ(J)Δˆμ≥∫[a,b]T|[η(J)−η(a+ˆ℘)]ψ(J)|Δˆμ. |
Also
∫[a,a+ˆ℘]T[η(J)−η(a+ˆ℘)][Ξ(J)−Υ(J)]Δˆμ+∫[a+ˆ℘,b]T[η(a+ˆ℘)−η(J)]Υ(J)Δˆμ≥∫[a,b]T|[η(J)−η(a+ˆ℘)]ψ(J)|Δˆμ. | (2.12) |
Similarly, we find that
∫[a,b−ˆ℘]T[η(J)−η(b−ˆ℘)]Υ(J)Δˆμ+∫[b−ˆ℘,b]T[η(b−ˆ℘)−η(J)][Ξ(J)−Υ(J)]Δˆμ≥∫[a,b]T|[η(J)−η(b−ˆ℘)]ψ(J)|Δˆμ. | (2.13) |
By combining (2.3), (2.4), (2.12) and (2.13), we arrive at the inequality (2.11) asserted by Theorem 2.
Remark 2.4. If we take T=R, and consider the Lebesgue measure in Theorem 2.4, we recapture [5,Theorem 2].
In the following theorem, we use the additional parameters ˆ℘1, ˆ℘2∈[0,∞).
Theorem 2.5. Let S1, S2, S5, S6, S9 be satisfied, and
0≤ˆ℘1≤∫[a,b]TΥ(J)Δˆμ≤ˆ℘2≤b−a. |
Then
∫[b−ˆ℘1,b]Tη(J)Δˆμ+η(b)(∫[a,b]TΥ(J)Δˆμ−ˆ℘1)+M∫[a,b]T|η(J)−f(b−∫[a,b]TΥ(J)Δˆμ)|Δˆμ≤∫[a,b]Tη(J)Υ(J)Δˆμ≤∫[a,a+ˆ℘2]Tη(J)Δˆμ−η(b)(ˆ℘2−∫[a,b]TΥ(J)Δˆμ)−M∫[a,b]T|η(J)−f(a+∫[a,b]TΥ(J)Δˆμ)|Δˆμ. | (2.14) |
Proof. By using straightforward calculations, we have
∫[a,b]Tη(J)Υ(J)Δˆμ−∫[a,a+ˆ℘2]Tη(J)Δˆμ+η(b)(ˆ℘2−∫[a,b]TΥ(J)Δˆμ)=∫[a,b]Tη(J)Υ(J)Δˆμ−∫[a,a+ˆ℘2]Tη(J)Δˆμ+∫[a,a+ˆ℘2]Tη(b)Δˆμ−∫[a,b]Tη(b)Υ(J)Δˆμ=∫[a,b]T[η(J)−η(b)]Υ(J)Δˆμ−∫[a,a+ˆ℘2]T[η(J)−η(b)]Δˆμ≤∫[a,b]T[η(J)−η(b)]Υ(J)Δˆμ−∫[a,a+∫[a,b]TΥ(J)Δˆμ][η(J)−η(b)]Δˆμ, | (2.15) |
where we used the theorem's hypotheses
a≤a+ˆ℘1≤a+∫[a,b]TΥ(J)Δˆμ≤a+ˆ℘2≤b, |
and
η(J)−η(b)≥0for allJ∈[a,b]. |
The function η(J)−η(b) is nonincreasing and integrable on [a,b] and by applying Theorem 2 with Ξ(J)=1, ψ(J)=M and η(J) replaced by η(J)−η(b), hence
∫[a,b]T[η(J)−η(b)]Υ(J)Δˆμ−∫[a,a+∫[a,b]TΥ(J)Δˆμ][η(J)−η(b)]Δˆμ≤−M∫[a,b]T|η(J)−f(a+∫[a,b]TΥ(J)Δˆμ)|Δˆμ. | (2.16) |
From (2.15) and (2.16) we obtain
∫[a,b]Tη(J)Υ(J)Δˆμ−∫[a,a+ˆ℘2]Tη(J)Δˆμ+η(b)(ˆ℘2−∫[a,b]TΥ(J)Δˆμ)≤−M∫[a,b]T|η(J)−f(a+∫[a,b]TΥ(J)Δˆμ)|Δˆμ, | (2.17) |
which is the right-hand side inequality in (2.14).
Similarly, one can show that
∫[a,b]Tη(J)Υ(J)Δˆμ−∫[b−ˆ℘1,b]Tη(J)Δˆμ+η(b)(∫[a,b]TΥ(J)Δˆμ−ˆ℘2)≥∫[a,b]T[η(J)−η(b)]Υ(J)Δˆμ+∫[b−∫[a,b]TΥ(J)Δˆμ,b][η(b)−η(J)]Δˆμ≥M∫[a,b]T|η(J)−f(b−∫[a,b]TΥ(J)Δˆμ)|Δˆμ, | (2.18) |
which is the left-hand side inequality in (2.14).
Remark 2.5. [5,Theorem 3] can be obtained if T=R and Lebesgue measure in Theorem 2.5.
Theorem 2.6. If S1, S2, S5, S6, S7 and S14 hold. Then
∫[a,b]Tη(J)Υ(J)Δˆμ≤∫[a,a+ˆ℘]Tη(J)Ξ(J)Δˆμ−∫[a,b]T|(η(J)−η(a+ˆ℘))ψ(J)|Δˆμ. | (2.19) |
Proof. Follows similar to the proof of the right-hand side inequality in Theorem 2.
Remark 2.6. If we take T=R, and consider the Lebesgue measure in Theorem 2.6, we recapture [6,Theorem 2.12].
Corollary 2.1. Hypotheses S1, S2, S3, S10 and S11 yield
∫[a,b]Tη(J)Υ(J)Δˆμ≤∫[a,a+ˆ℘]Tη(J)Δˆμ−∫[a,b]T|(η(J)Ξ(J)−η(a+ˆ℘)Ξ(a+ˆ℘))Ξ(J)ψ(J)|Δˆμ. | (2.20) |
Proof. Insert Υ(J)↦Ξ(J)Υ(J), η(J)↦η(J)/Ξ(J) and ψ(J)↦Ξ(J)ψ(J) in Theorem 2.
Remark 2.7. [6,Corollary 2.3] can be recovered with the help of T=R, and Lebesgue measure in Corollary 2.1.
Theorem 2.7. If S1, S2, S5, S6, S7 and S15 hold. Then
∫[b−ˆ℘,b]Tη(J)Ξ(J)Δˆμ+∫[a,b]T|(η(J)−η(b−ˆ℘))ψ(J)|Δˆμ≤∫[a,b]Tη(J)Υ(J)Δˆμ. | (2.21) |
Proof. Carry out the same proof of the left-hand side inequality in Theorem 2.
Remark 2.8. If we take T=R, and consider the Lebesgue measure in Theorem 2.7, we recapture [6,Theorem 2.13].
Corollary 2.2. Let S1, S2, S3, S9 and S12, be fulfilled. Then
∫[b−ˆ℘,b]Tη(J)Δˆμ+∫[a,b]T|(η(J)Ξ(J)−η(b−ˆ℘)Ξ(b−ˆ℘))Ξ(J)ψ(J)|Δˆμ≤∫[a,b]Tη(J)Υ(J)Δˆμ. | (2.22) |
Proof. Proof can be completed by taking Υ(J)↦Ξ(J)Υ(J), η(J)↦η(J)/Ξ(J) and ψ(J)↦Ξ(J)ψ(J) in Theorem 2.
Remark 2.9. By letting T=R, and consider the Lebesgue measure in Corollary 2.2, we recapture [6,Corollary 2.4].
In this article, we explore new generalizations of the integral Steffensen inequality given in [4,5,6] via general time scale measure space with a positive σ-finite measure, we generalize a number of those inequalities to a general time scale measure space. Besides that, in order to obtain some new inequalities as special cases, we also extend our inequalities to discrete and constant calculus.
This work was supported by Inho Hwang Incheon National University Research Grant 2021–2022.
The authors declare that there is no competing interest.
[1] |
J. F. Steffensen, On certain inequalities between mean values and their application to actuarial problems, Scand. Actuar. J., 1918 (1918), 82–97. https://doi.org/10.1080/03461238.1918.10405302 doi: 10.1080/03461238.1918.10405302
![]() |
[2] |
J. C. Evard, H. Gauchman, Steffensen type inequalities over general measure spaces, Analysis, 17 (1997), 301–322. https://doi.org/10.1524/anly.1997.17.23.301 doi: 10.1524/anly.1997.17.23.301
![]() |
[3] | J. Jakšetiˊc, J. Pečariˊc, K. S. Kalamir, Extension of Cerone's generalizations of Steffensen's inequality, Jordan J. Math. Stat., 8 (2015), 179–194. |
[4] | Pečarić, Josip E. Notes on some general inequalities, Publ. I. Math. Beograd, 32 (1982), 131–135. |
[5] |
S. H. Wu, H. M. Srivastava, Some improvements and generalizations of Steffensen's integral inequality, Appl. Math. Comput., 192 (2007), 422–428. https://doi.org/10.1016/j.amc.2007.03.020 doi: 10.1016/j.amc.2007.03.020
![]() |
[6] |
J. Pečarić, A. Perušić, K. Smoljak, Mercer and Wu-Srivastava generalisations of Steffensen's inequality, Appl. Math. Comput., 219 (2013), 10548–10558. https://doi.org/10.1016/j.amc.2013.04.028 doi: 10.1016/j.amc.2013.04.028
![]() |
[7] |
S. Hilger, Analysis on measure chains-A unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18–56. https://doi.org/10.1007/BF03323153 doi: 10.1007/BF03323153
![]() |
[8] |
F. M. KH, A. A. El-Deeb, A. Abdeldaim, Z. A. Khan, On some generalizations of dynamic Opial-type inequalities on time scales, Adv. Differ, Equ., 2019 (2019), 323. https://doi.org/10.1186/s13662-019-2268-0 doi: 10.1186/s13662-019-2268-0
![]() |
[9] | M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Birkhäuser Boston, 2001. |
[10] | R. Agarwal, M. Bohner, A. Peterson, Inequalities on time scales: A survey, Math. Inequal. Appl., 4 (2001), 535–557. http://scholarbank.nus.edu.sg/handle/10635/103416 |
[11] | R. Agarwal, D. O'Regan, S. Saker. Dynamic inequalities on time scales, Cham: Springer, 2014. |
[12] |
S. H. Saker, A. A. El-Deeb, H. M. Rezk, R. P. Agarwal, On Hilbert's inequality on time scales, Appl. Anal. Discrete Math., 11 (2017), 399–423. https://doi.org/10.2298/AADM170428001S doi: 10.2298/AADM170428001S
![]() |
[13] |
Y. Tian, A. A. El-Deeb, F. Meng, Some nonlinear delay Volterra-Fredholm type dynamic integral inequalities on time scales, Discrete Dyn. Nat. Soc., 2018 (2018), 5841985. https://doi.org/10.1155/2018/5841985 doi: 10.1155/2018/5841985
![]() |
[14] |
M. U. Awan, N. Akhtar, S. Iftikhar, M. A. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions, J. Inequ. Appl., 2020 (2020), 125. https://doi.org/10.1186/s13660-020-02393-x doi: 10.1186/s13660-020-02393-x
![]() |
[15] |
H. J. Hu, L. z. Liu, Weighted inequalities for a general commutator associated to a singular integral operator satisfying a variant of Hormander's condition, Math. Notes, 101 (2017), 830–840. https://doi.org/10.1134/S0001434617050091 doi: 10.1134/S0001434617050091
![]() |
[16] |
C. X. Huang, G. Sheng, L. Z. Liu, Boundedness on Morrey space for Toeplitz type operator associated to singular integral operator with variable Calderón-Zygmund kernel, J. Math. Inequal., 3 (2014), 453–464. https://doi.org/10.7153/jmi-08-33 doi: 10.7153/jmi-08-33
![]() |
[17] |
Y. M. Chu, H. Wang, T. H. Zhao, Sharp bounds for the Neuman mean in terms of the quadratic and second Seiffert means, J. Inequal. Appl., 2014 (2014), 299. https://doi.org/10.1186/1029-242X-2014-299 doi: 10.1186/1029-242X-2014-299
![]() |
[18] |
C. X. Huang, L. Z. Liu, Sharp function inequalities and boundness for Toeplitz type operator related to general fractional singular integral operator, Publ. I. Math. Beograd, 92 (2012), 165–176. https://doi.org/10.2298/PIM1206165H doi: 10.2298/PIM1206165H
![]() |
[19] |
G. A. Anastassiou, Foundations of nabla fractional calculus on time scales and inequalities, Comput. Math. Appl., 59 (2010), 3750–3762. https://doi.org/10.1016/j.camwa.2010.03.072 doi: 10.1016/j.camwa.2010.03.072
![]() |
[20] |
G. A. Anastassiou, Principles of delta fractional calculus on time scales and inequalities, Math. Comput. Model., 52 (2010), 556–566. https://doi.org/10.1016/j.mcm.2010.03.055 doi: 10.1016/j.mcm.2010.03.055
![]() |
[21] | G. A. Anastassiou, Integral operator inequalities on time scales, Int. J. Differ. Equ., 7 (2012), 111–137. |
[22] |
W. N. Li, Some new dynamic inequalities on time scales, J. Math. Anal. Appl., 319 (2006), 802–814. https://doi.org/10.1016/j.jmaa.2005.06.065 doi: 10.1016/j.jmaa.2005.06.065
![]() |
[23] |
M. Sahir, Dynamic inequalities for convex functions harmonized on time scales, J. Appl. Math. Phys., 5 (2017), 2360–2370. https://doi.org/10.4236/jamp.2017.512193 doi: 10.4236/jamp.2017.512193
![]() |
[24] |
A. A. M. El-Deeb, O. Bazighifan, J. Awrejcewicz, A variety of dynamic Steffensen-type inequalities on a general time scale, Symmetry, 13 (2021), 1738. https://doi.org/10.3390/sym13091738 doi: 10.3390/sym13091738
![]() |
[25] |
A. A. El-Deeb, S. D. Makharesh, D. Baleanu, Dynamic Hilbert-type inequalities with Fenchel-Legendre transform, Symmetry, 12 (2020), 582. https://doi.org/10.3390/sym12040582 doi: 10.3390/sym12040582
![]() |
[26] |
A. A. El-Deeb, O. Bazighifan, J. Awrejcewicz, On some new weighted Steffensen-type inequalities on time scales, Mathematics, 9 (2021), 2670. https://doi.org/10.3390/math9212670 doi: 10.3390/math9212670
![]() |
[27] |
A. A. El-Deeb, D. Baleanu, New weighted Opial-type inequalities on time scales for convex functions, Symmetry, 12 (2020), 842. https://doi.org/10.3390/sym12050842 doi: 10.3390/sym12050842
![]() |