Research article Special Issues

Exceptional set in Waring–Goldbach problem for sums of one square and five cubes

  • Received: 31 July 2021 Accepted: 15 November 2021 Published: 23 November 2021
  • MSC : 11P05, 11P32, 11P55

  • Let $ N $ be a sufficiently large integer. In this paper, it is proved that, with at most $ O\big(N^{4/9+\varepsilon}\big) $ exceptions, all even positive integers up to $ N $ can be represented in the form $ p_1^2+p_2^3+p_3^3+p_4^3+p_5^3+p_6^3 $, where $ p_1, p_2, p_3, p_4, p_5, p_6 $ are prime numbers.

    Citation: Jinjiang Li, Yiyang Pan, Ran Song, Min Zhang. Exceptional set in Waring–Goldbach problem for sums of one square and five cubes[J]. AIMS Mathematics, 2022, 7(2): 2940-2955. doi: 10.3934/math.2022162

    Related Papers:

  • Let $ N $ be a sufficiently large integer. In this paper, it is proved that, with at most $ O\big(N^{4/9+\varepsilon}\big) $ exceptions, all even positive integers up to $ N $ can be represented in the form $ p_1^2+p_2^3+p_3^3+p_4^3+p_5^3+p_6^3 $, where $ p_1, p_2, p_3, p_4, p_5, p_6 $ are prime numbers.



    加载中


    [1] Y. C. Cai, The Waring–Goldbach problem: One square and five cubes, Ramanujan J., 34 (2014), 57–72. doi: 10.1007/s11139-013-9486-y. doi: 10.1007/s11139-013-9486-y
    [2] L. K. Hua, Additive theory of prime numbers, Providence: American Mathematical Society, 1965.
    [3] J. J. Li, M. Zhang, On the Waring–Goldbach problem for one square and five cubes, Int. J. Number Theory, 14 (2018), 2425–2440. doi: 10.1142/S1793042118501476. doi: 10.1142/S1793042118501476
    [4] C. D. Pan, C. B. Pan, Goldbach conjecture, Beijing: Science Press, 1981.
    [5] X. M. Ren, On exponential sums over primes and application in Waring–Goldbach problem, Sci. China Ser. A-Math., 48 (2005), 785–797. doi: 10.1360/03ys0341. doi: 10.1360/03ys0341
    [6] J. S. C. Sinnadurai, Representation of integers as sums of six cubes and one square, Q. J. Math., 16 (1965), 289–296.
    [7] G. K. Stanley, The representation of a number as the sum of one square and a number of $k$–th powers, P. Lond. Math. Soc., 31 (1930), 512–553. doi: 10.1112/plms/s2-31.1.512. doi: 10.1112/plms/s2-31.1.512
    [8] G. K. Stanley, The representation of a number as a sum of squares and cubes, J. Lond. Math. Soc., 6 (1931), 194–197. doi: 10.1112/jlms/s1-6.3.194. doi: 10.1112/jlms/s1-6.3.194
    [9] R. C. Vaughan, On Waring's problem: One square and five cubes, Q. J. Math., 37 (1986), 117–127. doi: 10.1093/qmath/37.1.117. doi: 10.1093/qmath/37.1.117
    [10] R. C. Vaughan, The Hardy–Littlewood method, Cambridge: Cambridge University Press, 1997.
    [11] I. M. Vinogradov, Elements of number theory, New York: Dover Publications, 1954.
    [12] G. L. Watson, On sums of a square and five cubes, J. Lond. Math. Soc., 5 (1972), 215–218. doi: 10.1112/jlms/s2-5.2.215. doi: 10.1112/jlms/s2-5.2.215
    [13] T. D. Wooley, Slim exceptional sets in Waring's problem: One square and five cubes, Q. J. Math., 53 (2002), 111–118. doi: 10.1093/qjmath/53.1.111. doi: 10.1093/qjmath/53.1.111
    [14] T. D. Wooley, Slim exceptional sets and the asymptotic formula in Waring's problem, Math. Proc. Cambridge, 134 (2003), 193–206. doi: 10.1017/S030500410200628X. doi: 10.1017/S030500410200628X
    [15] F. Xue, M. Zhang, J. J. Li, On the Waring–Goldbach problem for one square and five cubes in short intervals, Czech. Math. J., 71 (2021), 563–589. doi: 10.21136/CMJ.2020.0013-20. doi: 10.21136/CMJ.2020.0013-20
    [16] L. l. Zhao, On the Waring–Goldbach problem for fourth and sixth powers, Proc. Lond. Math. Soc., 108 (2014), 1593–1622. doi: 10.1112/plms/pdt072. doi: 10.1112/plms/pdt072
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1909) PDF downloads(80) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog