The goal of this manuscript is to create a new faster iterative algorithm than the previous writing's sober algorithms. In the setting of Banach spaces, this algorithm is used to analyze convergence, stability, and data-dependence results. Basic numerical examples are also provided to highlight the behavior and effectiveness of our approach. Ultimately, the proposed approach is used to solve the functional Volterra-Fredholm integral problem as an application.
Citation: Hasanen A. Hammad, Habib Ur Rehman, Mohra Zayed. Applying faster algorithm for obtaining convergence, stability, and data dependence results with application to functional-integral equations[J]. AIMS Mathematics, 2022, 7(10): 19026-19056. doi: 10.3934/math.20221046
[1] | Ekram E. Ali, Miguel Vivas-Cortez, Rabha M. El-Ashwah . New results about fuzzy γ-convex functions connected with the q-analogue multiplier-Noor integral operator. AIMS Mathematics, 2024, 9(3): 5451-5465. doi: 10.3934/math.2024263 |
[2] | Ekram E. Ali, Rabha M. El-Ashwah, Abeer M. Albalahi, R. Sidaoui, Abdelkader Moumen . Inclusion properties for analytic functions of q-analogue multiplier-Ruscheweyh operator. AIMS Mathematics, 2024, 9(3): 6772-6783. doi: 10.3934/math.2024330 |
[3] | Alina Alb Lupaş, Shujaat Ali Shah, Loredana Florentina Iambor . Fuzzy differential subordination and superordination results for q -analogue of multiplier transformation. AIMS Mathematics, 2023, 8(7): 15569-15584. doi: 10.3934/math.2023794 |
[4] | Shatha S. Alhily, Alina Alb Lupaş . Sandwich theorems involving fractional integrals applied to the q -analogue of the multiplier transformation. AIMS Mathematics, 2024, 9(3): 5850-5862. doi: 10.3934/math.2024284 |
[5] | Ekram E. Ali, Georgia Irina Oros, Rabha M. El-Ashwah, Abeer M. Albalahi . Applications of fuzzy differential subordination theory on analytic p -valent functions connected with q-calculus operator. AIMS Mathematics, 2024, 9(8): 21239-21254. doi: 10.3934/math.20241031 |
[6] | Alina Alb Lupaş, Georgia Irina Oros . Differential sandwich theorems involving Riemann-Liouville fractional integral of q-hypergeometric function. AIMS Mathematics, 2023, 8(2): 4930-4943. doi: 10.3934/math.2023246 |
[7] | Ekram E. Ali, Georgia Irina Oros, Abeer M. Albalahi . Differential subordination and superordination studies involving symmetric functions using a q-analogue multiplier operator. AIMS Mathematics, 2023, 8(11): 27924-27946. doi: 10.3934/math.20231428 |
[8] | F. Müge Sakar, Arzu Akgül . Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator. AIMS Mathematics, 2022, 7(4): 5146-5155. doi: 10.3934/math.2022287 |
[9] | Norah Saud Almutairi, Adarey Saud Almutairi, Awatef Shahen, Hanan Darwish . Estimates of coefficients for bi-univalent Ma-Minda-type functions associated with q-Srivastava-Attiya operator. AIMS Mathematics, 2025, 10(3): 7269-7289. doi: 10.3934/math.2025333 |
[10] | Shujaat Ali Shah, Ekram Elsayed Ali, Adriana Cătaș, Abeer M. Albalahi . On fuzzy differential subordination associated with q-difference operator. AIMS Mathematics, 2023, 8(3): 6642-6650. doi: 10.3934/math.2023336 |
The goal of this manuscript is to create a new faster iterative algorithm than the previous writing's sober algorithms. In the setting of Banach spaces, this algorithm is used to analyze convergence, stability, and data-dependence results. Basic numerical examples are also provided to highlight the behavior and effectiveness of our approach. Ultimately, the proposed approach is used to solve the functional Volterra-Fredholm integral problem as an application.
Some of the topics in geometric function theory are based on q-calculus operator and differential subordinations. Ismail et al. defined the class of q-starlike functions in 1990 [1], presenting the first uses of q-calculus in geometric function theory. Several authors focused on the q-analogue of the Ruscheweyh differential operators established in [2] and the q-analogue of the Sălăgean differential operators defined in [3]. Examples include the investigation of differential subordinations using a specific q-Ruscheweyh type derivative operator in [4].
In what follows, we recall the main concepts used in this research.
We denote by H the class of analytic functions in the open unit disc U:={ξ∈C:|ξ|<1}. Also, H[a,n] denotes the subclass of H, containing the functions f∈H given by
f(ξ)=a+anξn+an+1ξn+1+..., ξ∈U. |
Another well-known subclass of H is class A(n), which consists of f∈H and is given by
f(ξ)=ξ+∞∑κ=n+1aκξκ,ξ∈U, | (1.1) |
with n∈N={1,2,...}, and A=A(1).
The subclass K is defined by
K={f∈A:Re(ξf′′(ξ)f′(ξ)+1)>0, f(0)=0, f′(0)=1, ξ∈U}, |
means the class of convex functions in the unit disk U.
For two functions f,L (belong) to A(n), f given by (1.1), and L is given by the next form
L(ξ)=ξ+∞∑κ=n+1bκξκ,ξ∈U, |
the well-known convolution product was defined as: ∗: A→A
(f∗L)(ξ):=ξ+∞∑κ=n+1aκbκξκ,ξ∈U. |
In particular [5,6], several applications of Jackson's q-difference operator dq: A→A are defined by
dqf(ξ):={f(ξ)−f(qξ)(1−q)ξ(ξ≠0;0<q<1),f′(0)(ξ=0). | (1.2) |
Maybe we can put just κ∈N={1,2,3,..}. It is written once previously
dq{∞∑κ=1aκξκ}=∞∑κ=1[κ]qaκξκ−1, | (1.3) |
where
[κ]q=1−qκ1−q=1+κ−1∑n=1qn, limq→1−[κ]q=κ.[κ]q!={κ∏n=1[n]q, κ∈N, 1 κ=0. | (1.4) |
In [7], Aouf and Madian investigate the q-analogue Că tas operator Isq(λ,ℓ): A→ A (s∈N0,ℓ,λ≥0, 0<q<1) as follows:
Isq(λ,ℓ)f(ξ)=ξ+∞∑κ=2([1+ℓ]q+λ([κ+ℓ]q−[1+ℓ]q)[1+ℓ]q)saκξκ,(s∈N0,ℓ,λ≥0,0<q<1). |
Also, the q-Ruscheweyh operator ℜμqf(ξ) was investigated in 2014 by Aldweby and Darus [8]
ℜμqf(ξ)=ξ+∞∑κ=2[κ+μ−1]q![μ]q![κ−1]q!aκξκ, (μ≥0,0<q<1), |
where [a]q and [a]q! are defined in (1.4).
Let be
fsq,λ,ℓ(ξ)=ξ+∞∑κ=2([1+ℓ]q+λ([κ+ℓ]q−[1+ℓ]q)[1+ℓ]q)sξκ. |
Now we define a new function fs,μq,λ,ℓ(ξ) in terms of the Hadamard product (or convolution) such that:
fsq,λ,ℓ(ξ)∗fs,μq,λ,ℓ(ξ)=ξ+∞∑κ=2[κ+μ−1]q![μ]q![κ−1]q!ξκ. |
Next, driven primarily by the q-Ruscheweyh operator and the q-Cătas operator, we now introduce the operator Isq,μ(λ,ℓ):A→A is defined by
Isq,μ(λ,ℓ)f(ξ)=fs,μq,λ,ℓ(ξ)∗f(ξ), | (1.5) |
where s∈N0,ℓ,λ,μ≥0,0<q<1. For f∈A and (1.5), it is obvious
Isq,μ(λ,ℓ)f(ξ)=ξ+∞∑κ=2ψ∗sq(κ,λ,ℓ)[κ+μ−1]q![μ]q![κ−1]q!aκξκ, | (1.6) |
where
ψ∗sq(κ,λ,ℓ)=([1+ℓ]q[1+ℓ]q+λ([κ+ℓ]q−[1+ℓ]q))s. |
We observe that:
(i) If s=0 and q→1−, we get ℜμf(ξ) is a Russcheweyh differential operator [9] investigated by numerous authors [10,11,12].
(ii) If we set q→1−, we obtain Imλ,ℓ,μf(ξ) which was presented by Aouf and El-Ashwah [13].
(iii) If we set μ=0 and q→1−, we obtain Jmp(λ,ℓ)f(ξ), presented by El-Ashwah and Aouf (with p=1) [14].
(iv) If μ=0, ℓ=λ=1, and q→1−, we get ℘αf(ξ), investigated by Jung et al. [15].
(v) If μ=0, λ=1,ℓ=0, and q→1−, we obtain Isf(ξ), presented by Sălă gean [16].
(vi) If we set μ=0 and λ=1, we obtain Iℓq,sf(ξ), presented by Shah and Noor [17].
(vii) If we set μ=0, λ=1, and q→1−, we obtain Jsq,ℓ Srivastava–Attiya operator: see [18,19].
(viii) I1q,0(1,0)=∫ξ0f(t)tdqt. (q-Alexander operator [17]).
(ix) I1q,0(1,ℓ)=[1+ρ]qξρ∫ξ0tρ−1f(t)dqt (q-Bernardi operator [20]).
(x) I1q,0(1,1)=[2]qξ∫ξ0f(t)dqt (q-Libera operator [20]).
Moreover, we have
(i) Isq,μ(1,0)f(ξ)=Isq,μf(ξ)
f(ξ)∈A:Isq,μf(ξ)=ξ+∞∑κ=2(1[κ]q)s[κ+μ−1]q![μ]q![κ−1]q!aκξκ, (s∈N0,μ≥0,0<q<1,ξ∈U). |
(ii) Isq,μ(1,ℓ)f(ξ)=Is,ℓq,μf(ξ)
f(ξ)∈A:Is,ℓq,μf(ξ)=ξ+∞∑κ=2([1+ℓ]q[κ+ℓ]q)s[κ+μ−1]q![μ]q![κ−1]q!aκξκ, (s∈N0,ℓ>0,μ≥0,0<q<1,ξ∈U). |
(iii) Isq,μ(λ,0)f(ξ)=Is,λq,μf(ξ)
f(ξ)∈A:Is,λq,μf(ξ)=ξ+∞∑κ=2(11+λ([κ]q−1))s[κ+μ−1]q![μ]q![κ−1]q!aκξκ, (s∈N0,λ>0,μ≥0,0<q<1,ξ∈U). |
Since the investigation of q-difference equations using function theory tools explores various properties, this direction has been considered in many works. Thus, several authors used the q-calculus based linear extended operators recently defined for investigating theories of differential subordination and subordination (see [21,22,23,24,25,26,27,28,29,30,31,32]). Applicable problems involving q-difference equations and q-analogues of mathematical physical problems are studied extensively for: Dynamical systems, q-oscillator, q-classical, and quantum models; q-analogues of mathematical-physical problems, including heat and wave equations; and sampling theory of signal analysis [33,34].
We denote by Φ the class of analytic univalent functions φ(ξ), which are convex functions with φ(0)=1 and Reφ(ξ)>0 in U.
The differential subordination theory, studied by Miller and Mocanu [35], is based on the following definitions:
f is subordinate to L in U, denote it as f≺L if there exists an analytic function ϖ, with ϖ(0)=0 and |ϖ(ξ)|<1 for all ξ∈U, such that f(ξ)=L(ϖ(ξ)). Moreover, if L is univalent in U, we have:
f(ξ)≺L(ξ)⇔f(0)=L(0)andf(U)⊂L(U). |
Let Φ(r,s,t;ξ):C3×U→C and let h in U be a univalent function. An analytic function λ in U, which validates the differential subordination, is a solution of the differential subordination
Φ(λ(ξ),ξλ′(ξ),ξ2λ′′(ξ);ξ)≺h(ξ). | (1.7) |
We call V a dominant of the solutions of the differential subordination in (1.7) if λ(ξ)≺V(ξ) for all λ satisfying (1.7). A dominant ˜ϰ is called the best dominant of (1.7) if ˜V(ξ)≺V(ξ) for all the dominants V.
The following definitions characterize both of the theories of differential superordination that Miller and Mocanu introduced in 2003 [36]:
f is superordinate to L, denotes as L ≺ f, if there exists an analytic function ϖ, with ϖ(0)=0 and |ϖ(ξ)|<1 for all ξ∈U, such that L(ξ)=f(ϖ(ξ)). For the univalent function f, we have
L(ξ)≺f(ξ)⇔f(0)=L(0)andL(U)⊂f(U). |
Let Φ(r,s;ξ):C2×U→C and let h in U be an analytic function. A solution of the differential superordination is the univalent function λ such that Φ(λ(ξ),ξλ′(ξ);ξ) is univalent in U satisfy the differential superordination
h(ξ)≺Φ(λ(ξ),ξλ′(ξ);ξ), | (1.8) |
then λ is called to be a solution of the differential superordination in (1.8). We call the function V a subordinant of the solutions of the differential superordination in (1.8) if V(ξ)≺ λ(ξ) for all λ satisfying (1.8). A subordinant ˜V is called the best subordinant of (1.8) if V(ξ)≺˜V(ξ) for all the subordinants V.
Let ℘ say the collection of injective and analytic functions on ¯U∖E(χ), with χ′(ξ)≠0 for ξ∈∂U∖E(χ) and
E(χ)={ς:ς∈∂U : limξ→ςχ(ξ)=∞}. |
Also, ℘(a) is the subclass of ℘ with χ(0)=a.
The proofs of our main results and findings in the upcoming sections can benefit from the usage of the following lemmas:
Lemma 1.1. (Miller and Mocanu [35]). Suppose g is convex in U, and
h(ξ)=nγξg′(ξ)+g(ξ), |
with ξ∈U, n is +ve integer and γ>0. When
g(0)+pnξn+pn+1ξn+1+....=p(ξ), ξ∈U, |
is analytic in U, and
γξp′(ξ)+p(ξ)≺h(ξ), ξ∈U, |
holds, then
p(ξ)≺g(ξ), |
holds as well.
Lemma 1.2. (Hallenbeck and Ruscheweyh [37], see also (Miller and Mocanu [38], Th. 3.1.b, p.71)). Let h be a convex with h(0)=a, and let γ∈C∗ with Re(γ)≥0. When p∈H[a,n] and
p(ξ)+ξp′(ξ)γ≺h(ξ), ξ∈U, |
holds, then
p(ξ)≺g(ξ)≺h(ξ), ξ∈U, |
holds for
g(ξ)=γnξ(γ/n)ξ∫0h(t)t(γ/n)−1dt, ξ∈U. |
Lemma 1.3. (Miller and Mocanu [35]) Let h be a convex with h(0)=a, and let γ∈C∗, with Re(γ)≥0. When p∈Q∩H[a,n], p(ξ)+ξp′(ξ)γ is a univalent in U and
h(ξ)≺p(ξ)+ξp′(ξ)γ, ξ∈U, |
holds, then
g(ξ)≺p(ξ), ξ∈U, |
holds as well, for g(ξ)=γnξ(γ/n)ξ∫0h(t)t(γ/n)−1dt, ξ∈U the best subordinant.
Lemma 1.4. (Miller and Mocanu [35]) Let a convex g be in U, and
h(ξ)=g(ξ)+ξg′(ξ)γ, ξ∈U, |
with γ∈C∗, Re(γ)≥0. If p∈Q∩H[a,n], p(ξ)+ξp′(ξ)γ is a univalent in U and
g(ξ)+ξg′(ξ)γ≺p(ξ)+ξp′(ξ)γ, ξ∈U, |
holds, then
g(ξ)≺p(ξ), ξ∈U, |
holds as well, for g(ξ)=γnξ(γ/n)ξ∫0h(t)t(γ/n)−1dt, ξ∈U the best subordinant.
For ˊa,ϱ,ˊc and ˊc(ˊc∉Z−0) let consider the following Gaussian hypergeometric function is
2F1(ˊa,ϱ;ˊc;ξ)=1+ˊaϱˊc.ξ1!+ˊa(ˊa+1)ϱ(ϱ+1)ˊc(ˊc+1).ξ22!+.... |
For ξ∈U, the above series completely converges to an analytic function in U, (see, for details, [ [39], Chapter 14]).
Lemma 1.5. [39] For ˊa,ϱ and ˊc (ˊc∉Z−0), complex parameters
1∫0tϱ−1(1−t)ˊc−ϱ−1(1−ξt)−ˊadt=Γ(ϱ)Γ(ˊc−ϱ)Γ(ˊc)2F1(ˊa,ϱ;ˊc;ξ)(Re(ˊc)>Re(ϱ)>0); |
2F1(ˊa,ϱ;ˊc;ξ)=2F1(ϱ,ˊa;ˊc;ξ); |
2F1(ˊa,ϱ;ˊc;ξ)=(1−ξ)−ˊa2F1(ˊa,ˊc−ϱ;ˊc;ξξ−1); |
2F1(1,1;2;ˊaξˊaξ+1)=(1+ˊaξ)ln(1+ˊaξ)ˊaξ; |
2F1(1,1;3;ˊaξˊaξ+1)=2(1+ˊaξ)ˊaξ(1−ln(1+ˊaξ)ˊaξ). |
A q-multiplier-Ruscheweyh operator is considered in the study reported in this paper to create a novel convex subclass of normalized analytic functions in the open unit disc U. Then, employing the techniques of differential subordination and superordination theory, this subclass is examined in more detail.
Isq,μ(λ,ℓ)f(ξ) given in (1.6) is a q-multiplier-Ruscheweyh operator that is applied to define the new class of normalized analytic functions in the open unit disc U.
Definition 2.1. Let α∈[0,1). The class Ssq,μ(λ,ℓ;α) involves of the function f∈A with
Re(Isq,μ(λ,ℓ)f(ξ))′>α, ξ∈U. | (2.1) |
We use the following denotations:
(i) Ssq,μ(λ,ℓ;0)=Ssq,μ(λ,ℓ).
(ii) S0q,0(λ,ℓ;α)=S(α) (Ref(ξ)′>α), see Ding et al. [40].
(iii) S0q,0(λ,ℓ;0)=S (Ref(ξ)′>0), see MacGregor [41].
The first result concerning the class Ssq,μ(λ,ℓ;α) establishes its convexity.
Theorem 2.1. The class Ssq,μ(λ,ℓ;α) is closed under convex combination.
Proof. Consider
fj(ξ)=ξ+∞∑κ=2ajκξκ,ξ∈U, j=1,2, |
being in the class Ssq,μ(λ,ℓ;α). It suffices to demonstrate that
f(ξ)=ηf1(ξ)+(1−η)f2(ξ), |
belongs to the class Ssq,μ(λ,ℓ;α), with η a positive real number.
f is given by:
f(ξ)=ξ+∞∑κ=2(ηa1κ+(1−η)a2κ)ξκ,ξ∈U, |
and
Isq,μ(λ,ℓ)f(ξ)=ξ+∞∑κ=2ψ∗sq(κ,λ,ℓ)[κ+μ−1]q![μ]q![κ−1]q!(ηa1κ+(1−η)a2κ)ξκ. | (2.2) |
Differentiating (2.2), we have
(Isq,μ(λ,ℓ)f(ξ))′=1+∞∑κ=2ψ∗sq(κ,λ,ℓ)[κ+μ−1]q![μ]q![κ−1]q!(ηa1κ+(1−η)a2κ)κξκ−1. |
Hence
Re(Isq,μ(λ,ℓ)f(ξ))′=1+Re(η∞∑κ=2κψ∗sq(κ,λ,ℓ)[κ+μ−1]q![μ]q![κ−1]q!a1κξκ−1)+Re((1−η)∞∑κ=2κψ∗sq(κ,λ,ℓ)[κ+μ−1]q![μ]q![κ−1]q!a2κξκ−1). | (2.3) |
Taking into account that f1,f2∈ Ssq,μ(λ,ℓ;α), we can write
Re(η∞∑κ=2κψ∗sq(κ,λ,ℓ)[κ+μ−1]q![μ]q![κ−1]q!ajκξκ−1)>η(α−1). | (2.4) |
Using relation (2.4), we get from relation (2.3):
Re(Isq,μ(λ,ℓ)f(ξ))′>1+η(α−1)+(1−η)(α−1)=α. |
It demonstrated that the set Ssq,μ(λ,ℓ;α) is convex.
Next, we study a class of differential subordinations Ssq,μ(λ,ℓ;α) and a q-multiplier-Ruscheweyh operator Isq,μ(λ,ℓ) involving convex functions.
Theorem 2.2. For g to be convex, we define
h(ξ)=g(ξ)+ξg′(ξ)a+2, a>0, ξ∈U. | (2.5) |
For f∈Ssq,μ(λ,ℓ;α), consider
F(ξ)=a+2ξa+1ξ∫0taf(t)dt, ξ∈U, | (2.6) |
then the differential subordination
(Isq,μ(λ,ℓ)f(ξ))′≺h(ξ), | (2.7) |
implies the differential subordination
(Isq,μ(λ,ℓ)F(ξ))′≺g(ξ), |
for the best dominant.
Proof. We can write (2.6) as:
ξa+1F(ξ)=(a+2)ξ∫0taf(t)dt, ξ∈U, |
and differentiating it, we get
ξF′(ξ)+(a+1)F(ξ)=(a+2)f(ξ) |
and
ξ(Isq,μ(λ,ℓ)F(ξ))′+(a+1)Isq,μ(λ,ℓ)F(ξ)=(a+2)Isq,μ(λ,ℓ)f(ξ), ξ∈U. |
Differentiating the last relation, we obtain
ξ(Isq,μ(λ,ℓ)F(ξ))′′a+2+(Isq,μ(λ,ℓ)F(ξ))′=(Isq,μ(λ,ℓ)f(ξ))′, ξ∈U, |
and (2.7) can be written as
ξ(Isq,μ(λ,ℓ)F(ξ))′′a+2+(Isq,μ(λ,ℓ)F(ξ))′≺ξg′(ξ)a+2+g(ξ). | (2.8) |
Denoting
p(ξ)=(Isq,μ(λ,ℓ)F(ξ))′∈H[1,1], | (2.9) |
differential subordination (2.8) has the next type:
ξp′(ξ)a+2+p(ξ)≺ξg′(ξ)a+2+g(ξ). |
Through Lemma 1.1, we find
p(ξ)≺g(ξ), |
then
(Isq,μ(λ,ℓ)F(ξ))′≺g(ξ), |
where g is the best dominant.
Theorem 2.3. Denoting
Ia(f)(ξ)=a+2ξa+1ξ∫0taf(t)dt, a>0, | (2.10) |
then,
Ia[Ssq,μ(λ,ℓ;α)]⊂Ssq,μ(λ,ℓ;α∗), | (2.11) |
where
α∗=(2α−1)−(α−1)2F1(1,1,a+3;12). | (2.12) |
Proof. Using Theorem 2.2 for h(ξ)=1−(2α−1)ξ1−ξ, and using the identical procedures as Theorem 2.2, proof then
ξp′(ξ)a+2+p(ξ)≺h(ξ), |
holds, with p defined by (2.9).
Through Lemma 1.2, we find
p(ξ)≺g(ξ)≺h(ξ), |
similar to
(Isq,μ(λ,ℓ)F(ξ))′≺g(ξ)≺h(ξ), |
where
g(ξ)=a+2ξa+2∫ξ0ta+11−(2α−1)t1−tdt=(2α−1)−2(a+2)(α−1)ξa+2∫ξ0ta+11−tdt. |
By using Lemma 1.5, we get
g(ξ)=(2α−1)−2(α−1)(1−ξ)−12F1(1,1,a+3;ξξ−1). |
Since g is a convex function and g(U) is symmetric around the real axis, we have
Re(Isq,μ(λ,ℓ)F(ξ))′≥min|ξ|=1Reg(ξ)=Reg(−1)=α∗=(2α−1)−(α−1)2F1(1,1,a+3;12). |
If we put α=0, in Theorem 2.3, we obtain
Corollary 2.1. Let
Ia(f)(ξ)=a+2ξa+1∫ξ0taf(t)dt, a>0, |
then,
Ia[Ssq,μ(λ,ℓ)]⊂Ssq,μ(λ,ℓ;α∗), |
where
α∗=−1+ 2F1(1,1,a+3;12). |
Example 2.1. If a=0 in Corollary 2.1, we get:
I0(f)(ξ)=2ξ∫ξ0f(t)dt, |
then,
I0[Ssq,μ(λ,ℓ)]⊂Ssq,μ(λ,ℓ;α∗), |
where
α∗=−1+2F1(1,1,3;12)=3−4ln2. |
Theorem 2.4. Let g be the convex with g(0)=1, we define
h(ξ)=ξg′(ξ)+g(ξ), ξ∈U. |
If f∈A verifies
(Isq,μ(λ,ℓ)f(ξ))′≺h(ξ), ξ∈U, | (2.13) |
then the sharp differential subordination
Isq,μ(λ,ℓ)f(ξ)ξ≺g(ξ), ξ∈U, | (2.14) |
holds.
Proof. Considering
p(ξ)=Isq,μ(λ,ℓ)f(ξ)ξ=ξ+∞∑κ=2ψ∗sq(κ,λ,ℓ)[κ+μ−1]q![μ]q![κ−1]q!aκξκξ=1+p1ξ+p2ξ2+...., ξ∈U, |
clearly p∈H[1,1], this we can write
ξp(ξ)=Isq,μ(λ,ℓ)f(ξ), |
and differentiating it, we obtain
(Isq,μ(λ,ℓ)f(ξ))′=ξp′(ξ)+p(ξ). |
Subordination (2.13) takes the form
ξp′(ξ)+p(ξ)≺h(ξ)=ξg′(ξ)+g(ξ), | (2.15) |
Lemma 1.1, allows us to have p(ξ)≺g(ξ), then (2.14) holds.
Theorem 2.5. Let h be the convex and h(0)=1, if f∈A verifies
(Isq,μ(λ,ℓ)f(ξ))′≺h(ξ), ξ∈U, | (2.16) |
then we obtain the subordination
Isq,μ(λ,ℓ)f(ξ)ξ≺g(ξ), ξ∈U, |
for the convex function g(ξ)=(2α−1)+2(α−1)ξln(1−ξ), being the best dominant.
Proof. Let
p(ξ)=Isq,μ(λ,ℓ)f(ξ)ξ=1+∞∑κ=2ψ∗sq(κ,λ,ℓ)[κ+μ−1]q![μ]q![κ−1]q!aκξκ−1∈H[1,1], ξ∈U. |
By differentiating it, we get
(Isq,μ(λ,ℓ)f(ξ))′=ξp′(ξ)+p(ξ), |
and differential subordination (2.16) becomes
ξp′(ξ)+p(ξ)≺h(ξ), |
Lemma 1.2 allows us to have
p(ξ)≺g(ξ)=1ξ∫ξ0h(t)dt, |
then
Isq,μ(λ,ℓ)f(ξ)ξ≺g(ξ)=(2α−1)+2(α−1)ξln(1−ξ), |
for g is the best dominant.
If we put α=0 in Theorem 2.5, we have
Corollary 2.2. Considering the convex h with h(0)=1, if f∈A verifies
(Isq,μ(λ,ℓ)f(ξ))′≺h(ξ), ξ∈U, |
then we obtain the subordination
Isq,μ(λ,ℓ)f(ξ)ξ≺g(ξ)=−1−2ξln(1−ξ), ξ∈U, |
for the convex function g(ξ), which is the best dominant.
Example 2.2. From Corollary 2.2, if
(Isq,μ(λ,ℓ)f(ξ))′≺h(ξ), ξ∈U, |
we obtain
Re(Isq,μ(λ,ℓ)f(ξ))′≥min|ξ|=1Reg(ξ)=Reg(−1)=−1+2ln2, |
Theorem 2.6. Let g be a convex function with g(0)=1. We define h(ξ)=ξg′(ξ)+g(ξ), ξ∈U. If f∈A verifies
(ξIs+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ))′≺h(ξ), ξ∈U, | (2.17) |
then
Is+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ)≺g(ξ), ξ∈U, | (2.18) |
holds.
Proof. For
p(ξ)=Is+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ)=ξ+∑∞κ=2ψ∗s+1q(κ,λ,ℓ)[κ+μ−1]q![μ]q![κ−1]q!aκξκξ+∑∞κ=2ψ∗sq(κ,λ,ℓ)[κ+μ−1]q![μ]q![κ−1]q!aκξκ. |
By differentiating it, we get
p′(ξ)=(Is+1q,μ(λ,ℓ)f(ξ))′Isq,μ(λ,ℓ)f(ξ)−p(ξ)(Isq,μ(λ,ℓ)f(ξ))′Isq,μ(λ,ℓ)f(ξ). |
then
ξp′(ξ)+p(ξ)=(ξIs+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ))′. |
Differential subordination (2.17), then we obtain (2.15), and Lemma 1.1 allows us to have p(ξ)≺g(ξ), then (2.18) holds.
This section examines differential superordinations with respect to a first-order derivative of a q-multiplier-Ruscheweyh operator Isq,μ(λ,ℓ). For every differential superordination under investigation, we provide the best subordinant.
Theorem 3.1. Considering f∈A, a convex h in U such that h(0)=1, and F(ξ) defined in (2.6). We assume that (Isq,μ(λ,ℓ)f(ξ))′ is a univalent in U, (Isq,μ(λ,ℓ)f(ξ))′∈Q∩H[1,1]. If
h(ξ)≺(Isq,μ(λ,ℓ)f(ξ))′, ξ∈U, | (3.1) |
holds, then
g(ξ)≺(Isq,μ(λ,ℓ)F(ξ))′, ξ∈U, |
with g(ξ)=a+2ξa+2∫ξ0ta+1h(t)dt the best subordinant.
Proof. Differentiating (2.6), then ξF′(ξ)+(a+1)F(ξ)=(a+2)f(ξ) can be expressed as
ξ(Isq,μ(λ,ℓ)F(ξ))′+(a+1)Isq,μ(λ,ℓ)F(ξ)=(a+2)Isq,μ(λ,ℓ)f(ξ), |
which, after differentiating it again, has the form
ξ(Isq,μ(λ,ℓ)F(ξ))′′(a+2)+(Isq,μ(λ,ℓ)F(ξ))′=(Isq,μ(λ,ℓ)f(ξ))′. |
Using the final relation, (3.1) can be expressed
h(ξ)≺ξ(Isq,μ(λ,ℓ)F(ξ))′′(a+2)+(Isq,μ(λ,ℓ)F(ξ))′. | (3.2) |
Define
p(ξ)=(Isq,μ(λ,ℓ)F(ξ))′, ξ∈U, | (3.3) |
and putting (3.3) in (3.2), we obtain h(ξ)≺ξp′(ξ)(a+2)+p(ξ), ξ∈U. Using Lemma 1.3, given n=1, and α=a+2, it results in g(ξ)≺p(ξ), similar g(ξ)≺(Isq,μ(λ,ℓ)F(ξ))′, with the best subordinant g(ξ)=a+2ξa+2∫ξ0ta+1h(t)dt convex function.
Theorem 3.2. Let f∈A, F(ξ)=a+2ξa+1∫ξ0taf(t)dt, and h(ξ)=1−(2α−1)ξ1−ξ where Rea>−2, α∈[0,1). Suppose that (Isq,μ(λ,ℓ)f(ξ))′ is a univalent in U, (Isq,μ(λ,ℓ)F(ξ))′∈Q∩H[1,1] and
h(ξ)≺(Isq,μ(λ,ℓ)f(ξ))′, ξ∈U, | (3.4) |
then
g(ξ)≺(Isq,μ(λ,ℓ)F(ξ))′, ξ∈U, |
is satisfied for the convex function g(ξ)=(2α−1)−2(α−1)(1−ξ)−12F1(1,1,a+3;ξξ−1) as the best subordinant.
Proof. Let p(ξ)=(Isq,μ(λ,ℓ)F(ξ))′. We can express (3.4) as follows when Theorem 3.1 is proved:
h(ξ)=1−(2α−1)ξ1−ξ≺ξp′(ξ)a+2+p(ξ). |
By using Lemma 1.4, we obtain g(ξ)≺p(ξ), with
g(ξ)=a+2ξa+2∫ξ01−(2α−1)t1−tta+1dt=(2α−1)−2(α−1)(1−ξ)−12F1(1,1,a+3;ξξ−1)≺(Isq,μ(λ,ℓ)F(ξ))′, |
g is convex and the best subordinant.
Theorem 3.3. Let f∈A and h be a convex function with h(0)=1. Assuming that (Isq,μ(λ,ℓ)f(ξ))′ is a univalent and Isq,μ(λ,ℓ)f(ξ)ξ∈Q∩H[1,1], if
h(ξ)≺(Isq,μ(λ,ℓ)f(ξ))′, ξ∈U, | (3.5) |
holds, then
g(ξ)≺Isq,μ(λ,ℓ)f(ξ)ξ, ξ∈U, |
is satisfied for the convex function g(ξ)=1ξ∫ξ0h(t)dt, the best subordinant.
Proof. Denoting
p(ξ)=Isq,μ(λ,ℓ)f(ξ)ξ=ξ+∑∞κ=2ψ∗sq(κ,λ,ℓ)[κ+μ−1]q![μ]q![κ−1]q!aκξκξ∈H[1,1], |
we can write Isq,μ(λ,ℓ)f(ξ)=ξp(ξ) and differentiating it, we have
(Isq,μ(λ,ℓ)f(ξ))′=ξp′(ξ)+p(ξ). |
With this notation, differential superordination (3.5) becomes
h(ξ)≺ξp′(ξ)+p(ξ). |
Using Lemma 1.3, we obtain
g(ξ)≺p(ξ)=Isq,μ(λ,ℓ)f(ξ)ξ for g(ξ)=1ξ∫ξ0h(t)dt, |
convex and the best subordinant.
Theorem 3.4. Suppose that h(ξ)=1−(2α−1)ξ1−ξ with α∈[0,1). For f∈A, assume that (Isq,μ(λ,ℓ)f(ξ))′ is a univalent and Isq,μ(λ,ℓ)f(ξ)ξ∈Q∩H[1,1]. If
h(ξ)≺(Isq,μ(λ,ℓ)f(ξ))′, ξ∈U, | (3.6) |
holds, then
g(ξ)≺Isq,μ(λ,ℓ)f(ξ)ξ, ξ∈U, |
where
g(ξ)=(2α−1)+2(α−1)ξln(1−ξ). |
Proof. After presenting Theorem 3.3's proof for p(ξ)=Isq,μ(λ,ℓ)f(ξ)ξ, superordination (3.6) takes the form
h(ξ)=1−(2α−1)ξ1−ξ≺ξp′(ξ)+p(ξ). |
By using Lemma 1.3, we obtain g(ξ)≺p(ξ), with
g(ξ)=1ξ∫ξ01−(2α−1)t1−tdt=(2α−1)+2(α−1)ξln(1−ξ)≺Isq,μ(λ,ℓ)f(ξ)ξ, |
g is convex and the best subordinant.
Theorem 3.5. Let h be a convex function, with h(0)=1. For f∈A, let (ξIs+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ))′ is univalent in U and Is+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ)∈Q∩H[1,1]. If
h(ξ)≺(ξIs+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ))′, ξ∈U, | (3.7) |
holds, then
g(ξ)≺Is+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ), ξ∈U, |
where the convex g(ξ)=1ξ∫ξ0h(t)dt is the best subordinant.
Proof. Let
p(ξ)=Is+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ), |
after differentiating it, we can write
p′(ξ)=(Is+1q,μ(λ,ℓ)f(ξ))′Isq,μ(λ,ℓ)f(ξ)−p(ξ)(Isq,μ(λ,ℓ)f(ξ))′Isq,μ(λ,ℓ)f(ξ), |
in the form ξp′(ξ)+p(ξ)=(ξIs+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ))′.
Differential superordination (3.7) becomes h(ξ)≺ξp′(ξ)+p(ξ). Applying Lemma 1.3, we obtain g(ξ)≺p(ξ)=Is+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ), with the convex g(ξ)=1ξ∫ξ0h(t)dt, the best subordinant.
Theorem 3.6. Assume that h(ξ)=1−(2α−1)ξ1−ξ with α∈[0,1). For f∈A, suppose that (ξIs+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ))′is univalent and Is+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ)∈Q∩H[1,1]. If
h(ξ)≺(ξIs+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ))′, ξ∈U, | (3.8) |
holds, then
g(ξ)≺Is+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ), ξ∈U, |
where
g(ξ)=(2α−1)+2(α−1)ξln(1−ξ). |
Proof. By using p(ξ)=Is+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ), differential superordination (3.8) takes the form
h(ξ)=1−(2α−1)ξ1−ξ≺ξp′(ξ)+p(ξ). |
By using Lemma 1.3, we get g(ξ)≺p(ξ), with
g(ξ)=1ξ∫ξ01−(2α−1)t1−tdt=(2α−1)+2(α−1)ξln(1−ξ)≺Is+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ), |
g is convex and the best subordinant.
A new class of analytical normalized functions Ssq,μ(λ,ℓ;α), given in Definition 2.1, is related to the novel findings proven in this study given in Definition 2.1. To introduce some subclasses of univalent functions, we develop the q-analogue multiplier-Ruscheweyh operator Isq,μ(λ,ℓ) using the notion of a q-difference operator. The q-Ruscheweyh operator and the q-C ătas operator are also used to introduce and study distinct subclasses. In Section 2, these subclasses are subsequently examined in more detail utilizing differential subordination theory methods. Regarding the q-analogue multiplier-Ruscheweyh operatorIsq,μ(λ,ℓ) and its derivatives of first and second order, we derive differential superordinations in Section 3. For every differential superordination under investigation, the best subordinant is provided.
The authors contributed equally to the writing of this paper. All authors have read and agreed to the published version of the manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research is supported by "Decembrie 1918" University of Alba Iulia, through the scientific research funds.
The authors declare that they have no conflicts of interest.
[1] |
W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. https://doi.org/10.1090/S0002-9939-1953-0054846-3 doi: 10.1090/S0002-9939-1953-0054846-3
![]() |
[2] |
S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150. https://doi.org/10.1090/S0002-9939-1974-0336469-5 doi: 10.1090/S0002-9939-1974-0336469-5
![]() |
[3] |
M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042 doi: 10.1006/jmaa.2000.7042
![]() |
[4] | R. P. Agarwal, D. O. Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8 (2007), 61–79. |
[5] | M. Abbas, T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Math. Vesn., 66 (2014), 223–234. |
[6] |
W. Phuengrattana, S. Suantai, On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval, J. Comput. Appl. Math., 235 (2011), 3006–3014. https://doi.org/10.1016/j.cam.2010.12.022 doi: 10.1016/j.cam.2010.12.022
![]() |
[7] | I. Karahan, M. Ozdemir, A general iterative method for approximation of fixed points and their applications, Adv. Fixed Point Theory, 3 (2013), 510–526. |
[8] |
R. Chugh, V. Kumar, S. Kumar, Strong convergence of a new three step iterative scheme in Banach spaces, Amer. J. Comput. Math., 2 (2012), 345–357. https://doi.org/10.4236/ajcm.2012.24048 doi: 10.4236/ajcm.2012.24048
![]() |
[9] |
D. R. Sahu, A. Petruşel, Strong convergence of iterative methods by strictly pseudocontractive mappings in Banach spaces, Nonlinear Anal.: Theory Methods Appl., 74 (2011), 6012–6023. https://doi.org/10.1016/j.na.2011.05.078 doi: 10.1016/j.na.2011.05.078
![]() |
[10] | F. Gürsoy, V. Karakaya, A Picard-S hybrid type iteration method for solving a differential equation with retarded argument, arXiv, 2014. https://arXiv.org/abs/1403.2546 |
[11] |
B. S. Thakur, D. Thakur, M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings, Appl. Math. Comput., 275 (2016), 147–155. https://doi.org/10.1016/j.amc.2015.11.065 doi: 10.1016/j.amc.2015.11.065
![]() |
[12] |
K. Ullah, M. Arshad, Numerical reckoning fixed points for Suzuki's generalized nonexpansive mappings via new iteration process, Filomat, 32 (2018), 187–196. https://doi.org/10.2298/FIL1801187U doi: 10.2298/FIL1801187U
![]() |
[13] | K. Ullah, M. Arshad, New iteration process and numerical reckoning fixed points in Banach spaces, U. P. B. Sci. Bull., Ser. A, 79 (2017), 113–122. |
[14] |
C. Garodia, I. Uddin, A new fixed point algorithm for finding the solution of a delay differential equation, AIMS Math., 5 (2020), 3182–3200. https://doi.org/10.3934/math.2020205 doi: 10.3934/math.2020205
![]() |
[15] |
S. Thianwan, Common fixed points of new iterations for two asymptotically nonexpansive nonself-mappings in a Banach space, J. Comput. Appl. Math., 224 (2009), 688–695. https://doi.org/10.1016/j.cam.2008.05.051 doi: 10.1016/j.cam.2008.05.051
![]() |
[16] | H. A. Hammad, H. ur Rehman, M. De la Sen, A novel four-step iterative scheme for approximating the fixed point with a supportive application, Inf. Sci. Lett., 10 (2021), 14. |
[17] |
H. A. Hammad, H. ur Rehman, H. Almusawa, Tikhonov regularization terms for accelerating inertial Mann-Like algorithm with applications, Symmetry, 13 (2021), 554. https://doi.org/10.3390/sym13040554 doi: 10.3390/sym13040554
![]() |
[18] | K. Ullah, M. Arshad, New three-step iteration process and fixed point approximation in Banach spaces, J. Linear Topol. Algebra, 7 (2018), 87–100. |
[19] | K. Maleknejad, P. Torabi, Application of fixed point method for solving Volterra-Hammerstein integral equation, U. P. B. Sci. Bull., Ser. A., 74 (2012), 45–56. |
[20] |
K. Maleknejad, M. Hadizadeh, A New computational method for Volterra-Fredholm integral equations, Comput. Math. Appl., 37 (1999), 1–8. https://doi.org/10.1016/S0898-1221(99)00107-8 doi: 10.1016/S0898-1221(99)00107-8
![]() |
[21] |
A. M. Wazwaz, A reliable treatment for mixed Volterra-Fredholm integral equations, Appl. Math. Comput., 127 (2002), 405–414. https://doi.org/10.1016/S0096-3003(01)00020-0 doi: 10.1016/S0096-3003(01)00020-0
![]() |
[22] | Y. Atlan, V. Karakaya, Iterative solution of functional Volterra-Fredholm integral equation with deviating argument, J. Nonlinear Convex Anal., 18 (2017), 675–684. |
[23] | N. Lungu, I. A. Rus, On a functional Volterra-Fredholm integral equation, via Picard operators, J. Math. Ineq., 3 (2009), 519–527. |
[24] | A. E. Ofem, D. I. Igbokwe, An efficient iterative method and its applications to a nonlinear integral equation and a delay differential equation in Banach spaces, Turkish J. Ineq., 4 (2020), 79–107. |
[25] | A. E. Ofem, U. E. Udofia, Iterative solutions for common fixed points of nonexpansive mappings and strongly pseudocontractive mappings with applications, Canad. J. Appl. Math., 3 (2021), 18-36. |
[26] |
H. A. Hammad, H. Aydi, M. De la Sen, Solutions of fractional differential type equations by fixed point techniques for multivalued contractions, Complexity, 2021 (2021), 5730853. https://doi.org/10.1155/2021/5730853 doi: 10.1155/2021/5730853
![]() |
[27] | V. Berinde, On the approximation of fixed points of weak contractive mapping, Carpathian J. Math., 19 (2003), 7–22. |
[28] |
V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasicontractive operators, Fixed Point Theory Appl., 2004 (2004), 716359. https://doi.org/10.1155/S1687182004311058 doi: 10.1155/S1687182004311058
![]() |
[29] |
H. F. Senter, W. G. Dotson, Approximating fixed points of nonexpansive mapping, Proc. Amer. Math. Soc., 44 (1974), 375–380. https://doi.org/10.1090/S0002-9939-1974-0346608-8 doi: 10.1090/S0002-9939-1974-0346608-8
![]() |
[30] |
T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. Math., 340 (2008), 1088–10995. https://doi.org/10.1016/j.jmaa.2007.09.023 doi: 10.1016/j.jmaa.2007.09.023
![]() |
[31] |
S. M. Şoltuz, T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive like operators, Fixed Point Theory Appl., 2008 (2008), 242916. https://doi.org/10.1155/2008/242916 doi: 10.1155/2008/242916
![]() |
[32] |
J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, B. Aust. Math. Soc., 43 (1991), 153–159. https://doi.org/10.1017/S0004972700028884 doi: 10.1017/S0004972700028884
![]() |
[33] | A. Bielecki, Une remarque sur l'application de la méthode de Banach-Cacciopoli-Tikhonov dans la théorie de l'équation s=f(x,y,z,p,q), Bull. Acad. Polon. Sci. Sér. Sci. Math. Phys. Astr., 4 (1956), 265–357. |
[34] | F. Facchinei, J. S. Pang, Finite-dimensional variational inequalities and complementarity problems, Springer Series in Operations Research, New York: Springer, 2003. https://doi.org/10.1007/b97543 |
[35] | I. Konnov, Combined relaxation methods for variational inequalities, Lecture Notes in Economics and Mathematical Systems, Berlin: Springer-Verlag, 2001. https://doi.org/10.1007/978-3-642-56886-2 |
[36] | G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon, 12 (1976), 747–756. |
[37] |
C. Martinez-Yanes, H. K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal., 64 (2006), 2400–2411. https://doi.org/10.1016/j.na.2005.08.018 doi: 10.1016/j.na.2005.08.018
![]() |
[38] |
H. A. Hammad, H. ur. Rahman, M. De la Sen, Shrinking projection methods for accelerating relaxed inertial Tseng-type algorithm with applications, Math. Probl. Eng., 2020 (2020), 7487383. https://doi.org/10.1155/2020/7487383 doi: 10.1155/2020/7487383
![]() |
[39] |
T. M. Tuyen, H. A. Hammad, Effect of shrinking projection and CQ-methods on two inertial forward-backward algorithms for solving variational inclusion problems, Rend. Circ. Mat. Palermo, II. Ser., 70 (2021), 1669–1683. https://doi.org/10.1007/s12215-020-00581-8 doi: 10.1007/s12215-020-00581-8
![]() |
[40] | H. H. Bauschke, P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, New York: Springer, 2011. https://doi.org/10.1007/978-1-4419-9467-7 |
[41] |
H. H. Bauschke, J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev., 38 (1996), 367–426. https://doi.org/10.1137/S0036144593251710 doi: 10.1137/S0036144593251710
![]() |
[42] |
P. Chen, J. Huang, X. Zhang, A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration, Inverse Probl., 29 (2013), 025011. https://doi.org/10.1088/0266-5611/29/2/025011 doi: 10.1088/0266-5611/29/2/025011
![]() |
[43] |
Y. Dang, J. Sun, H. Xu, Inertial accelerated algorithms for solving a split feasibility problem, J. Ind. Manag. Optim., 13 (2017), 1383–1394. https://doi.org/10.3934/jimo.2016078 doi: 10.3934/jimo.2016078
![]() |
1. | Ekram E. Ali, Rabha M. El-Ashwah, Abeer M. Albalahi, Rabab Sidaoui, Marwa Ennaceur, Miguel Vivas-Cortez, Convolution Results with Subclasses of p-Valent Meromorphic Function Connected with q-Difference Operator, 2024, 12, 2227-7390, 3548, 10.3390/math12223548 | |
2. | Ekram E. Ali, Rabha M. El-Ashwah, Abeer M. Albalahi, Application of Fuzzy Subordinations and Superordinations for an Analytic Function Connected with q-Difference Operator, 2025, 14, 2075-1680, 138, 10.3390/axioms14020138 |