The goal of this manuscript is to create a new faster iterative algorithm than the previous writing's sober algorithms. In the setting of Banach spaces, this algorithm is used to analyze convergence, stability, and data-dependence results. Basic numerical examples are also provided to highlight the behavior and effectiveness of our approach. Ultimately, the proposed approach is used to solve the functional Volterra-Fredholm integral problem as an application.
Citation: Hasanen A. Hammad, Habib Ur Rehman, Mohra Zayed. Applying faster algorithm for obtaining convergence, stability, and data dependence results with application to functional-integral equations[J]. AIMS Mathematics, 2022, 7(10): 19026-19056. doi: 10.3934/math.20221046
The goal of this manuscript is to create a new faster iterative algorithm than the previous writing's sober algorithms. In the setting of Banach spaces, this algorithm is used to analyze convergence, stability, and data-dependence results. Basic numerical examples are also provided to highlight the behavior and effectiveness of our approach. Ultimately, the proposed approach is used to solve the functional Volterra-Fredholm integral problem as an application.
[1] | W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. https://doi.org/10.1090/S0002-9939-1953-0054846-3 doi: 10.1090/S0002-9939-1953-0054846-3 |
[2] | S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150. https://doi.org/10.1090/S0002-9939-1974-0336469-5 doi: 10.1090/S0002-9939-1974-0336469-5 |
[3] | M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042 doi: 10.1006/jmaa.2000.7042 |
[4] | R. P. Agarwal, D. O. Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8 (2007), 61–79. |
[5] | M. Abbas, T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Math. Vesn., 66 (2014), 223–234. |
[6] | W. Phuengrattana, S. Suantai, On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval, J. Comput. Appl. Math., 235 (2011), 3006–3014. https://doi.org/10.1016/j.cam.2010.12.022 doi: 10.1016/j.cam.2010.12.022 |
[7] | I. Karahan, M. Ozdemir, A general iterative method for approximation of fixed points and their applications, Adv. Fixed Point Theory, 3 (2013), 510–526. |
[8] | R. Chugh, V. Kumar, S. Kumar, Strong convergence of a new three step iterative scheme in Banach spaces, Amer. J. Comput. Math., 2 (2012), 345–357. https://doi.org/10.4236/ajcm.2012.24048 doi: 10.4236/ajcm.2012.24048 |
[9] | D. R. Sahu, A. Petruşel, Strong convergence of iterative methods by strictly pseudocontractive mappings in Banach spaces, Nonlinear Anal.: Theory Methods Appl., 74 (2011), 6012–6023. https://doi.org/10.1016/j.na.2011.05.078 doi: 10.1016/j.na.2011.05.078 |
[10] | F. Gürsoy, V. Karakaya, A Picard-$S$ hybrid type iteration method for solving a differential equation with retarded argument, arXiv, 2014. https://arXiv.org/abs/1403.2546 |
[11] | B. S. Thakur, D. Thakur, M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings, Appl. Math. Comput., 275 (2016), 147–155. https://doi.org/10.1016/j.amc.2015.11.065 doi: 10.1016/j.amc.2015.11.065 |
[12] | K. Ullah, M. Arshad, Numerical reckoning fixed points for Suzuki's generalized nonexpansive mappings via new iteration process, Filomat, 32 (2018), 187–196. https://doi.org/10.2298/FIL1801187U doi: 10.2298/FIL1801187U |
[13] | K. Ullah, M. Arshad, New iteration process and numerical reckoning fixed points in Banach spaces, U. P. B. Sci. Bull., Ser. A, 79 (2017), 113–122. |
[14] | C. Garodia, I. Uddin, A new fixed point algorithm for finding the solution of a delay differential equation, AIMS Math., 5 (2020), 3182–3200. https://doi.org/10.3934/math.2020205 doi: 10.3934/math.2020205 |
[15] | S. Thianwan, Common fixed points of new iterations for two asymptotically nonexpansive nonself-mappings in a Banach space, J. Comput. Appl. Math., 224 (2009), 688–695. https://doi.org/10.1016/j.cam.2008.05.051 doi: 10.1016/j.cam.2008.05.051 |
[16] | H. A. Hammad, H. ur Rehman, M. De la Sen, A novel four-step iterative scheme for approximating the fixed point with a supportive application, Inf. Sci. Lett., 10 (2021), 14. |
[17] | H. A. Hammad, H. ur Rehman, H. Almusawa, Tikhonov regularization terms for accelerating inertial Mann-Like algorithm with applications, Symmetry, 13 (2021), 554. https://doi.org/10.3390/sym13040554 doi: 10.3390/sym13040554 |
[18] | K. Ullah, M. Arshad, New three-step iteration process and fixed point approximation in Banach spaces, J. Linear Topol. Algebra, 7 (2018), 87–100. |
[19] | K. Maleknejad, P. Torabi, Application of fixed point method for solving Volterra-Hammerstein integral equation, U. P. B. Sci. Bull., Ser. A., 74 (2012), 45–56. |
[20] | K. Maleknejad, M. Hadizadeh, A New computational method for Volterra-Fredholm integral equations, Comput. Math. Appl., 37 (1999), 1–8. https://doi.org/10.1016/S0898-1221(99)00107-8 doi: 10.1016/S0898-1221(99)00107-8 |
[21] | A. M. Wazwaz, A reliable treatment for mixed Volterra-Fredholm integral equations, Appl. Math. Comput., 127 (2002), 405–414. https://doi.org/10.1016/S0096-3003(01)00020-0 doi: 10.1016/S0096-3003(01)00020-0 |
[22] | Y. Atlan, V. Karakaya, Iterative solution of functional Volterra-Fredholm integral equation with deviating argument, J. Nonlinear Convex Anal., 18 (2017), 675–684. |
[23] | N. Lungu, I. A. Rus, On a functional Volterra-Fredholm integral equation, via Picard operators, J. Math. Ineq., 3 (2009), 519–527. |
[24] | A. E. Ofem, D. I. Igbokwe, An efficient iterative method and its applications to a nonlinear integral equation and a delay differential equation in Banach spaces, Turkish J. Ineq., 4 (2020), 79–107. |
[25] | A. E. Ofem, U. E. Udofia, Iterative solutions for common fixed points of nonexpansive mappings and strongly pseudocontractive mappings with applications, Canad. J. Appl. Math., 3 (2021), 18-36. |
[26] | H. A. Hammad, H. Aydi, M. De la Sen, Solutions of fractional differential type equations by fixed point techniques for multivalued contractions, Complexity, 2021 (2021), 5730853. https://doi.org/10.1155/2021/5730853 doi: 10.1155/2021/5730853 |
[27] | V. Berinde, On the approximation of fixed points of weak contractive mapping, Carpathian J. Math., 19 (2003), 7–22. |
[28] | V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasicontractive operators, Fixed Point Theory Appl., 2004 (2004), 716359. https://doi.org/10.1155/S1687182004311058 doi: 10.1155/S1687182004311058 |
[29] | H. F. Senter, W. G. Dotson, Approximating fixed points of nonexpansive mapping, Proc. Amer. Math. Soc., 44 (1974), 375–380. https://doi.org/10.1090/S0002-9939-1974-0346608-8 doi: 10.1090/S0002-9939-1974-0346608-8 |
[30] | T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. Math., 340 (2008), 1088–10995. https://doi.org/10.1016/j.jmaa.2007.09.023 doi: 10.1016/j.jmaa.2007.09.023 |
[31] | S. M. Şoltuz, T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive like operators, Fixed Point Theory Appl., 2008 (2008), 242916. https://doi.org/10.1155/2008/242916 doi: 10.1155/2008/242916 |
[32] | J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, B. Aust. Math. Soc., 43 (1991), 153–159. https://doi.org/10.1017/S0004972700028884 doi: 10.1017/S0004972700028884 |
[33] | A. Bielecki, Une remarque sur l'application de la méthode de Banach-Cacciopoli-Tikhonov dans la théorie de l'équation $s = f (x, y, z, p, q)$, Bull. Acad. Polon. Sci. Sér. Sci. Math. Phys. Astr., 4 (1956), 265–357. |
[34] | F. Facchinei, J. S. Pang, Finite-dimensional variational inequalities and complementarity problems, Springer Series in Operations Research, New York: Springer, 2003. https://doi.org/10.1007/b97543 |
[35] | I. Konnov, Combined relaxation methods for variational inequalities, Lecture Notes in Economics and Mathematical Systems, Berlin: Springer-Verlag, 2001. https://doi.org/10.1007/978-3-642-56886-2 |
[36] | G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon, 12 (1976), 747–756. |
[37] | C. Martinez-Yanes, H. K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal., 64 (2006), 2400–2411. https://doi.org/10.1016/j.na.2005.08.018 doi: 10.1016/j.na.2005.08.018 |
[38] | H. A. Hammad, H. ur. Rahman, M. De la Sen, Shrinking projection methods for accelerating relaxed inertial Tseng-type algorithm with applications, Math. Probl. Eng., 2020 (2020), 7487383. https://doi.org/10.1155/2020/7487383 doi: 10.1155/2020/7487383 |
[39] | T. M. Tuyen, H. A. Hammad, Effect of shrinking projection and CQ-methods on two inertial forward-backward algorithms for solving variational inclusion problems, Rend. Circ. Mat. Palermo, II. Ser., 70 (2021), 1669–1683. https://doi.org/10.1007/s12215-020-00581-8 doi: 10.1007/s12215-020-00581-8 |
[40] | H. H. Bauschke, P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, New York: Springer, 2011. https://doi.org/10.1007/978-1-4419-9467-7 |
[41] | H. H. Bauschke, J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev., 38 (1996), 367–426. https://doi.org/10.1137/S0036144593251710 doi: 10.1137/S0036144593251710 |
[42] | P. Chen, J. Huang, X. Zhang, A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration, Inverse Probl., 29 (2013), 025011. https://doi.org/10.1088/0266-5611/29/2/025011 doi: 10.1088/0266-5611/29/2/025011 |
[43] | Y. Dang, J. Sun, H. Xu, Inertial accelerated algorithms for solving a split feasibility problem, J. Ind. Manag. Optim., 13 (2017), 1383–1394. https://doi.org/10.3934/jimo.2016078 doi: 10.3934/jimo.2016078 |